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Abstract—The difficult task of steganalysis, or the detection of
the presence of hidden data, can be greatly aided by exploiting
the correlations inherent in typical host or cover signals. In par-
ticular, several effective image steganalysis techniques are based
on the strong interpixel dependencies exhibited by natural images.
Thus, existing theoretical benchmarks based on independent and
identically distributed (i.i.d.) models for the cover data underesti-
mate attainable steganalysis performance and, hence, overestimate
the security of the steganography technique used for hiding the
data. In this paper, we investigate detection-theoretic performance
benchmarks for steganalysis when the cover data are modeled as a
Markov chain. The main application explored here is steganalysis
of data hidden in images. While the Markov chain model does not
completely capture the spatial dependencies, it provides an analyt-
ically tractable framework whose predictions are consistent with
the performance of practical steganalysis algorithms that account
for spatial dependencies. Numerical results are provided for image
steganalysis of spread-spectrum and perturbed quantization data
hiding.

Index Terms—Data hiding, Markov chain, steganalysis,
steganography.

I. INTRODUCTION

RESEARCH in data hiding into multimedia objects, such as
music, image, and video, has advanced considerably over

the past decade [1]. Much of this work has been focused on pro-
tecting the ownership rights [2] of digital media. In addition, the
use of digital data hiding for covert communication has a long
history [3], [4]. As the state of the art of steganography pro-
gresses, there is increased interest in steganalysis, or detection
of the presence of hidden data. A review of steganalysis [5], [6]
shows many effective methods. In particular, while steganalysis
is a difficult task, its performance can be greatly enhanced by
exploiting the correlations inherent in typical multimedia host
or cover data. For example, several effective image steganalysis
techniques [7]–[12] are based on the strong interpixel dependen-
cies exhibited by natural images. However, existing theoretical
benchmarks for steganalysis are based on modeling the cover
data as independent and identically distributed (i.i.d.) and, there-
fore, underestimate attainable steganalysis performance.
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Our objective in this paper is to derive detection-theoretic
performance benchmarks for steganalysis, accounting for depen-
dencies in the cover data. It is important for both steganalysts and
steganographers that such benchmarks are reasonably close to
the performance attainable by practical steganalysis techniques.
The benchmarks inform the steganalyst when the steganalysis
algorithm being considered is “good enough” that no further
effort needs to be expended in design, while they provide the
steganographer with a measure of the security (in terms of
resisting steganalysis) of the data hiding scheme employed.
Existing theoretical benchmarks, such as Cachins’s -secure
measure [13], guarantee detector limits only if the cover data
are i.i.d. [14] and, therefore, underestimate the attainable ste-
ganalysis performance. In this paper, we take the logical next
step toward computing a more accurate performance bench-
mark, modeling the cover data as a Markov chain (MC). The
Markov model has the advantage of analytical tractability, in
that performance benchmarks governing detection performance
can be characterized and computed explicitly. In our examples
and numerical results, we focus on images as cover data, using
a Markov model in which statistical dependency is limited
to an adjacent pixel. Clearly, this model does not completely
capture interpixel dependencies. However, we find that the
performance benchmarks we compute are consistent with the
performance of a number of image steganalysis techniques
that exploit spatial correlations.

Our main results are as follows.
• We derive a detection-theoretic benchmark for steganalysis

in sources with memory by employing an MC model for
the statistics of the host signal. Specifically, a first-order
Markov approximation is used to model interpixel depen-
dencies in images, which are the focus of this paper. This
benchmark gives to the steganographer a measure of secu-
rity, and for the steganalyst gauges practical detection rel-
ative to a theoretical bound.

• We use this benchmark to gauge the inherent detectability
of spread-spectrum (SS) and perturbed quantization hiding
schemes. These estimates are found to be consistent with
practical detection.

• As SS hiding is judged to be detectable, we devise a method
to detect various flavors of SS hiding in real images with
detection error rates as low as 4%.

Performance analysis incorporating dependencies in the
host yields immediate benefits over current i.i.d. analysis [13],
[15]–[18] for quantifying the security of various methods for
hiding data in images. For example, although SS hiding can be
detected with reasonable accuracy using current steganalysis
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techniques [19]–[21], security tests derived from the i.i.d anal-
ysis determine that SS hiding is, in fact, safe from detection.
MC analysis, on the other hand, correctly determines SS hiding
to be at risk from steganalysis. MC analysis also provides guid-
ance for steganographers seeking to evade steganalysis. Prior
efforts in this direction have generally focused on matching
the one-dimensional (1-D) histogram [17], [22], [23] or other
specific steganalysis statistics [24], [25] which provides no
guarantee that a future steganalysis scheme will not be able
to detect the hiding by using a different statistic. Security
measures including dependency have been considered previ-
ously by Chandramouli et al. [5], [26] but their security
measure applies for a specific detector, and does not provide a
performance estimate for other detectors. On the other hand,
our analysis will predict optimal steganalysis based on an MC
assumption. Although the MC model does not completely
characterize image statistics, practical constraints on the ability
of the steganalyst to estimate more complex statistical models
have limited efforts to date and may continue to restrict the
complexity of detectors.

The rest of the paper is organized as follows: In Section II,
we review the detection theory approach to steganalysis to date
and show how an MC model of images allows interpixel depen-
dencies to be included in this approach. We then show how this
model relates to current steganalysis. In Section III, we use this
model to analyze SS and perturbed quantization hiding schemes
and show how the MC analysis relates to practical findings. Fi-
nally, we present our conclusions in Section IV.

II. STEGANALYSIS, DETECTION THEORY, AND

STATISTICALLY DEPENDENT DATA

The general steganalysis problem is inherently difficult as
little information is available to the steganalyst. The original
cover image is not available and the steganographer can choose
from a wide variety of data hiding methods with an array of pa-
rameters for each method, all with differing effects. However,
due to the importance of the problem, many attempts have been
made to solve the problem within a limited context; for example,
for a given hiding scheme or a defined model of cover data.
In addition to designing tools for detection, much theoretical
analysis has been done, specifically applying hypothesis testing
theory to the problem. Here, we review this approach and intro-
duce our MC approach, which allows for the analysis of depen-
dent covers.

A. Optimal Hypothesis Testing and Steganalysis

A natural approach to steganalysis is to model an image as a
realization of a random process and leverage detection theory
to determine optimal solutions and estimate performance. This
approach has been widely used [13], [15]–[18], [27] to analyze
steganalysis and guide detection efforts. The advantage of
this model is the availability of results prescribing optimal
(error minimizing) detection methods as well as providing
estimates of the results of optimal detection. The essence of this
approach is to determine which random process generated an
unknown image under scrutiny. It is assumed that the statistics
of cover images (also known as source or host images) are

different than the statistics of a stego image, an image with
data hidden in it. The statistics of a discrete valued random
process are described by a probability mass function (PMF),
from which the probability of any event can be evaluated.
Given the PMFs for cover and stego images, detection theory
describes the optimal test of the image under scrutiny to
decide whether it is generated from the cover process or the
stego process. An optimal detector will minimize the chance
of choosing incorrectly. In the Neyman–Pearson sense, this
means minimizing the probability of missed detection subject
to a given probability of false alarm. For steganalysis, a missed
detection is to declare an image under scrutiny to be a cover
image when, in fact, it is stego. A false alarm is deciding stego
when cover should have been chosen. If is the received
vector (e.g., the image under scrutiny), and and
are the PMFs of cover and stego, respectively, the optimal
detector is known to be the likelihood ratio test

where is a threshold chosen to achieve a set false alarm
probability .

Typically, for the steganalysis problem, it is assumed that the
data samples (elements of ) are i.i.d. Under this simplifying
assumption, the probability of a received vector is the product
of the marginal probabilities . In this case,
the likelihood ratio test is equivalent to choosing the hypothesis
with the smallest Kullback–Leibler (K–L) divergence between
an estimate of the received PMF and the hypothesis PMF [14],
where the K–L divergence (sometimes called relative entropy)
between two PMFs is given as

(1)

where is the set of possible events (e.g., pixel values).
The estimate of the received PMF is a normalized histogram
(or type) formed by counting the number of occurrences of
different events (pixel values, transform coefficients, etc.) and
dividing by the total number of samples. Therefore, the K-L
divergence is a measure of “closeness” of histograms in a
way that is compatible with optimal hypothesis testing. Of
greater interest than providing an alternative expression to
the likelihood ratio test, the error probabilities for an optimal
hypothesis test decrease exponentially as the K–L divergence
between the two hypothesis PMFs increases [14]. In other
words, the K–L divergence provides a convenient means of
gauging how easy it is to discriminate between cover and stego.
Because of this property, Cachin suggested [13] using the
K–L divergence as a benchmark of the inherent detectability
of a steganographic system.

Typical cover data, however, are not i.i.d. For example, both
pixels and audio samples are known to be highly correlated.
To more accurately characterize optimal hypothesis testing in
steganalysis, a model employing dependency must be used.
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B. Detection-Theoretic Divergence Measure for Markov
Chains

To include interpixel dependency in our analysis, we em-
ploy an MC [28] model of image data. A MC is a random
sequence indexed by , subject to the following condition:

. Under this model,
the probability of a given pixel is dependent on an immediately
adjacent pixel. We have used this model to analyze and detect
SS hiding [21], and Sidorov used MC and Markov random
field analysis for detecting least-significant bit (LSB) hiding
[29]. There are a number of reasons to use an MC model.
First, the MC model accounts for dependency, yet it is very
general and flexible. Second, while an MC model is more
complex than an i.i.d model, it is the least complex model
incorporating dependencies. Though many have used Markov
random fields [30] to model images accounting for a larger
neighborhood of dependency than one adjacent pixel, for the
steganalyst, there is a practical drawback to increasing the
levels of dependency. As the model complexity increases,
the number of samples required to make an accurate esti-
mate of the statistics also increases. However, the number of
received samples depends on the image size and cannot be
increased by the steganalyst. Thus, although the complexity
for the steganalyst increases quickly, the benefit does not. For
more on the difficulties of multivariate density estimation, see
[31]. The MC model, on the other hand, is simple enough
to make realistic statistical estimates. This is analogous to
an th order DPCM coding system, in which the benefit of
an increase in , the number of pixels used for prediction,
has been shown to quickly drop after 2 or 3 [32]. Finally, a
divergence metric, which measures the performance of optimal
detection, analogous to the K–L divergence for i.i.d sources,
exists [33] for MCs and is examined below.

First, we clarify our notation. Let
be an MC on the finite set . In our context, are the -in
dexed set of pixels obtained by a row or column scanning and

are all possible gray scale values (e.g., for an 8-b image
). A MC source is defined by a transition

matrix , and marginal probabili-

ties . For a realization ,
let be the number of transitions from value to value

in . The empirical matrix is .
That is, the , th element represents the proportion of spatially
adjacent pixel pairs with a grayscale value of followed by
and, therefore, provides an estimate of the probability

. The empirical matrix thus provides an estimate of
the transition matrix and marginal probabilities

;
. The empirical matrix, similar to

the cooccurrence matrix (see citations in [34]), can be recog-
nized as a matrix form of the two-dimensional (2-D) normalized
histogram (or type) used to estimate the joint PMF of an arbi-
trary source. Intuitively, for sources that are strongly correlated,
such as pixels, we expect the probability of two adjacent sam-
ples having equal, or nearly equal, value to be high. Therefore,
in the empirical matrix, we expect the mass to be more concen-
trated near the main diagonal (all elements such that ) in a

Fig. 1. Simple example of empirical matrices, here we have two binary (i.e.,
Y = f0; 1g) 3 � 3 images. From each image, a vector is created by scan-
ning, and an empirical matrix is computed. The top image has no obvious inter-
pixel dependence, which is reflected in a uniform empirical matrix. The second
image has dependency between pixels, as seen in the homogenous regions and
so its empirical matrix has a probability concentrated along the main diagonal.
Though, in this contrived example, the method of scanning (horizontal, vertical,
zig-zag) has a large effect on the empirical matrix, we find the effect of the scan-
ning method on real images to be small.

correlated source then we would expect for an i.i.d source; see
the examples in Fig. 1.

The divergence measure we employ to quantify the statistical
changes introduced by steganography is essentially a distance
between the empirical matrices and of the two hy-
potheses, cover and stego

(2)
This divergence has many useful properties for the study of ste-
ganalysis in sources with memory, from the point of view of
both the steganographer and the steganalyst.

For a constant false alarm rate, the minimal achievable missed
detection rate approaches as , the number
of samples, goes to infinity [33], [35], just as in the i.i.d case
with K–L divergence. In other words, under the assumption of
an MC model, the performance of the best possible steganalysis
is exponentially bounded by this measure.

It can be seen then that provides a measure
to the steganographer of the inherent detectability of a stegano-
graphic scheme, given an assumption on the complexity of the
detector. Other similar measures have been proposed. Cachin
suggested [13] -secure steganography, in which the accept-
able K–L divergence between cover and stego marginal PMFs
is bounded. The advantage of using a bound on the matrix di-
vergence is the addition of dependency to the model. In other
words, if the detector, in fact, uses dependency, an -secure
hiding scheme will overestimate the secrecy of hiding. To pre-
vent this problem, Chandramouli et al., [5], [26] suggest the
metric. Here, the measure of detectability of a steganography
method is a bound on the allowed probabilities of false alarm
and missed detection for a given detector . While this certainly
avoids the problem of underestimating the power of detectors
employing dependency, it is only valid with respect to a given
detector. If a different detector is employed, or invented, the se-
curity is unknown. The matrix divergence, however, bounds the
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false alarm and missed detection probabilities of the best pos-
sible detector using one level of dependency. The detector does
not have to be known or even exist. In practice, the steganog-
rapher can choose a scheme that minimizes the divergence for
a given cover joint distribution model (e.g., Gaussian, Lapla-
cian, etc.). Alternatively, given a scheme, the steganographer
can choose to use only images that exhibit a small divergence
after hiding.

For the steganalyst, measures the amount of
information gained for each additional sample received, just as
with the K–L divergence for independent samples. The detector
can use this to decide if there is enough gain to justify using a
more complex detector. We note that is equal
to the K–L divergence if the samples are indeed independent

Let be the ratio of the matrix divergence measure to the K–L
divergence. represents the gain of employing the more com-
plex model. For example, to achieve the same detector power
(i.e., same probabilities of miss and false alarms) requires
times as many samples if the detector uses an i.i.d cover model
versus an MC model. In the case of independent data, will be
one, reflecting the lack of gain of a detector that uses statistics
beyond a 1-D histogram.

C. Relation to Existing Steganalysis Methods

As mentioned above, using the MC model is analogous to
assuming a complexity constraint on the detector. Since depen-
dency is limited to one adjacent pixel, empirical matrices pro-
vide sufficient statistics for optimal detection. However, even
2-D joint statistics are difficult to use practically. For practical
applications, it is useful to use a subset, or function, of the em-
pirical matrix. Often, these subsets or functions are chosen to
match a specific hiding scheme and, if done correctly, do not
sacrifice much detection power. However, they certainly cannot
improve detection. We now show that many ongoing efforts in
steganalysis use such a subset or function.

Many steganalysis schemes and analysis [16], [18], [36]–[38]
use a histogram, or estimate the 1-D PMF, to discriminate be-
tween cover and stego. A 1-D histogram is simply the row sums
of the empirical matrix .

To capture the effect of hiding on interpixel dependencies,
some [9], [39] have used difference histograms, that is, instead
of a histogram of sample values, a histogram of the difference
of values between samples is used. As pixels are strongly corre-
lated, the difference between pixels is small and the histogram
is concentrated toward zero. Typically, hiding disrupts this con-
centration and, with appropriate calibration, the hiding can be
detected. The difference histogram is formed by the sums of
the diagonals of the empirical matrix. That is, the difference
histogram is . The concentration at
zero in the difference histogram corresponds to the concentra-
tion along the main diagonal of the 2-D histogram.

To detect LSB hiding, the RS scheme (so named because
of the use of sets called regular and singular) [40] and related
sample-pair analysis [8] also use counts of differences between
pixel values. Though sample-pair analysis is not limited to adja-
cent pixels, the authors note the estimate is improved in practice
for spatially adjacent samples. In [10], Roue et al. use the empir-
ical matrix directly to improve the effectiveness of sample-pair
analysis.

Also for LSB detection, Sidorov, explicitly using an MC
model [29], [41], uses an entropy-like measure based on ratios
of values near the main diagonal of the empirical matrix

Recently, Ker [42], [43] has approached the detection of LSB
matching, a variant of standard LSB hiding that is not detected
by standard LSB steganalysis. To improve the results of a de-
tection method introduced by Harmsen and Pearlman [19] that
employs a histogram, an adjacency histogram is used instead.
The use of the adjacency histogram, which is exactly equivalent
to the empirical matrix, substantially improves the detection re-
sults.

In [11], Fridrich et al. use a calibrated blockiness measure
to detect Outguess 0.2b [22]. This blockiness measure is the
expected value of the absolute difference of border pairs and
can be rewritten in terms of the empirical matrix generated from
pixels straddling 8 8 block boundaries

For blind detection, in which a hiding scheme is not assumed,
Fridrich et al. [44], [45] use a combination of features, his-
tograms, and co-occurrence matrices [of bands of discrete co-
sine transform (DCT) coefficients]. The co-occurrence matrix
is essentially the same as the empirical matrix. Though our ex-
periments focus on the joint statistics of pixels rather than DCT
coefficients, the analysis is generic to any Markov data. Though
the DCT is known to significantly reduce dependencies, it does
not create completely independent data. The effectiveness of
their detection shows that steganalysis can be improved by in-
cluding these dependencies.
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In [46], Ambalavanan et al. use a Markov random field (MRF)
to study active steganalysis, that is, extracting the message from
a known stego image. As we note in Section II-B, the MRF is an
extension to the MC model, including more dependency. Though
the bit extraction works well at low hiding rates, the increased
complexity of the model has its drawbacks as can be seen in the
deterioration of results for higher rates of embedding.

In [12], Avcibas et al. use image-quality metrics to measure
the effect of hiding. Though these metrics are not easily related
to the empirical matrix, it is notable that the metrics are evalu-
ated between the image under scrutiny and a low-pass-filtered
version of the image. To generate the filtered image, each pixel
is replaced with a weighted sum of a 3 3 neighborhood sur-
rounding the pixel. In other words, it is assumed that the mea-
surable difference between a given image and the same image
with artificially enhanced interpixel dependencies is different
for stego images and cover images.

We have argued that analysis using an MC model provides
meaningful results under the condition of a steganalyst incorpo-
rating one level of dependency for detection. We have seen here
that many existing detection methods indeed implicitly employ
such a model.

III. MEASURED DIVERGENCE OF STEGANOGRAPHIC SCHEMES

Due to the lack of information available to the steganalyst,
practical detection is inevitably suboptimal. However, we still
expect some relationship between the calculated divergence
and the efficacy of state-of-the-art steganalysis. We now ex-
amine the divergence measure of some existing steganographic
schemes and compare them with current detection methods to
test this assumption. We focus on interpixel correlation and
always perform measurements in the spatial domain. Addition-
ally, we compare the calculated divergence under an assumption
of independence (1) to the divergence assuming dependency
(2) to evaluate the value to the steganalyst in incorporating a
more complex statistical model.

A. Spread Spectrum

SS data hiding [47] is an established embedding method,
often used for watermarking, but also applicable for steganog-
raphy [48]. Here, we measure and study the statistical effect
of hiding on the empirical matrix and relate this to detection
experiments we performed.

1) Measuring Detectability of Hiding: In SS data hiding,
the message data modulates a noise sequence to create a mes-
sage-bearing signal, which is then added to the cover data. Since
its introduction, many variants of SS have been proposed, typ-
ically in the context of watermarking. The major goal in wa-
termarking is robustness to malicious attacks, rather than statis-
tical invisibility. We therefore focus on basic models of hiding
suggested by Cox et al. [47], shown here for reference. Let

be a zero mean, unit variance, Gaussian mes-
sage bearing signal, and be the cover samples. Two
methods of generating stego data are

(3a)

(3b)

where is a scaling parameter used to adjust the hiding power.
This adjustment allows the data hider to adapt the hiding to the

cover in order to control the perceptual distortion, the robust-
ness of the message, and security from steganalysis. In the first
method, the adaptation is done globally (i.e., a constant hiding
power is used for all cover samples). We refer to this as globally
adaptive hiding. In the second method, the hiding power adapts
to each cover sample, so we characterize this as locally adaptive.
We also note that often the cover image is transformed before
data are hidden; for example, Cox et al. [47] use a whole image
DCT. We measure the divergence of four variants of SS hiding:
local and globally adaptive hiding in both the spatial and DCT
domains. We have seen globally adaptive spatial SS hiding by
Marvel et al. in SS image steganography (SSIS) [48] and, more
recently, by Fridrich et al. in a variant of stochastic modulation
[49]. The latter allows for a higher number of bits to be suc-
cessfully decoded and the embedding rate is a function of the
message signal power. The experiments presented by Cox et al.
[47] are locally adaptive DCT hiding.

For each variant, we calculated the divergence over a range
of message signal power. For globally adaptive hiding, we hold
the message-to-cover power ratio (MCR) constant. In the lo-
cally adaptive case, we assume the sender and receiver have a
shared constant scale factor . The MCR will vary from image
to image; we record the average value with the data.

To generalize our approach, we would like to simplify the
divergence measurement by eliminating the need to derive the
stego empirical matrix. Instead of using statistical analysis of the
hiding scheme to generate an expected stego empirical matrix,
Monte Carlo simulations of data hiding in several images may
provide an accurate means of estimating divergence. To do this,
several synthetic images are generated from the empirical ma-
trix of a cover image. Data are hidden in these synthetic images
and stego empirical matrices are calculated from the resulting
images. The average divergence between these empirical ma-
trices and the original cover matrix represent an estimate of the
divergence introduced by hiding.

We note here an important practical consideration when
using empirical matrices. The matrix divergence results we
are using require absolute continuity of with respect to

[35]. That is, cannot be nonzero
at any point where is zero. We will see that for the
steganographic methods we look at, the distribution of stego
coefficients tends to be more spread out. Generally then,
is more likely to have values in bins where does not,
rather than the opposite. However, this is not guaranteed and
typically there is a nominal violation of absolute continuity, that
is, some percentage of is nonzero where is zero.
For our estimate of the divergence introduced by hiding, if the
violation is negligible, we use an approximate form of
in which nonzero values violating the constraint are set to zero
and the matrix is re-normalized. Generally, experiments that
produce non-negligible violations ( 0.1%) are pathological
cases of little interest. For example, in these cases, the exper-
imental setup in practice may yield grossly distorted images.
These experiments are not reported here.

As mentioned in Section II-B, the divergence measure pro-
vides to the steganographer a benchmark of the inherent de-
tectability of hiding. Additionally, it allows the steganalyst to
compare the information gained from each new sample by ex-
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TABLE I
DIVERGENCE MEASUREMENTS OF SPREAD-SPECTRUM HIDING (ALL DIVERGENCE VALUES ARE MULTIPLIED BY 100). AS EXPECTED, THE EFFECT

OF TRANSFORM AND SPATIAL HIDING IS SIMILAR. THERE IS A CLEAR GAIN HERE FOR THE DETECTOR TO USE DEPENDENCY.
A FACTOR OF 20 MEANS THE DETECTOR CAN USE 95% LESS SAMPLES TO ACHIEVE THE SAME DETECTION RATES

TABLE II
FOR SS LOCALLY ADAPTIVE HIDING, THE CALCULATED DIVERGENCE IS RELATED TO THE COVER MEDIUM, WITH DCT HIDING

BEING MUCH LOWER. ADDITIONALLY, THE DETECTOR GAIN IS SMALLER FOR DCT HIDING

ploiting dependency to the information gained using only first-
order statistics. We present both divergence measures: between
empirical matrices (2) and between marginal histograms (1),
and the average ratio of these two to show the gain by using de-
pendency at the detector. These measurements are summarized
in Tables I and II. From stochastic modulation [49] (a variant of
globally adaptive SS hiding), we have a means of relating mes-
sage signal power to a realizable embedding rate. The average
hiding rates for MCRs 23, 20, and 17 are 0.91, 0.94, and
0.96 bits per pixel (bpp), respectively.

From these data, we can see many trends. Not surprisingly,
the divergence measure always increases with the MCR; the
more powerful a message (and, subsequently, a higher hiding
rate), the more obvious the hiding becomes. Additionally,
though the measured divergence introduced by globally adap-
tive hiding is roughly the same for both spatial hiding and
transform hiding, locally adaptive divergence changes de-
pending on the hiding domain. Locally adaptive spatial hiding
is slightly less divergent than globally adaptive hiding (for
similar MCR), however, locally adaptive DCT is much less
divergent. We expect from these divergence measurements that
detection will be more difficult for locally adaptive hiding,
particularly DCT, than for the other cases. Finally, in all cases,
there is an advantage to including dependencies in detection. In
the best case, about 95% fewer samples can be used to achieve
the same performance. Even in locally adaptive DCT hiding,
where the advantage is the least, a gain of 5.9 means only
about a sixth of the samples are required. Below, we analyze
the underlying statistical changes caused by hiding in order to
explain these findings.

2) Statistical Effect of SS Hiding: Globally adaptive hiding
is analogous to inserting zero mean additive white Gaussian
noise (AWGN) with power . The net statistical effect is a con-
volution of the message signal distribution , with the
cover distribution [19]. Deriving the exact empirical matrix of
the stego signal is complicated somewhat by the necessity of
quantization and clipping as a final step to return to the same
sample space as the source. For example, in hiding in pixels,

the stego values must be rounded to integers between 0 and 255.
When necessary to prevent ambiguity, we delineate the unquan-
tized stego signal as . The probability density function (pdf)
of the stego signal before quantization is

In other words, there is a white joint Gaussian pdf centered at
each point in the cover empirical matrix and scaled by the em-
pirical matrix value. This can be seen as a blur of the cover em-
pirical matrix and is directly analogous to spatial lowpass fil-
tering of images by convolution with a Gaussian function [50,
Sec. 4.3.2]. After rounding to pixel values, the empirical matrix
of the stego signal is

(4)

Since the message signal is white, or uncorrelated, its empirical
matrix is spread evenly and there is no greater probability for
values near the main diagonal. Hiding weakens the dependen-
cies between the cover samples, which causes spreading from
the main diagonal of the empirical matrix, as seen in Fig. 2.

Locally adaptive hiding can also be viewed as zero mean
AWGN; however, it is nonstationary, since the noise power

depends on . Instead, we view it as multiplicative
noise with mean of one. Let be a multiplicative
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Fig. 2. Empirical matrices of SS globally adaptive hiding. The convolution of
a white Gaussian empirical matrix (bell shaped) with an image empirical matrix
(concentrated at the main diagonal) results in a new stego matrix less concen-
trated along the main diagonal. In other words, the hiding weakens dependen-
cies.

message signal, then , the cumulative distribution
function (cdf) of (prequantized) S is

and the pdf is

and the empirical matrix of the quantized can be found with
(4). To simplify the expressions, we have assumed is such that
the probability of and at values less than zero are negli-
gible. This assumption is warranted by the typical values used
in hiding, which are chosen to be small enough to avoid visual
distortion. For a given cover empirical matrix , these ex-
pressions can be evaluated numerically.

From the equations, the statistical effect is not obvious. How-
ever, as seen in Fig. 3, hiding still blurs the cover matrix, shifting
probability away from the main diagonal. The effect, however,
is less strong.

We can now summarize the statistical effect of SS hiding and
relate this to our findings in Section III-A-1. In a general sense,
SS data hiding adds an i.i.d. message signal to a non-i.i.d cover.
It is not surprising then that the statistical effect is a decrease in
the dependence of the cover. For globally adaptive hiding, this
effect is very clearly seen in a shift of probability away from
the main diagonal. For locally adaptive hiding, the adaptation
causes the additive message sequence to become dependent on
the cover. Effectively, the message sequence is de-whitened, that
is, correlations are introduced and the effect is weakened. This
can be seen to explain the smaller divergence measured in for
locally adaptive hiding compared to global.

For the linear transformations typically used, such as DCT
and discrete Fourier transform (DFT), the addition of a Gaussian
message signal in the transform domain is equivalent to adding
a Gaussian message signal in the spatial domain. Therefore,
globally adaptive hiding in DCT coefficients statistically has
the same effect as hiding in pixels. However, locally adaptive
hiding, which can be seen as a multiplicative Gaussian signal, is
not equivalent in both domains. This helps explain why the cal-
culated divergence was nearly equal for globally adaptive hiding
in either domain, but differed greatly for locally adaptive hiding.

Finally, we found the most noticeable effect of SS hiding to
be spreading from the main diagonal of the empirical matrix.
Since the histogram is simply the collection of sums of each row
of the empirical matrix, this effect will be missed by studying
only marginal statistics. That is, the spreading along each row
will not be visible when the row is collapsed into a single point.
This explains the gain of using dependency in detection.

3) Experiments: We now compare the measurements of the
detectability of optimal SS hiding to experiments using a prac-
tical detector and find that the practical experiments follow the
estimates above. We also compare experiments for a detector
using dependencies with a simpler detector to judge the ex-
pected gain in detection.

To achieve optimal detection of data hiding, the detection-the-
oretic prescription is to calculate the empirical matrix of a sus-
pected image and calculate the divergence between this and the
empirical matrices of both the cover and the stego. Whichever
is “closer” (i.e., has a smaller divergence measurement) is the
optimal decision. From the analysis above, we can evaluate the
stego empirical matrix given by the cover matrix. The cover sta-
tistics, however, will not be known in a practical scenario. To
overcome this, we can attempt to estimate the cover statistics
for each received image or estimate the cover statistics for all
images. Some steganalysis has been able to estimate the statis-
tics on an image by image basis [16], [37]; however, there is no
general prescription for making such an estimate. There has also
been some success with classifying between the set of all cover
images and all stego images, typically through the use of super-
vised learning techniques [19], [38], [51], [52]. The idea is to
train a machine with several examples of both cover and stego
to discriminate between the two classes. For our experiments,
we choose to employ supervised learning.

For the experiments, we need an image database, a learning
algorithm, and a feature vector to train the machine. In the image
database, we want to represent the vast variety of real images as
well as possible. We use an image set comprised of a mix of four
separate sources:

1) digital camera images, partitioned into smaller subimages;
2) scanned photographs;
3) scanned, downsampled, and cropped photographs;
4) images from the Corel volume scenic sites.

All images are converted losslessly to PNG format and color
images are converted to grayscale. The entire database contains
approximately 1400 images. Half of these are used for training
and half for testing. Within both the training and testing sets,
half are cover images and half are (distinct) stego images. And
so there are four sets of distinct images (no image is in two sets):
cover training, stego training, cover testing, and stego testing.
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Fig. 3. Global (left) and local (right) hiding both have similar effects, a weakening of dependencies as seen as a shift out from the main diagonal. However, the
effect is more pronounced with globally adaptive hiding.

For a classifier, we use Joachim’s support vector machine
(SVM) implementation [53], . A linear kernel is used;
we found other kernels perform only slightly differently. The
SVM classifier is shown to be an effective classifier for steganal-
ysis by Lyu et al. [51] and, more recently, by Pevný et al. [45].

Since the optimal hypothesis test finds the minimum diver-
gence between PMF estimates, we are motivated to use PMF
estimates to train the SVM. For our experiments with a detector
not using dependency, we can use the appropriate PMF esti-
mate: the normalized histogram of pixel values, a 256-dimen-
sional feature vector. Unfortunately for the detector using de-
pendency, the empirical matrix is too large ( dimensions) to
use directly. As with the other steganalysis schemes mentioned
in Section II-C, we use a reduced version of the empirical matrix
for a classification statistic. We have noted that image empirical
matrices are very concentrated toward the main diagonal, and
that hiding tends to spread the density away from this line. To
capture this effect, the feature vector should then include the re-
gion immediately surrounding the main diagonal.

To generate the empirical matrix, we need a method of gen-
erating a 1-D chain from an image (i.e., a scan). We first use a
vertical scanning, as in Fig. 1, for the experiments. We recognize
that images have anisotropic dependencies not captured by ver-
tical scanning, and so we also explore different feature vectors
that combine horizontal, vertical, and diagonal pairs, in order to
more accurately characterize pixel dependencies.

For an empirical matrix calculated from an image, the
six highest probabilities on the main diagonal are chosen
first, and for each of these, the following ten nearest differences
are chosen:

Altogether, this gives a 66-dimensional vector. We also wish to
capture changes along the center line. To do this, we subsample
the remaining main diagonal values by four

Fig. 4. Example of the feature vector extraction from an empirical matrix (not
to scale). Most of the probability is concentrated in the circled region. Six row
segments are taken at high probabilities along the main diagonal and the main
diagonal itself is subsampled.

(Fig. 4). The resulting total feature vector has 129-dimensions,
a manageable size that still captures much of the hiding effect.
A comparison of the feature vectors used to evaluate the per-
formance of both detectors, using and not using dependencies,
is shown in Fig. 5. In addition to generating an empirical ma-
trix based on adjacent pixels, we experimented with an empir-
ical matrix generated from a pixel and an average of its four
nearest neighbors. This is done in an attempt to capture a pos-
sible gain to using a more complex model, while still falling into
our framework.

We tested the same four SS variants as in the previous sec-
tions. To relate these experiments to other work done, we based
our hiding power on that reported in the literature. SS image
steganography (SSIS) [48] is an implementation of globally
adaptive hiding. In the experiments done by Marvel et al., the
MCR reported is always greater than 23 dB, so we choose
this as a worst case. For the locally adaptive DCT scheme, we
look to the experiments performed by Cox et al., [47], and
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Fig. 5. Feature vector on the left is derived from the empirical matrix and cap-
tures the changes to interdependencies caused by SS data hiding. The feature
vector on the right is the normalized histogram and only captures changes to
first-order statistics, which are negligible.

use , which gives an MCR of roughly 21 dB. In the
spatial domain, we choose to achieve a similar MCR.

Our results are summarized in the receiver operating charac-
teristics (ROC) curves in Fig. 6 for the detector based on the em-
pirical matrix and the histogram, respectively. In the ROCs, the
best detector will reach the origin (0 false alarms and misses),
and the worst detector is on the line connecting the upper-left
corner to the lower right. The probabilities of false alarm and
missed detection are defined as

false alarm
number of clean images identified as stego

total number of clean images
miss

number of stego images identified as clean
total number of stego images

Since the vertical scan method will not capture all directions
of image dependency, we explore different features that incor-
porate different aspects of dependency. First, we look at gener-
ating the same feature vector as in the above experiments instead
of scanning the image into a vector using horizontal or zig–zag
scanning (as is done for DCT coefficients in JPEG compression
[54]).

In Fig. 7, we compare the ROCs of three detectors based on
vertical, horizontal, and zigzag scans on locally adaptive trans-
form hiding, the hiding scenario with the weakest detector per-
formance. All methods perform approximately the same, with
horizontal scan being slightly better than the other two. We
find this same trend for locally adaptive spatial hiding as well
as global hiding in either domain. Moreover, we tried several
methods of combining different scan information. Generally,
these perform about the same as a single directional scan.

We also compare the results of the detector based on the em-
pirical matrix based on one adjacent pixel, and that generated
from an average of four adjacent pixels. In Fig. 8, we compare
the results of both detectors for locally adaptive DCT hiding;
the results for the other three variants are similar. The detectors
perform closely, suggesting the simple MC model captures the
important changes introduced by hiding.

We note that our results for detecting spatial globally adaptive
hiding, error rates on the order of 1%–5%, are similar to those of
Harmsen and Pearlman in [19] detecting SSIS in color images.
For detection, they used a statistic based on color plane statistics.
Though the detection tests are not directly analogous since our

tests are strictly on grayscale images, it is likely that a similar
effect to the weakening of dependencies between pixels occurs
between color planes. Celik et al. [20] perform the detection of
stochastic modulation, statistically the same as spatial globally
adaptive hiding. Stochastic modulation allows a greater embed-
ding rate for a smaller MCR (or larger peak signal-to-noise ratio
PSNR). As such, Celik et al. tested with a lower MCR, and so,
although their detection rates are not as high as ours, it is diffi-
cult to directly compare.

In [55], Chandramouli studies the different but related
problem of active steganalysis of SS hiding. In active steganal-
ysis, the goal is to extract information about the message (or
the message itself) from a known stego signal or, in this case,
two known stego signals. Both correlations between the signals
and within the signals themselves are exploited to estimate the
original message. Of particular note in relation to our work,
Chandramouli has exploited the fact that cover signals are not
white Gaussians in order to identify message bits.

We find the results of a practical detector matches that which
our divergence measurements and analysis lead us to expect.
For the steganographer, it may first seem that locally adaptive
DCT hiding is the superior choice for hiding. However, there are
two important points to mention: First, unlike globally adaptive
hiding, locally adaptive hiding only meets a target MCR on av-
erage. The MCR for each image varies and this may make detec-
tion more difficult. If the hider chooses instead to keep the MCR
constant, rather than , detection rates may increase. Second, al-
though the currently realizable globally adaptive hiding rate is a
function of the message signal power, the locally adaptive hiding
rate is not readily available and may, in fact, be less than globally
adaptive hiding for a given MCR. In all cases, there is clearly a
gain for the steganalyst to use a model of dependency for detec-
tion. In the following section, we perform a similar analysis to
a hiding scheme specifically designed to evade detection.

B. Double-Compressed JPEG Perturbation Quantization

Recently, Fridrich et al. [56] introduced an implementation of
their perturbation quantization hiding method that creates stego
images that mimic a double-compressed clean image. We mea-
sure the divergence of this method and show these are related
to practical detection results presented by Kharrazi et al. [57].
As with SS hiding, we study the statistical effect of hiding to
explain these findings.

1) Detectability of JPEG PQ Hiding: As the name implies,
perturbation quantization is a variant of quantization index
modulation (QIM) [58]. Standard QIM hiding in JPEG images
has a distinctive statistical effect, and can be detected [18], [38].
Double-compressed PQ, however, is specifically contrived to
minimize the statistical difference between the stego image,
and an image that has simply been compressed twice. This
is achieved by embedding in coefficients that have the same
distribution after a second compression as they do after data
hiding.

In [57], Kharrazi et al. measure the detection rates for three
blind methods of steganalysis used on a variety of steganog-
raphy schemes. The term “cover” is somewhat ambiguous for
PQ JPEG hiding. The original source, from which the stego
image is generated, is a once-compressed image. However,
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Fig. 6. ROCs of SS detectors based on empirical matrices (left) and 1-D histograms (right). In all cases, detection is much better for the detector including
dependency. For this detector (left), the globally adaptive schemes can be seen to be more easily detected than locally adaptive schemes. Additionally, spatial
and DCT hiding rates are nearly identical for globally adaptive hiding, but differ greatly for locally adaptive hiding. In all cases, detection is better than random
guessing. The globally adaptive schemes achieve best error rates of about 2%–3% for Pr(false alarm) and P(miss).

Fig. 7. Detecting locally adaptive DCT hiding with three different supervised
learning detectors. The feature vectors are derived from empirical matrices cal-
culated from three separate scanning methods: vertical, horizontal, and zigzag.
All perform roughly the same.

PQ is designed to mimic twice-compressed images, which
the authors argue occur naturally [56]. Because of this am-
biguity, Kharrazi et al. measure the detection rates of two
cases: comparing with the source (single-compressed) images,
and comparing with re-compressed (i.e., double-compressed)
images. For the first case, detection is found to be possible,
but by no means certain. For example, in one case, the sum
of errors (false alarm and missed detection) is about 0.3. For
the second case, the detection rates are essentially random. In
other words, guessing or flipping a coin will be just as effective
for steganalysis. For details, please see their paper [57]. We
note that the detection schemes are blind to the method, and
one would expect better results from a scheme specifically
designed to detect PQ JPEG. However, these results provide
an idea of the detectability of this scheme. As with SS above
(Section III-A-1), we measure the divergence introduced by PQ
JPEG hiding. In Table III, we summarize the results. and

are the JPEG quality levels used for the first and second
compressions. Both of these cases correspond to a large number

Fig. 8. Comparison of detectors for locally adaptive DCT SS hiding. The two
empirical matrix detectors, one using one adjacent pixel and the other using an
average of a neighborhood around each pixel, perform similarly.

of embeddable coefficients, and all available coefficients are
used. For the (75, 50) trial, the average embedding rate is 0.11
bits per pixel (bpp), 0.38 bits per nonzero DCT coefficient
(bpnz-DCT). In the second trial (88, 76), the average rate is
0.13 bpp and 0.35 bpnz-DCT.

As in the SS case, we found that the measure of theoretically
optimal detection of data hiding in Markov random chains cor-
responds to experiments in the nonidealized case. This again
suggests that the model is a useful tool in judging the inherent
detectability of a steganographic method. Additionally, there is
a gain for a steganalyst to use dependency for detection, up to
7.5 times gain in this example. We now explore how this low
divergence is obtained.

2) Statistical Effect of Double JPEG Compressed PQ: As
mentioned above, the source for data hiding is an image that
has undergone JPEG compression. During JPEG compression,
the image is broken into small blocks, each of which undergoes
a 2-d DCT. These DCT coefficients are then quantized to reduce
the number of bits used to store or transmit the image (for de-
tails, see [54]). An inverse DCT of these coefficients reproduces
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TABLE III
DIVERGENCE MEASURES OF PQ HIDING (ALL VALUES ARE MULTIPLIED BY 100). NOT SURPRISINGLY, THE DIVERGENCE IS GREATER

COMPARED TO A TWICE-COMPRESSED COVER THAN A SINGLE-COMPRESSED COVER, MATCHING THE FINDINGS OF KHARRAZI ET AL. THE DIVERGENCE

MEASURES ON THE RIGHT (COMPARING TO A DOUBLE-COMPRESSED COVER) ARE ABOUT HALF THAT OF THE LOCALLY ADAPTIVE DCT SS CASE IN

WHICH DETECTION WAS DIFFICULT, HELPING TO EXPLAIN THE POOR DETECTION RESULTS

Fig. 9. On the left is an empirical matrix of DCT coefficients after quantization. When decompressed to the spatial domain and rounded to pixel values, right, the
DCT coefficients are randomly distributed around the quantization points.

a spatial domain image. However, the spatial domain (pixel)
values will no longer be integers, due to the quantization in the
DCT domain. To display or otherwise use the image in the spa-
tial domain, the pixel values are rounded to the nearest integer
in the bit depth range (e.g., ). Now, the DCT co-
efficients (of the pixel image) will no longer be exactly quan-
tized, but instead randomly spread around the quantized value.
In summary, if an image is compressed, then decompressed, the
DCT values will be randomly distributed around their quantized
values as seen in Fig. 9. Asymptotically, this density is a white
Gaussian centered at the quantized value [56].

If the image is recompressed with a different quality level
(i.e., different quantization step size), these blurred coefficients
will be rounded to the nearest new quantizer output. In some
special cases, the first quantizer output value lies halfway be-
tween two output levels of the new quantizer. For example, if
the first quantizer used a step size of 21, and the second quan-
tizer uses 24, then is straddled by and

. Since it is assumed that the distribution is white
Gaussian and, therefore, symmetric, it is expected that under
normal quantization, roughly half of the coefficients originally
quantized to 84 will become 72, and half 96. For pairs of co-
efficients, a quarter of pairs originally at (84,84) will become
(72,72), a quarter (72,96), a quarter (96,72) and a quarter (96,96)
(Fig. 10). Fridrich et al., propose changing the quantization of
these values to add hidden data. If instead a value originally at
84 becomes 72 to represent a zero, and becomes 96 to represent
one, the statistics are not expected to change.

This statistical equivalency will only fail if the density blur-
ring is not, in fact, symmetric about the original quantization
point. Though asymptotically it is expected to be, each realiza-
tion will be slightly asymmetric, as can be seen in Fig. 9. We

have found the asymmetry to be small; however, the calculated
divergence between a double-compressed cover image and a PQ
stego image will be greater than zero. The net effect, however, is
minimal and the divergence and detection results above are not
surprising. Again, we see a match between analysis, divergence
measurements, and practical detection.

IV. CONCLUSION

Our Markov model for cover data permits explicit compu-
tation of a detection-theoretic divergence measure that charac-
terizes the susceptibility of a steganographic scheme to detec-
tion by an optimal classifier. This measure has advantages over
other steganographic security benchmarks. It provides a more
accurate security measure than Cachin’s -secure [13] metric,
as dependencies between samples are accounted for. Addition-
ally, it is a more general metric than that given by Chandramouli
et al. [5], [26], which is measured for a given detector. The di-
vergence measure also provides a quick estimate of the perfor-
mance benefits of using dependency in steganalysis: the ratio
of the divergence for the Markov model to the divergence be-
tween marginal PMFs represents the factor by which the use of
dependency reduces the number of samples required for a given
performance relative to steganalysis based on 1-D histograms.

The application we have focused on in examples and nu-
merical results is image steganalysis. While the Markov model
does not completely capture interpixel dependencies in im-
ages, we have shown it to be consistent with many image
steganalysis schemes exploiting memory, which typically use a
function of the statistics used to optimally discriminate between
Markov source models. Furthermore, the detection-theoretic
benchmarks computed using the Markov model are close to
the performance attained by practical image steganalysis tech-
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Fig. 10. Simplified example of second compression on an empirical matrix.
Solid lines are the first quantizer intervals, dotted lines are the second. The ar-
rows represent the result of the second quantization. The density blurring after
decompression is represented by the circles centered at the quantization points.
For the density at (84,84), if the density is symmetric, the values will be evenly
distributed to the surrounding pairs. If, however, there is an asymmetry, such
as the dotted ellipse, the new density will favor some pairs over others (e.g.,
(72,72), (96,96) over (72,96), (96,72)). The effect is similar for other splits such
as (63,84) to (72,72) and (72,96).

niques. However, further research is needed into whether more
complex statistical models can yield better image steganalysis
techniques and how to compute performance benchmarks
for such techniques. Improved models for images could in-
clude more degrees of dependency, as well as some model
of non- or piecewise-stationarity. However, the parameters
of more complex models are also more difficult to estimate,
and variations from image to image may make it difficult to
calibrate steganalysis techniques based on such models. Thus,
much work remains to be done on the fundamental problem of
understanding how the complexity of the model for the cover
data impacts the accuracy of estimating the model parameters,
computational complexity, and performance of steganalysis
based on the model.
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