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Abstract— Image registration is concerned with the estab-
lishment of correspondence between images of the same scene.
One challenging problem in this area is the registration of
multispectral/multisensor images. In general, such images have
different gray level characteristics, and simple techniques such
as those based on area correlations cannot be applied directly.
On the other hand, contours representing region boundaries
are preserved in most cases. In this paper, we present two
contour-based methods which use region boundaries and other
strong edges as matching primitives. The first contour matching
algorithm is based on the chain-code correlation and other shape
similarity criteria such as invariant moments. Closed contours
and the salient segments along the open contours are matched
separately. This method works well for image pairs in which
the contour information is well preserved, such as the optical
images from Landsat and Spot satellites. For the registration of
the optical images with synthetic aperture radar (SAR) images,
we propose an elastic contour matching scheme based on the
active contour model. Using the contours from the optical image
as the initial condition, accurate contour locations in the SAR
image are obtained by applying the active contour model. Both
contour matching methods are automatic and computationally
quite efficient. Experimental results with various kinds of image
data have verified the robustness of our algorithms, which have
outperformed manual registration in terms of root mean square
error at the control points.

[. INTRODUCTION

N many image processing applications it is necessary to
compare multiple images of the same scene acquired by
different sensors, or images taken by the same sensor but
at different times. These images may have relative trans-
lation, rotation, scale, and other geometric transformations
between them. The goal of image registration is to establish
the correspondence between two images and determine the
geometric transformation that aligns one image with the other.
Registering multisensor data enables comparison and fusion
of information from different sensory modalities, which often
provide complementary information about the region surveyed.
For example, optical images from Landsat provide information
on chemical composition, vegetation, and biological properties
of the surface, while radar images from Seasat provide infor-
mation on surface roughness and surface electrical properties
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such as the dielectric constant [1]. Thus, one of the most
attractive aspects of multisensor data acquisition is the fact that
the sensors are collecting very different types of information
from the same scene. However, because the information from
sensors of different types are inherently different, the problem
of registration is inevitably more complex than registration of
images from the same type of sensors. Images from different
channels of the multispectral imaging systems (e.g., Landsat
thematic mapper (TM), Spot and NOAA advanced very high
resolution radiometer (AVHRR)) bear unique characteristics
determined by the wavelengths at which they are acquired.
Substantial differences exist between the images from passive
sensors such as Landsat TM and active sensors such as
synthetic aperture radar (SAR). Comparing a Landsat image
to a Seasat SAR image, the discrepancies may include cloud
cover in the Landsat image, grainy appearance of the SAR
image resulting from speckle noise, and radiometric reversal
in the relative brightness between them [1].

Existing image registration techniques broadly fall into two
categories: the area-based and the feature-based methods [2],
[3]. In the area-based method, a small window of points in the
first image is statistically compared with windows of the same
size in the second image. The measure of match is usually
the normalized cross-correlation. The centers of the matched
windows are control points which can be used to solve for
the transformation parameters between the two images. One
innovative method in the recent literature is the computational
vision approach proposed in [4]. In this approach, image
rotation is obtained by taking the difference between the
estimated illuminant directions, under the assumption that
the images are taken at about the same time (or under the
assumption of a stationary source of illumination). Feature
points in the images are detected by using a biologically
motivated model based on the Gabor wavelet decomposition
[5]. The windows surrounding the feature points are matched
with each other using an area-based correlation in a hierar-
chical manner. However, area-based methods like this are not
well-adapted to the problem of multisensor image registration
since the gray-level characteristics of images to be matched
are quite different. Feature-based methods, which extract and
match the common structures from two images, have been
shown to be more suitable for this task [6]-[9]. One technique
uses ancillary data such as high resolution digital elevation
maps (DEM) of the area to be registered [6]. Simulated
multisensor images with shadowing effects are generated by
illuminating the DEM from sensor imaging geometries. The
actual images are registered with DEM by correlating with
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the simulated data. As a result. the multisensor images are
coregistered on the common grid provided by the DEM. The
authors in [6] also suggest using a segmentation scheme for
multisensor region boundary extraction and the Canny edge
detector for edge detection. The boundary or edge maps from
Landsat. Spot and Seasat are then matched by a binary cross-
correlation technique. The assumptions of this approach are
that the images to be registered are coarsely aligned based
on prior information and that the residual rotation error is
small. The scheme proposed in [7] extracts objects from
Landsat and Spot images at different scales and matches them
asing their structural attributes such as ellipticity. thinness,
and inclination. In [8] closed boundarics arc cxtracted by
A segmentation technque and used as matching primitives;
aowever, the good control points on the nonclosed regions are
neglected. In [9] a contour-based method for registering Spot
and Seasat images is proposed. A long coastal line is used as
4 landmark and the matching is conducted in a coarse-to-fine
fashion using a scale space representation. Edge-and contour-
hased techniques have also been used in obtaining sterco
correspondence [10]—[13]. but typically they assume small
Jdisplacements to constrain the search space. The structural
stereo matching technique proposed in [14] is capable of
matching images with large rotation and translation. However,
this method is better suited for registration of industrial images
rather than the natural remotely sensed images from which a
symbolically represented structural scene description may not
he casy to establish.

In this paper, we present two contour-based image reg-
stration algorithms: a basic contour matching scheme and
an elastic contour matching scheme for optical-to-SAR im-
age registration. The proposed schemes are automatic and
computationally quite efficient. The basic contour match-
ing scheme uses a two-threshold method to extract well-
defined contours and separate them into two groups: open
contours and closed contours. Chain code correlation and
other shape similarity criteria such as moments are used to
match the closed contours. For the open contours, salient
segments such as corners are detected first and then used in
the matching process. A consistency check is conducted in
the transtormation parameter space. This first method works
well for image pairs in which the contour information is
well preserved. such as the optical images from Landsat
and Spot satellites. Because of the coherent nature of the
iumination. radar images are speckled. As a result, the usual
edge detectors yield poor results when applied to radar images
te.g.. SAR images) [15]. In this paper, a second method is
developed for optical-to-SAR image registration. Rather than
extracting contours from optical and SAR images separately
and matching them later. a better strategy, as proposed here,
is to use the optical contours as initial guides for contour
detection in the SAR images. Assuming that the optical and
the SAR images can be coarsely aligned, the active contour
model provides an ideal tool for this task. Another benefit of
the proposed elastic matching technique is its ability to handle
deformation between the images to be matched. We have
applicd our algorithms on three test data sets: single sensor
images, 12-band multispectral aerial images. and multisensor

Landsat, Spot. and Seasat images. The proposed contour
matching algorithms are robust and accurate if the boundary
information is preserved through different sensory modalities
and if this information can be successfully extracted. The
proposed methods have outperformed manual registration in
terms of root mean square error (RMSE) at the control points
in our computer simulations.

This paper is organized as follows: Section II discusses
the basic contour matching procedure; Section III reviews the
active contour model and discusses the optical-to-SAR image
registration scheme using this model; Section 1V presents the
experimental results: and Section V provides the concluding
remarks.

. THE CONTOUR MATCHING ALGORITHM

A. Contour Extraction

Fig. 1 shows the block diagram of the proposed basic
contour matching scheme. Contour extraction is carried out
in two steps. First. images [(r.y) are convolved with a
Laplacian-of-Gaussian (LoG) operator and the edges are de-
tected at the zero-crossing points [2]. The LoG operator is
decomposed into the sum of two separable filters to speed
up computation [16]. Simple zero-crossing patterns such as
“++ - —"and "= — + +" (composed of signs of pixel values
of the filtered image) are detected along both vertical and
horizontal directions. In the second step. the edge strength
at each zero-crossing point is computed by considering the
slopes of the LoG of the image along both .- and ¥ directions
(denoted by A, and /). An edge strength map is defined as
follows:

if {.r.y) is a zero crossing point,

otherwise.
(h

The contours that are retained for further processing satisfy
the following conditions [17]:

1) The edge strength at each point along the contour is

greater than 7}
ii) At least one point on the contour has an edge strength
greater than 75

where 7 and 75 are preset thresholds and 7, < 1. T is set to
preserve the whole contour around the region boundary with-
out incurring discontinuities at weak edge points. 75 is chosen
large enough to avoid spurious edges. This two-threshold
scheme is implemented by scanning the 2-D edge strength
array. Contour search is initiated whenever one point with a
value greater than 75 is scanned. The search is conducted in
both directions of the contour and the neighboring pixels with
values greater than T3 are accepted as contour points until no
neighboring pixels are found satisfying this condition. Then
all the edge strength values along the detected contour are set
to zero such that these points will not be visited again. The
same search operation continues until the whole edge strength
array has been scanned. The contours are then divided into
two categories—closed contours and open contours—and are
represented by a chain code. Short contours that cannot be used
reliably in the matching process are discarded at this point.
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Fig. 1. Schematic diagram for the basic contour matching method.

B. Chain Code Criteria

A digital curve can be represented by an integer sequence
{a; € {0,1,2,....7}}, depending on the relative position
of the current edge pixel with respect to the previous edge
pixel [2], [18]. One unit corresponds to an angle of 45°.
Thus a chain code value of 3, for example, indicates the next
pixel is on the north-west (135°) direction. The standard chain
code representation has certain drawbacks. For example, a line
along —22.5° direction is coded as {707070...}. To prevent
such wraparound, we convert a length n standard chain code
{a1az---an} into a modified code {b1bs - b, } by a shifting
operation defined recursively by:

b1 = ay
b:; = q;,q; is an integer such that (¢; — a;) mod 8 =0
and |g; — b;_1| is minimized, i = 2,3,...n.

@

The line along —22.5° direction is then coded as {787878...}.
The shifted chain code is further smoothed by a five-point
Gaussian filter {0.1,0.2,0.4,0.2,0.1}. A comparison of the
standard chain codes and the modified chain codes for a pair
of matched contours! is shown in Fig. 2. From here on it is
assumed that the chain code has been shifted and smoothed.

Let contour A be represented by an N 4-point chain code
{a;} and let contour B be represented by an Np-point chain
code {b;}. A correlation measure Dy; between two n-point
segments, one starting at index & of contour A and the other
one starting at index [ of contour B, is defined as:

n—1
1 T
Dy = - Z cos Z(a;c_‘_j — b;“) 3)
J=0
where
1 n—1
Whti = QhtiymodNs — o Z Q(k+j)mod N4 0 L2 < m, (4)
=0

n—1

}: b+j)modng, 0 < i< n. (5)
j=0

1

/
bips = btriymodans —

Here, the modulus operation accommodates the cases in which
the contours are closed. The correlation measure is similar to

!'This pair of contours was extracted from the images in Fig. 4(a)—(b) and
can be found in the contour maps in Fig. 4(c)<d).
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Fig. 2. Modified chain code representation: (a), (b) A pair of contours
extracted from images shown in Fig. 4(a)-(b); (c), (d) the corresponding
standard chain code representations; (e), (f) the modified chain codes after
shifting and smoothing.

the mean-squared-error of two signals. The cosine function
ensures Dy; < 1, and Dy, = 1 when there is a perfect match.

In order to identify the location of best fit between contours
A and B, an n-point segment from contour A starting at index
k is slid over contour B. A similarity function C4p is then
defined as:

Cap = max{Dii hiem (6)

where M specifies the search range. For a pair of closed
contours A and B, the whole contours can be used for the
matching purpose. Suppose that ¥ = 0, n = Ny, and that
M includes every index. of contour B. Then the similarity
function between contours A and B becomes:

)

The rotation between the contours is reflected in the difference
between the average values of the corresponding chain code
representations (see Fig. 2(e)—(f)). Since Dy; is normalized
with respect to the mean value, the similarity function C4p
is invariant to rotation if the quantization effect of the chain
code is neglected. The derivative of the chain code, obtained

Cap = max{Dy }o<i<Ng-
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by using the first difference. is also rotation invariant. How-
ever. we found that using the mean-subtracted chain code
is more accurate in locating the positions of best matches.
For the closed contour the similarity function can be further
normalized with respect to contour length, and becomes scale
invariant. In implementation. the chain code of the longer
closed contour is simply resampled by linear interpolation to
have the same number of points as the shorter closed contour.
Subsequently. the similarity criterion ("4 is computed based
on the resampled chain codes of the same length.

. Contour Matching

The contour matching process begins with the matching
of closed contours. For ecvery closed contour, five shape
attributes are computed: the perimeter. the longest and shortest
distances from boundary to the centroid, and the first and
second invariant moments proposed by Hu [2]. These moments
were defined originally for 2-D images. For the case of 2-
D contours. the first and second moments can be defined as
follows:

hy = ,71; Z‘:[“': = g (8)
'7” . 2
by = ,,L; STt -t - 2(!// - )
| N 2
o Zu, =iy =yl - 9

Here -, and y,; are the coordinates of each point along the
contour. .. and y,. are the coordinates of the centroids of the
contour. and n is the length of the contour. Each closed contour
in the first image is compared with every closed contours in
the second image. The pairs are accepted as candidate matches
it the relative differences of their shape attributes are below
some preset thresholds (¢.g.. 20%). This step narrows down
the prospective matches 1o a few contours with very similar
shapes. The corresponding pair is then determined by the chain
code based similarity function ('y53. Contour A in the first
image and contour 3 in the second image are selected as a
matched pair if the following two conditions are satisfied:

1y "y > 4. where B’ includes all the contours with

similar shapes to contour .1, and

2y C'yy > Ty, where Ty is a preset threshold which

eliminates matches with poor correlation.

In the rare case that multiple contours get matched to the
same contour, the pair with highest value of "4 is selected.
The centroids of these matched contours are used as control
points from which an initial estimation of the transformation
parameters is computed to guide the second stage of open
contour matching.

For matching the open contours. we use salient segments
along the contours rather than the whole contours as matching
primitives. Salient segments such as corners can be detected
from the chain code representation. For a contour of length
i with shifted and smoothed chain code {«;}. we define a

measure of curvature at the /th point as:

7(1,,‘/,1”} (10)

where o is the standard deviation of the LoG operator used
for the contour extraction. The /th point along the contour is
chosen as a salient point if both of the following conditions
are satisfied:

i) ¢; > T, and

i) ¢; > ¢y forall ke i —po+ )

¢, = 1max {mux{ \(l,,_, — u,+_,|. |u,'_,)

1<j<3c

Here p is a constant that determines the minimum distance
between the salient points and 77 is a threshold specifying the
minimum acceptable curvature. For example, if Ty = 2, then
the salient feature locations correspond to corners where the
curve bends by at least 90°. The contour segments surrounding
the salient points are then used as 1-D templates in finding the
corresponding matches in the other image.

D. Estimation of Transformation Parameters

It is often sufficient to assume that the relationship between
a point (.X.}") in one image and its corresponding point
(X Y') in the other image can be expressed by a 2-D affine
transform [4]:

A ( cost sinf (X AX

(Y) - —sind ('()HH) <?> + (AY)
where parameters (~.f#. AX.AY}) correspond to a scaling
factor, a rotation angle. and translations along the two or-
thogonal directions, respectively. The transform parameters
are estimated from a set of matched points {(.X;.};)} and
{(X,A f',)}. The problem can be solved through linearization
of the above equations [4]. Suppose « and f can be estimated
based on prior knowledge by #, and #. and that # = 6+ A6,
Then the following two approximations can be established:
Keost = kg costy — (kgsinfg) A, and wsinf = kg sin by +
(ko cosfy) AR, Next, the unknowns (AA. AX, AY) can be
solved by the least squares method. Another method for
solving (11), as adopted in our implementation, uses variable
substitutions weosf and ssinf to obtain the
following new equations:

0)-C0)- ) o
Y - u Y AY ) -
Unknowns «. ¢. AX. and AY can be solved in the least
squares sense based on all the matched points. Scaling factor
~ and rotation # can then be determined from w« and @
Vul o2 and # = arctan (L) for =5 < 6 < I
More general transformations such as bivariate polynomial
transformations are more effective if nonlinear distortion exists
between the images [19]. [20].

The root mean square error (RMSE) between the matched
points after the transformation provides a measure of registra-
tion accuracy and is defined as:

m
D [N+ 0¥+ AX - X,)?

=1

(1

H =

Pr—

N =

RMSE =

el

+(uY: = X+ AY - }",]l"]/m, (13



324

where m is the number of matched points. It is important to
mention that m must be reasonably large to make the accuracy
measure meaningful (note that RMSE = 0 when m = 2,
whether or not the matched points are correct).

E. A Consistency Check

In the contour matching process some false matches are
inevitable. Therefore, a global consistency check is necessary
to ensure correct registration. We exploit the fact that distances
are preserved under a rigid transformation. Our consistency
check method is closely related to the Hough transform
technique. Let A; A, denote the distance between points A;
and A,. For two sets of m matched points {4;} and {B;},
ratios of A;A;/B;B; are computed based on all M{l)
possible combinations. The resulting histogram of scale should
form a cluster corresponding to the true scale difference
between the images. The pairs that contribute to the cluster
will be accepted as correct matches while the pairs whose
contribution is scattered and away from the peak are declared
as mismatches and discarded. The actual consistency check
is done in an iterative fashion. The most likely mismatches
are rejected first, followed by the computation of RMSE
based on the remaining matched points. If RMSE is too large,
another round of consistency check is carried out. The iteration
continues until either an acceptable RMSE is achieved or the
number of retained matches is less than three, which means no
matched points can be found. Since RMSE is a good indication
whether a set of correct matched points has been found, this
scheme is capable of eliminating most false matches.

ITII. OPTICAL-TO-SAR IMAGE REGISTRATION
USING AN ACTIVE CONTOUR MODEL

The presence of speckle noise due to the coherent nature
of the illumination makes it difficult to detect good edge and
contour information in SAR images [9], [15], [21]. Various
smoothing techniques [22], [23] can be applied before edge
detection, but this in turn may affect the accuracy of the
contour location. Similar performance limitations are charac-
teristic of statistical edge operators [1]. Good results based on
the Canny edge detector were reported in [6]; however, many
contours corresponding to continuous boundaries were broken.
In order to match such contours with contours from an optical
image, sophisticated heuristics will be needed to perform edge
linking for the contours from the SAR image. The LoG edge
detector can produce unbroken contours, but also generates
false contours because of the textural patterns present in
the SAR images. Consequently, for optical-to-SAR image
registration the basic contour matching method presented
earlier can only work in limited cases and produces much
fewer control points than optical-to-optical image registration.

In contrast to SAR images, optical images have fairly well
defined edges and hence are easier to work with. Here, we
suggest the use of edge information provided by optical images
to better localize the contours in the SAR images. It was
shown in [6] and [24] that multisensor data such as Landsat,
Spot, and Seasat images can be rectified and geocoded to a
common earth grid and resampled to the same pixel spacing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 3, MARCH 1995

within 100 meters or 5 pixels. Based on this assumption, the
contours from the optical images can be directly superimposed
over SAR images as prior information. The second contour-
matching algorithm proposed in this paper involves the use of
an active contour mode! [25], [26] for optical-to-SAR image
registration. We first briefly review the idea of the active
contour model and discuss our modification, and then apply it
to the problem of image registration.

The active contour model is an elastic contour extraction
technique that makes use of prior information about the shape
of the region boundary to obtain a close fit to the data. The
use of prior information helps in robust detection of contours
while minimizing the undesirable effects of noise and texture
in the image data. The elastic contour extraction is usually
formulated as an optimization problem involving an energy
functional and an initial contour which specifies the region of
interest. The energy functional can be decomposed into three
parts: internal, image, and external energy. The internal energy
regulates the smoothness and deformation of the contour while
the image energy attracts points on the contour toward the true
edge locations in the image. The external energy influences the
contour deformation through feedback from other sources of
information. In recent years various elastic contour extraction
methods have been reported, based on variational calculus
[25], dynamic programming [27], and a local descent method
(greedy algorithm) [26].

We review here the greedy approach described in [26] which
considers only the internal and the image forces. Let a contour
be represented by a sequence of vectors: v(s) = (z(s),y(s)),
where z(s) and y(s) are the pixel coordinates. The index range
is1 <s< N, where N is the number of points. Let I(z,y)
be the image function. An energy functional corresponding to
the contour is defined as:

E= z a(S)Econt + ﬂ(s)Ecurv - ’Y(S)Eimage (14)

s=1
1 N
Econt = |V.s - vs—ll - N_—l (Zz Ivi - Vi-—1|> (15)
(16)
(amn

Ecurv = |Vs—1 —2vs + V3+1'2
Eimage = |V 1(z(5),y(s))|%

Econt and E; represent the internal energy of the contour.
E¢one maintains a uniform distribution of points on the contour
while E.,;, enforces a smoothness constraint. The image force
Eimage is the gradient magnitude. a(s), B(s), and ~(s) are
the weighting parameters. Starting with the initial contour
locations, the neighborhood of each point on the contour is
examined to obtain a potential new location for that point.
The contour point is moved to the new location if it results
in a lower energy. The iterations continue until a minimum
energy is obtained.

Since edge detectors such as the LoG operator or the Canny
detector usually include a Gaussian smoothing operation to
determine the scale of the edges to be extracted, it is appro-
priate to also incorporate this feature into the image force.
Considering the speckle noise in the SAR images, we chose
a geometric filter [22] combined with a LoG operator for the
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Fig. 3 Optical-to-SAR image registration using the active contour model.
image force. The geometric filter works us follows: For any
three consccutive pixels along the horizontal direction, the
center pixel is decreased by 1 if its intensity value is larger than
iIs two neighbors: whereas. it is increased by | if its intensity
value is smaller than its neighbors. The same operations are
also applied to any three consecutive pixels along the vertical
and two diagonal directions. Multiple iterations of the above
operations arc usually required. The modified image force is
defined by a 2-D convolution as follows:

]:‘lnmg-- = S(r. g G, y) (18)

where G, y) is a 2-D Gaussian function and S y) is the
edge strength map as defined in (1). The modified image
force provides a larger bowl of attraction, hence enabling
convergence (0 a better local minimum ol the corresponding
cnergy functional.

For the problem of optical-to-SAR image registration, the
contours extracted from the optical image can be used as the
initial condition for the contour detection of the SAR image. In
this way the active contour model can be implemented without
any human intervention. As mentioned earlier, multisensor
images can be roughly aligned (in many cases) within 5 pixels
bused on the knowledge of the scnsor platforms. Thus, the
contours from the optical image can be directly superimposed
over the SAR image.

11 the knowledge of the sensor plattorms is not available and
the rectified multisensor data are not initially aligned well, the
optical and SAR images have to be preregistered manually or
using some other automatic algorithms. In our experiments
we have used cither the basic contour matching algorithm
presented carlier or the Fourier transform-based technique
presented in | 28] to perform the preregistration. The schematic
diagram of the overall image regisiration system in which the
basic contour matching scheme is adopted as the first stage
matching is shown in Fig. 3. In this case a heavily smoothed
SAR image is used instead of the original one for the contour
extraction.

When the optical image has a higher resolution than the
SAR image. quite often some optical contours have no cor-
responding region boundaries in the SAR image. To discard
nustakes caused by the spurious initial contour, a converged
contour produced by the active contour model algorithm is
accepted only if the average image force (4 Zﬁ\:] Finage) is
above a preset threshold. This step helps (o ensure that enough
contour points lie over or close o the true edge locations. as
indicated by the image force. At this point. the correspondence
between contours in the two images is known (but not point-to-
point correspondence). From this set of corresponding contours

TABLE 1

COMPARISON OF CONTOUR-BASED AUTOMATIC REGISTRATION RESULTS
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it is easy to obtain a set of control points. For the closed
contours the centroids are used as control points. For the
open contours salient segments such as corners are detected in
one contour and are matched with the other contour using
the similarity function defined in (6). The resulting set of
control points is subject to a consistency check and is used to
compute the least square error estimates of the transformation
parameters.

[V. EXPERIMENTAL RESUITS

In this section, we first provide experimental results for
single sensor image registration, multispectral image reg-
istration, and multisensor optical image registration using
the basic contour matching scheme. Although our emphasis
is on multiscnsor registration, we include a single sensor
example to illustrite the robustness of the algorithm for images
without distinct features. We next show results of optical-to-
SAR (Landsat-to-Scasat and Spot-lo-Seasat) image registration
based on the active contour model. The standard deviation of
the LoG operator is 3 for all examples. The thresholds for
the two-threshold contour extraction scheme are fine-tuned
to each type of image. The typical values are 73 = 10 and
T> = 100. when the maximum edge strength is normalized
to 255. The parameters for the corner detection are set 1o
Ty = 1.8 and p = 25. The length of salient segments used
in open contour matching is 31. The weighting parameters
for the active contour model are constants: (s) = 0.1,
fA(s) = 0.8, and ~(s) = 1.2. To evaluate the performance
of our algorithms. we manually sclected distinct landmarks
as control points. A comparison of transformation parameters
and RMSE obtained by manual registration and contour-based
automatic registration is shown in Table 1. The number of
manually selected control points and the number of control
points generated by the proposed algorithms are the same
o ensure a fair comparison of RMSE. Our algorithms are
reasonably efficient in terms of computational complexity. The
size of the images in all examples is 512 x 512. The contour
extraction and contour matching take about 90 to 100 s on
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(e)

Fig. 4. (a). (b) Two images from a Mojave Desert sequence; (c), (d) the matched contours with the “+” denoting the centroids of the closed contours and
the salient points along the open contours: (e) mosaic of (a) and (b). (Test data courtesy of JPL, Caltech.)

a Sun Sparc2 workstation. The active contour model used in Single-Sensor Optical Image Registration: Figs. 4(a) and
optical-to-SAR image registration takes about 20 to 40 s. (b) show two images from a Mojave Desert sequence taken
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(e)

Fig. 5. ). thy Zeroth and cighth bands., respectively. of 12-band aerial image data: (¢). (d) matched contours with the "+ marks denoting the centroids
of the closed contours and the salient points along the open contours; (e) mosaic of (1) and (b).

with an optical camera. Twenty-four pairs of closed contours matched. Fig. 4(c)—(d) show the matched contours, with “+"
and seven pairs of salient points along open contours were denoting the centroids of closed contours and the matched
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Fig. 6. (a), (b) Landsat image and a Spot image, respectively; (c), (d) matched contours of (a) and (b); (e), (f) matched contours of the Landsat image
and the 90°-rotated Spot image.

segments of open contours. Fig. 4(e) shows the mosaic of thematic mapper (TM) simulator was used in this experiment.
(a) and (b). The size of each raw image is 1000 x 766 and the

Multispectral Optical Image Registration: A set of 12- images are perfectly registered with each other. Test images
band aerial images of a mountainous area acquired by a (512 X 512) were cut out from different bands of this
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Fig 70t thy Landsat image and @ Spot image. respectively. with scale ditference: (). (d) matched closed contours: (e). (1) Landsat image and the

matching Spot mage after transtormation.

data set after translations and rotation. In this way. the successfully for the cases in which at least half of the image
ground truth of the transtormation parameters between the  extents overlap. One cxample is shown in Fig. 5, where
test images is known. The proposed algorithm performed  (a) and (b) correspond to the zeroth and eighth bands of
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(e) ®

Fig. 8. (a), (b) Landsat image and a Seasat (SAR) image, respectively: (c) contour map of (a); (d) contour map of (b); (e), (f) correspondence between
Landsat and Seasat contour maps in the first stage of the matching process.

the 12-band data set. Six pairs of closed contours and 9 Fig. 5(e). It can be seen from Table I that the estimated
pairs of salient segments have been matched, as shown in transformation parameters are very close to the ground
Fig. 5(c)—(d). The mosaic of the matched images is shown in  truth.
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(9] h

Fig. 8. (continued) (g) Smoothied SAR image. thy) image force used in the aciive contoar model: (1) i the tine wning stage. the Landsat contours are
transformed and superimposed on the Scasat image as the initial condition: (j) converged conlours of the active contour algorithm: (k). (1) final matching
results, with the "4 marks denoting the centroids of the closed contours and the salient scgments of the open contours.

Multisensor  Optical-to-Optical Tinage Regostranion.: Frg. Twenty-cight matched points have been found. as shown in
6(a)—(b)y shows a pair of Landsat TM and Spot images.  Fig. 6(¢) (d). We rotated the Spot image by 907, and applied
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(b)

(e) ®

Fig. 9. (a), (b) Spot image and a Seasat (SAR) image, respectively—in (b), the contours from the Spot image are superimposed as the initial condition
for the active contour algorithm; (c) converged contours; (d) blow-ups of three contours before and after convergence; (e), (f): matching results, with the
“4+” marks denoting the centroids of the closed contours and the salient segments of the open contours.

our method again. Twenty-seven matched points have been Fig. 6(e)-(f). Fig. 7(a)~(b) shows the same Landsat image
found in this case and the matched contours are shown in and the scaled-up version of the Spot image. Seven pairs of
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matched closed contours are identified in Fig. 7(c)—(d). The
matched images after transformation are in Fig. 7(e)—(f).

Multisensor Optical-to-SAR Image Registration: The first
example involves a Landsat (optical) image and a Seasat
(SAR) image. Both have been rectified and resampled to
the same pixel spacing as shown in Figs. 8(a)~(b). There is
considerable displacement between them, such that the active
contour model cannot be directly applied. Fig. 8(c)-(d) show
the edges extracted from the optical image and the despeckled
SAR image. It can be seen that the SAR edge map contains
many spurious contours. The result of initial registration using
the basic contour matching scheme is shown in Fig. 8(e)—~(f)
in which nine control points have been found. Fig. 8(g)—(i)
show the smoothed SAR image (geometric filtering, 8eight
iterations) and the image force for the active contour model,
respectively. In the fine tuning stage, a total of 19 contours
from the Landsat image are transformed and placed over
the SAR image, as shown in Fig. 8(i). These contours are
next used as the initial condition for the active contour
algorithm. Due to the difference between the resolutions of
two sensors, not all initial contours from the optical image
have corresponding region boundaries in the SAR image.
In this example, 12 converged contours are accepted after a
thresholding test with respect to the averaged image force,
and these contours are shown in Fig. 8(j). Fig. 8(k)—(1) show
the final matching result of 25 pairs of closed contours and
salient segments, with “4” denoting centroid positions.

The next example is concerned with the registration of Spot
and Seasat images. These two images have been rectified
and geocoded to within 5 pixels, and as a result the active
contour algorithm is directly applicable. Fig. 9(a) shows the
Spot image and Fig. 9(b) shows the Seasat image with the
contours from the Spot image directly superimposed. The
distances from the initial contours to the correct edge loca-
tions in the SAR image range from | to 5 pixels. Fig. 9(c)
shows the converged contours. A blow-up of three initial and
converged contours in Fig. 9(d) illustrates the active contour
model’s ability to match deformed region boundaries. Twenty-
seven matched points have been obtained and are shown in
Fig. 9(e)—~(f).

It can be seen from Table I that the estimations of four
transformation parameters produced by manual and automatic
methods are very close. In each case, the proposed algorithms
achieve a lower RMSE than manual registration. In general,
optical-to-SAR image registration, either manual or using
computerized algorithms, results in a higher RMSE due to the
noise in the SAR images. We have also tested our algorithms
on other data sets, including image pairs that do not cover the
same region. The basic contour-matching algorithm is quite
robust and reliable as long as corresponding contours are
available. The registration scheme would fail if insufficient
contour information can be extracted. In all cases in which the
input images did not contain corresponding regions, matched
points were not found, as expected.

V. DISCUSSION

In this paper, we have presented two contour matching

schemes for image registration. In the first scheme the contours
are detected separately from two images and are matched at
a later stage. A chain-code-based matching algorithm and an
iterative consistency checking scheme have been developed.
For single-sensor and multisensor optical image registration,
the first algorithm is quite robust and reliable when the
corresponding contours are available. It can handle images
with large rotation and translation, and images with scale
difference if there exist sufficient numbers of closed regions.
A second scheme is developed for optical-to-SAR image
registration. Assuming that multisensor images can be roughly
aligned by rectification and geocoding, an elastic matching
scheme based on the active contour model is proposed. The
motivation here is to tackle the following two problems: (a)
The difficulty in extracting well-defined, unbroken contours
from a noisy SAR image; and (b) the deformation between
images taken at different times by different sensors (e.g., river
boundaries can change significantly after seasonal flooding).
We found that the image force of the active contour model
had to be computed based on the smoothed SAR image
in order for contours to converge correctly. The filtering
inevitably affects the accuracy of the contour locations. The
active contour model also tends to smooth the sharp corers.
Nevertheless, the registration error incurred by blurred contour
locations is compensated to some extent by using the centroids
of closed contours and corner segments as control points,
since small deviations from the true boundary locations along
the contour may cancel each other. The limitation of this
algorithm lies in the requirement that well-defined, strong
contours must be detected from the optical image as initial
contours.

Previous researchers have noted that the task of automated
multisensor image registration is very complex [6]. A com-
bination of multiple techniques within the framework of an
artificial intelligence system may be necessary. The proposed
contour-based algorithms can serve as an important building
block for such a system.
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