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Abstract

This paper presents an axiomatic approach to corner de-
tection. Inthefirst part of the paper we review five currently
used corner detection methods (Harris-Sephens, Forstner,
Shi-Tomasi, Rohr, and Kenney et al. ) for graylevel images.
This is followed by a discussion of extending these corner
detectors to images with different pixel dimensions such as
signals (pixel dimension one) and tomographic medical im-
ages (pixel dimension three) aswell as different intensity di-
mensions such as color or LADAR images (intensity dimen-
sion three). These extensions are motivated by analyzing
a particular example of optical flow in pixel and intensity
space with arbitrary dimensions.

Placing corner detection in a general setting enables us
to state four axioms that any corner detector might reason-
ably be required to satisfy. Our main result is that only the
Shi-Tomasi (and equivalently the Kenney et al. 2-norm de-
tector) satisfy all four of the axioms

1. Introduction

Corner detection in images is important for a variety of
image processing tasks including tracking, image registra-
tion, change detection, determination of camera pose and
position and a host of other applications. In the following,
the term “corner” is used in a generic sense to indicate any
image feature that is useful for of establishing point corre-
spondence between images.

Detecting corners has long been an area of interest to
researchers in image processing. Some of the most widely
used corner detection approaches rely on the properties of
the averaged outer product of the image gradients:

L(X7 g, g) = (GU * Q) (X) (13.)
p(x,0,9) = (w+* VxL(-,0,9)VEL(-,0,9)) (x) (1b)

where L(x, o, g) is the smoothed version of the image ¢ at
the scale o, and pu(x,0,g) is a 2 x 2 symmetric and pos-
itive semi-definite matrix representing the averaged outer

product of the image gradients. The function w weights the
pixels about the point x. Forstner [1], in 1986 introduced
a rotation invariant corner detector based on the ratio be-
tween the determinant and the trace of y; in 1989, Noble
[7] considered a similar measure in her PhD thesis. Rohr in
1987 [8] proposed a rotation invariant corner detector based
solely on the determinant of 1. Harris and Stephens in 1988
[2] introduced a function designed to detect both corners
and edges based on a linear combination of the determinant
and the squared trace of u, revisiting a previous work of
Moravec [6]. This was followed by the corner detector pro-
posed by Tomasi and Kanade in 1992 [11], and refined in
1994 in the well-known feature measure of Shi and Tomasi
[10], based on the smallest eigenvalue of .. All these mea-
sures create a value at each point in the image with larger
values indicating points that are better for establishing point
correspondences between images (i.e., better corners). Cor-
ners are then identified either as local maxima for the de-
tector values or as points with detector values above a given
threshold. All of these detectors have been used rather suc-
cessfully to find corners in images but have the drawback
that they are based on heuristic considerations. Recently
Kenney et al. in 2003 [3] avoided the use of heuristics by
basing corner detection on the conditioning of points with
respect to window matching under various transforms such
as translation, rotation-scaling-translation (RST), and affine
pixel maps. Along similar lines Triggs [12] proposed a gen-
eralized form of the multi-scale Forstner detector that se-
lects points that are maximally stable with respect to a cer-
tain set of geometric and photometric transformations. This
paper extends the ideas contained in [3] and [13], where
the corner detector function was defined as the reciprocal
of the condition value. The condition theory framework al-
lows one to extend corner detection to vector images such
as color and LADAR and to images with different pixel
dimensions such as signals (1D) and tomographic images
(3D), similar to Rohr [9]. We present a set of four axioms
that one might reasonably require a corner detector to sat-
isfy, exploring the restrictions that the axioms impose on



the set of allowable corner detectors. These restrictions are
illustrated in a comparative study of the corner measures of
Harris-Stephens, Forstner, Shi-Tomasi, Rohr and Kenney et
al. . This paper is structured as follows. Section 2 intro-
duces the corner detection problem in the context of sin-
gle channel images. All of the detectors mentioned above
rely on local gradient information to evaluate their respec-
tive detector measures. To motivate this reliance on the lo-
cal gradients we present a simple thought experiment in the
context of optical flow estimation. This experiment is also
useful in our later extension of corner detectors to differ-
ent pixel and intensity dimensions and it has the nice fea-
ture that it mirrors the results produced by condition theory
without the attendant analytic complexity. Section 3 con-
tains an axiomatic system for generalized corner detectors
followed by a thorough discussion of the motivations and
implications of the axioms. Finally the conclusions will be
presented is Section 4. Almost all the proofs of the theo-
rems and lemmas in the paper have been omitted for space
reasons: the interested reader can refer to [4].

2. Notation and Motivation

Let ¢ = g(x) be the gray level intensity of an image at

the image pointx = [ =y ]T. Let © be a window about
x and define the gradient matrix A over this window by:

9r 9y
AR |
A

where subscripts indicate differentiation and superscripts
refer to the point location in the window €. To simplify
the notation we will omit the dependence of A on x.

The 2 x 2 gradient normal matrix is given by:

N N
Zij\?l 9;9; Zyj\?1 9;9;
dim1 929y D1 999y

where the summation is over the window 2 about the point
of interest. The gradient normal matrix A% A is the basis
of all the corner detectors mentioned above. Note that this
matrix can be obtained from (1b) under the assumption that
w is the unit weight over the window €.

Why should a corner detector just depend on AT A? We
can motivate the reliance on the gradient normal matrix by
looking at a specific problem in optical flow.

2.1. Optical Flow

Let g = g(-,-, t) be an image sequence and suppose that
a point of interest has time dependent coordinates = = z(¢)
and y = y(t). The optical flow problem is to discover
the time evolution of x and y. In the standard approach
this is done by making the assumption of constant bright-
ness: g(x(t),y(t),t) = ¢, where ¢ is a constant with re-
spect to ¢. If we expand this constraint and neglect higher

ATAE

order terms we obtain g,dx + g,dy + g:dt = 0 where sub-
scripts denote differentiation. The previous equation can be
rewritten in matrix formas [ g, g, | v = —g; dt where

v=_[dz dy }T is the optical flow vector. This is one
equation for the two unknowns dx and dy. To overcome
this difficulty the standard approach is to assume that dx
and dy are constant in a window about x. This leads to the
overdetermined set of equations:

9z gy 9t
. vV=- .
92 g g9t

where we adopt a time scale in which d¢ = 1 and the
superscripts indicate position within the window. More
compactly we may write this as Av = n where n =

-1 g gl ]T. The least squares solution to this set
of equations is obtained by multiplying both sides by AT to
obtain a square system and then multiplying by (AT A)~!
to get Veomputea = (AT A)~L ATy, A major problem with
this approach is that some points give better estimates of
the true optical flow than others. For example, if the image
intensities in the window about x are nearly constant (uni-
form illumination of a flat patch) then A = 0 and the least
squares procedure gives bad results.

2.2. A Thought Experiment

We can assess which points are likely to give bad optical
flow estimates by a simple ansatz: suppose that the scene is
static so that the true optical flow is zero: v q.¢ = 0. If the
images of the scene vary only by additive noise then 7 (the
difference between frames) is just noise. The error in the

optical flow estimate is given by e def Vezact — Veomputed:
and we may write ||e|| < ||[(AT A)~tAT|| ||n||. Thus we see
that the term || (AT A) =t AT'|| controls the error multiplica-
tion factor; that is the factor by which the input error (the
noise n)) is multiplied to get the output error (the error in
the optical flow estimate). Large values of ||(AT A)~1AT||
correspond to points in the image where we cannot esti-
mate the optical flow accurately in the presence of noise
at least for the static image case. If we use the 2-norm
together with the result that for any matrix M we have
IM|12 = Mnae(MMT), where Xy, a0 (M M7T) is the largest
eigenvalue of M M7, then we see that ||(AT A)~1AT|3 =

Amaz((ATA)™Y) = gy (Where Ay, (AT A) indi-

cates the smallest eigenvalue of AT A). We conclude that
the error multiplication factor for the 2-norm in the opti-
cal estimate for the static noise case is equal to m
This motivates the use of the gradient normal matrix in fea-
ture detection since the ability to accurately determine op-
tical flow at a point is intimately related to its suitability
for establishing point correspondence between images (i.e.,

whether it is a good corner, see also [3]).



2.3. Corner Detection for Different Pixel and Intensity
Dimension

The need to locate good points for tracking occurs in
other setting besides images with two pixel dimensions and
one intensity dimension. For example we may want to con-
sider good matching points in signals (pixel dimension one)
or tomographic medical images (pixel dimension three) or
color images (intensity dimension is three) or hyperspec-
tral images (intensity dimension much greater than one).
In order to set up a framework for discussing corner de-
tection for images with arbitrary pixel and intensity dimen-

- def T .
sions let x = [ 2 x, | denote the pixel coor-

dinates and g &' [ ¢ Gm }T the intensity vector
for the image. We use the optical flow method described
above to set up a corner detection paradigm. It is worth not-
ing that the results we obtain by this method are the same
that would be obtained by applying condition theory [3] but
are much easier to derive. That said, let x = x(¢) be a
point of interest in a time dependent image g = g(-,t).
We assume that this point has constant brightness over time
g(x(t),t) = g(x(t) + dx,t + dt) = c. Differentiating with
respect to time we find that:

Jv= —8 (2)

where we once again assumed that d¢t = 1 and the Jacobian
matrix J € R™*™ has entries [J], ; = 0g;/0x;, and:

dzy m]T

— % dgm
at dt 8t = [

dt o dt
As before let A = J. If ATA is invertible then
the least squares solution to (2) is given by v =
(AT A)=1AT (—g; ). To illustrate this consider the prob-
lem for a signal (pixel dimension n = 1, intensity dimen-
sion m = 1). In this case the Jacobian is just the usual
gradient of the signal: J = dg/dz and the matrix A7 A
is invertible if the gradient is nonzero. Compare this with
the case of an image (pixel dimension is two, intensity di-
mension is one). In this case the Jacobian is again the gra-
dient Jg = Vg = [ dg/0x 0g/dy | and the matrix
AT A = V¢TVyg is the outer product of the gradient row
vector. Consequently the 2 x 2 matrix A” A for a grayscale
image is rank deficient (its rank is at most 1) and so it is not
invertible. This singularity disappears in the case of a color
image. Forexampleifg=| R G B }T then the rows
of the Jacobian are the gradients of the red, green and blue
channels:

v=| I

OR OR

[ Vi
Il B

e oy VB

In this case the 2 x 2 matrix A”A = VRTVR+VGTVG+
VBTV B is the sum of the outer products of the three color

channel gradient row vectors. Consequently it is invertible
if any two of the channels have independent gradient vec-
tors. In general we find that J7J = Y7 (Vg:)" Vgi.
From this we conclude that the gradient normal matrix J7'.J
is n x n where n is the pixel dimension and has rank at
most m where m is the intensity dimension. It is not invert-
ible if the pixel dimension exceeds the intensity dimension:
n > m. If the pixel dimension is larger than the intensity
dimension then we may overcome the non-invertibility of
AT A by making the additional constraint that the optical
flow is locally (i.e. in a window) constant. In this case the
equation (2) holds over the window and the least squares
solution is obtained by stacking these sets of equations into
a large system:

J! dg! /dt
Av = : :

; V== : =n

JN dgh /dt

As seen earlier for the grayscale image case even in this
general setting the term ||(AT A)~1 AT|| controls the error
multiplication factor [4]; this motivates the role of AT A4 in
corner detector for the general problem of arbitrary pixel
and intensity dimensions. For the purposes of interpretation
it is helpful to rewrite A” A as:

N m N

ATA=3"% (Vg-g')TVg{ =S ()P @)

j=1i=1 j=1

That is, AT A is the sum over the window of the outer prod-
ucts of the gradient vectors of each intensity channel.

3. Axiomsfor Corner Detectors

In order to formulate the axioms that a reasonable corner
detector might be required to satisfy we need the following
definitions.

Definition 1 A (local) corner detector for an image with
pixel dimension n and intensity dimension m is a real-
valued function f of A” A as given by (3) for the pixel lo-
cation x and a given window 2 about x.

To compare detector values for different pixel and/or inten-
sity dimensions (Axioms 1 and 2 below) we assume that the
corner detector is defined for positive semi-definite matrices
of differing sizes.

Definition 2 S; < S5 if Sy — S ispositive semi-definite.

Definition 3 Let A1, ..., \, bethe eigenvalues of AT A at
x. We say that a set of points X intheimage g has constant
eigen-energy with respect to the g-normif AY + - + \? is
constant over x € X.



Definition 4 A point x is isotropic (with respect to the im-
age g) if the eigenvalues of the gradient normal matrix are
alequal: A\ = )Xo =... = A\,.

Before presenting the set of axioms we also need to in-
troduce the concept of image restriction to an affine space
in the pixel domain and image projection onto a subspace
in the intensity domain. Consider a multidimensional and
multichannel image g: R™ — R™ such that a point in the
affine space P of dimension d passing through the point x
can be written as Pp + x for some suitable p (Pisann x d
orthogonal matrix). The Jacobian of g is related to the Ja-
cobian of its restriction to P according to J, = Jx P and
therefore the normal matrix becomes A7 A — PTAT AP.
Similarly, if we consider a subspace Q in the intensity space
that is spanned by the orthonormal columns of @, the pro-
jection onto Q is given by h = Q”'g. In this case the Jaco-
bians are related according to Jo = Q*'J and consequently
the normal matrix becomes AT QQT A where:

Q ... 0
Q: . . . ERNmXNq

0 ... Q

Note that the block matrix Q still has a set of orthonor-
mal columns. We have now all the tools that are needed
to present the following set of axioms.

Axiom 1 Let P € R**¢ with d < n be a matrix with or-
thonormal columns. Then f(ATA) < f(PTAT AP) and
equality is achieved if and only if x is a point of isotropy
(isotropy condition) or d = n (rotation invariance condi-
tion).

Axiom 2 Let @ € RN™*Na with ¢ < m be a matrix with
orthonormal columns. Then f (AT A) > f(ATQQT A).

Axiom 3 If AT A; < AT A, then f(ATAy) < f(AT Ay).

Axiom 4 The corner detector over a set of constant eigen-
energy points attains its maximum value at a point of
isotropy.

We now consider motivation and consequences for these ax-
ioms. For this purpose we introduce the following general-
ized detectors:

« Generalized Harris-Stephens corner detector:

Frrs ¥ det(ATA) — a (trace(A” A))" =

ﬁ)VOL( 3 >\1> (4)
i=1 i=1

where « is a user supplied constant that controls the
sensitivity of the corner detector.

» Generalized Forstner corner detector:
def 1 1

= — - 5
e trace ((ATA)’l) te £+Xiix ©

We note in passing that n fx is equal to the harmonic
mean of the eigenvalues of the gradient normal matrix
AT A (provided € = 0). Also if any of the \;’s is zero
then we set fr = 0.

* Generalized Shi-Tomasi corner detector:
for  Amin(AT A) ©)
« Generalized modified Rohr! corner detector:

fr ' {/det(AT A) )

e Generalized Kenney et al. corner detector for the
Schatten p-norm:

1 L e
A (s, )

As a matter of notation we will refer to fx , as the
p-norm condition detector.

"

Henceforth we will assume that the eigenvalues of AT A are
arranged in non increasing order, i.e. Ay > ... > \,.

Lemmal The Forstner, Shi-Tomasi, and Kenney et al. cor-
ner detectors are equivalent modulo the choice of a suitable
matrix norm. Rohr’s modified detector is equivalent to Ken-
ney et al. detector in alimit sense (via a normalization con-
stant).

fr = fx1 (providede = 0)
fst = froo

1
= 1. —_—
fr Lim, fo,p

def ;.
where fK,oo = hmpﬂoo nyp.

3.1. Axiom 1

To motivate this axiom, consider an image which is black
to the left of the center line and white to the right of the
center line (see Figure 1). Such an image has an aperture
effect in that we may be able to determine left-right motion
but not up-down motion. That is any point x on the center
line is not suitable as a feature for full motion detection.

LIn [8], Rohr studied the detector obtained from determinant of AT A:
to simplify the equivalence result that will be stated in Lemma 1 we will
instead consider the modified version /det(AT A).
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Figure 1. The figure shows the projection of
the pixel space on a lower dimensional sub-
space P (d = 2).

This is seen in the eigenvalues of the gradient normal matrix
AT A:
min(A, A2) =0 9)

Thus we get a zero value for the Forstner, Shi-Tomasi,
modified Rohr and p-norm condition detectors; the Harris-
Stephens detector gives a negative value for this example.

Now suppose that we pass a line through x and consider
the signal of intensity values from the original image along
this line. This signal is piecewise constant with a step as
it crosses through [ =y }T. Thus it has a good feature
for tracking at x; the restriction to a lower dimensional
subspace has improved the corner detection properties of
the point. As a technical note if the subspace line that we
choose through x is vertical then no step will appear and
the point is still not suitable as a feature tracking point.
However this does not violate the spirit of Axiom 1 since
the point was already unsuitable as a corner in the original
(higher dimensional) setting.

Lemma 2 Any p-norm condition generalized corner detec-
tor? satisfies the condition f(AT A) < f(PTATAP). The
Shi-Tomasi corner detector also satisfies the isotropy con-
dition, whereas the Forstner detector (and consequently
the 1-norm condition detector) does not. The generalized
Harris-Stephen and modified Rohr corner detector violate
the condition f(AT A) < f(PTATAP).

Remark 1 Wehaveincluded theisotropic equality require-
ment in Axiom 1 in order to ensure that if the point x is
a local maximum for the corner detector then it remains

2Note that Rohr’s detector cannot be considered a p-norm condition
generalized corner detector: in fact its value is zero if any of the eigenval-
ues is zero.

a local maximum if we restrict the detector to a subspace
through x. The reason for thisisthat we may want to attain
efficiency of detection by for example using a 1D corner de-
tector in say the x-direction; we could then cull the points
which are poor 1D corners and then do a full corner detec-
tor evaluation at the remaining points in the image. If the
detector satisfies Axiom 1 then we would be assured that |o-
cal maxima for the full detector were not eliminated during
the preliminary 1D sweep.

When we choose d to be equal to n this axiom states the
intuitive fact that a corner should remain a corner indepen-
dent of orientation or reflection of the image. This fact can
be expressed requiring that f(AT A) = f(PT AT AP) for
any orthogonal matrix P. As an immediate consequence
we have:

Lemma 3 Any corner detector satisfying Axiom 1 for d =
n dependsonly ontheeigenvalues \q, ..., A\, of AT A. That
is (with a dight abuse of notation) we may write f (AT A) =
T, A,

Remark 2 Lemma 3 issimilar in spirit to Von Neumann's
classic result on the equivalence of unitarily invariant
norms and symmetric gauge functions (see[5]).

3.2. Axiom 2

To motivate this axiom we consider the case of color
images (say RGB) and compare with the restriction to one
color channel (say R). If we work only at the point x (just
take the window (2 to be the point x) then:

VR'VR+VGTVG +VBTVB
VR'VR

ATA =
ATQQRT A

whereQ=[1 0 0 ]T. Clearly we have ATQQT A <
AT A so that by Axiom 3 we want f(ATQQRTA) <
f(AT A) which is what Axiom 2 requires.

Lemma4 The generalized Forstner and Shi-Tomasi cor-
ner detector (and consequently the 1-norm and oo-norm
condition detector) and the Rohr corner detector satisfy Ax-
iom 2. The generalized Harris-Sephen corner detector vi-
olates Axiom 2.

3.3. Axiom 3

The matrix AT A provides a measure of both the strength
of the intensity gradients and their independence. This can
be encapsulated by the natural ordering on symmetric ma-
trices. Thus the condition AT 4, < AT A, in Axiom 3
means that the gradient vectors at x, are stronger and/or
more independent than those at x; where A; = A(x;) and
A2 = A(Xg).



Lemma5 A corner detector satisfying the rotation invari-
ance condition of Axiom 1 and Axiom 3 is nondecreasing in
Alyes Ane

Lemma 6 The Forstner, Shi-Tomasi, modified Rohr and p-
norm condition detectors are nondecreasing with respect to
A1, ..., An. However this is not true for the generalized
Harris-Sephens detector.

3.4. Axiom 4

If the matrix A” A has a large value of v’ AT Av for a
vector v then it is well-conditioned for point matching with
respect to translational shifts from x in the direction v. As
a directional vector v moves over the unit sphere the values
of vT' AT Av pass through all the eigenvalues A, ..., A, of
AT A. This means that if one eigenvalue is smaller than the
rest then the corresponding eigenvector v is a direction in
which the corner is less robust (in the sense of point match-
ing conditioning) than in the other eigenvector directions.
From this we see that Axiom 4 can be interpreted as the
requirement that the best corner (as measured by the cor-
ner detector function f) subject to the restriction of constant
eigen-energy A{+- - -+\% = ¢ for some g > 1 is that corner
that doesn’t have a weak direction: all the unit norm direc-
tional vectors v yield the same value for v AT Av. That
is we must have A\; = ... = \,. This reasoning motivated
the Definition 4 of an isotropic point in the image. In order
to test the generalized corner detectors for compliance with
Axiom 4 it is helpful to rewrite the axiom as follows: over
the set of eigenvalues of constant energy A +---+ A2 = ¢
for a given ¢ > 1 and a constant ¢, the maximum of the cor-
ner detector is attained at A\ = Ay = --- = \,, = c/nl/q.
(Note that we have restated Axiom 4 in this way to avoid
complications resulting from images in which the set of
points for a given eigen-energy may not contain all possi-
ble combinations of eigenvalues at that energy.)

Lemma 7 The generalized Forstner, Shi-Tomasi, modified
Rohr and p-norm condition detectors satisfy Axiom 4.

Remark 3 We can illustrate Axiom 4 and the above lemma
by taking ¢ = 1 in the eigen-energy measure. In this
case we have Ay + Ao + -+ + A\, = c¢. That is the
trace of AT A is constant. Moreover, using the linear-
ity of the trace operator together with the property that:
trace(M; M) = trace(M, M, ) for any compatibly dimen-
sioned matrices M; and M, we find that trace( AT A) =
S Vgl |12, We note that the last termis just the
sum of the squares of the norms of the intensity gradients
over the window 2 about x. This means that the condi-
tion that the eigen-energy is equal to ¢ for ¢ = 1 is the
same as requiring the average of the squares of the gra-
dient norms to also be constant. For example consider the

Constant eigen-energy lines

(a) (5]

Figure 2. The left figure shows the test im-
age whereas the right image shows the cor-
responding eigen-energy lines.

case of a black squarein thelower left of an otherwise white
image (see Figure 2-a). Let uslook at the constant eigen-
energy line for the trace norm (¢ = 1) starting at the lower
right boundary of the black square (see Figure 2-b). At this
point we have that the two eigenvalues of A7 A are \; = c,
A2 = 0. This remains fixed as we move upward along the
line of constant eigen-energy. As we near the corner the
line of constant eigen-energy curves inward and we reach
a point where \; = Ay = ¢/2. Continuing on the con-
stant energy curve to the left we return to the state where
the larger eigenvalue is equal to ¢ and the smaller is equal
to 0. Axiom 4 in this example requires the corner detec-
tor along this constant energy curve to be maximized at the
point where \; = Ao = ¢/2. Thisisalso the point of closest
approach of the curve to the true corner.

3.5. Shi-Tomasi Detectors

It has been shown that the Shi-Tomasi corner detector
satisfies all the proposed axioms. This fact can be general-
ized using the following definition and lemma.

Definition 5 A corner detector that isa function of \,,,;,, =
mini<;<n A;, Where Aq,..., A, are the eigenvalues of
AT A, is called a Shi-Tomasi type detector.

Lemma8 Let f be a corner detector in the sense of Def-
inition 1. If f satisfies Axiom 1 and Axiom 3 then f isa
Shi-Tomasi type detector.

4. Conclusions

In this paper we have presented an axiomatic approach to
corner detection. Our original purpose was to compare cur-
rently used corner detectors including the Harris-Stephens,
Forstner, Shi-Tomasi, Rohr, and the p-norm condition de-
tectors. However we found that by extending the definition
of these detectors to include image spaces of differing pixel
and intensity dimensions we were able to set up a general
framework of four axioms that such detectors should sat-
isfy. Motivation has been provided for each of these axioms



Table 1. Compliance of the generalized corner detectors with the proposed axioms.

Axiom 1 Axiom 2 | Axiom 3 Axiom 4
f(ATA) < Rotation Isotropy
f(PTATAP) | Invariance Condition
Harris-Stephens X v X X X only forn = 2
Forstner
(1-norm condition) Y v 8 4 v/ Y
Shi-Tomasi v v v v v v
(co-norm condition)
Modified Rohr X v x v v v

and they may serve as a basis either individually or collec-
tively for testing future detection schemes. In the process
of our analysis we also demonstrated that the Shi-Tomasi
detector was equivalent to the co-norm condition detector
and that the Forstner detector was equivalent to the 1-norm
condition detector.

In our comparison of the five current detectors we
showed that only the Shi-Tomasi (and equivalently the oo-
norm condition detector) was compliant with all four ax-
ioms. In contrast, the Harris-Stephens detector failed to sat-
isfy Axioms 1 (except for the rotation invariance condition),
2 and 3, the Forstner detector failed to satisfy the isotropy
condition in Axiom 1 and the modified Rohr detector failed
to satisfy the basic condition and the isotropy condition of
Axiom 1. These considerations are summarized in Table 1.
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