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Abstract— Selecting salient points from two or more images for
computing correspondences is a fundamental problem in image
analysis. Three methods originally proposed by Harris et al. in
[1], by Noble et al. in [2] and by Shi et al. in [3] proved to be quite
effective and robust and have been widely used by the computer
vision community. The goal of this paper is to analyze these point
detectors starting from the algebraic and numerical properties of
the image auto-correlation matrix. To accomplish this task we will
first introduce a “natural” constraint that needs to be satisfied by
any point detector based on the auto-correlation matrix. Then, by
casting the point detection problem in a mathematical framework
based on condition theory [4], we will show that under certain
hypothesis the point detectors [2], [3], [4] are equivalent modulo
the choice of a specific matrix norm. The results presented in
this paper will provide a novel unifying description for the most
commonly used point detection algorithms.

I. I NTRODUCTION

In order to establish correspondences among a collection of
images it is first necessary to identify a set of salient points
in each image. Point correspondences constitute the input for
more complex algorithms that aim at registering images, at
reconstructing the three dimensional structure of a scene or at
monitoring activities in a certain area, just to list a few. One of
the paradigms to compute point correspondences that is largely
used by the computer vision community is composed of two
steps: initially a set of tie points is detected in each input
image and then this set is fitted to a model that is supposed
to describe the transformation between the images. A typical
example is the estimation of the planar homography between
two views of a planar scene. Crucial for the success of this
approach is a high repeatability rate of the point detector (see
[5]). This means that if a pointq is detected in imageI
then, with high probability, the corresponding pointq′ will be
detected in imageI ′. Since the transformation that relates the
images is not known a priori, a point detector should exploit
only the information contained in one single image. Intensity
based methods achieve this goal by associating to each point
q a scalar value that defines its “goodness” as a tie point.
This evaluation is done by performing some operations on
the image intensity values in a neighborhood of the pointq.
The methods proposed by Harris and Stephens [1] (and the
modified version introduced by Noble [2]), by Shi and Tomasi
[3] and by Kenney et al. [4] can all be considered intensity
based methods.

The goal of this work is to explore in detail what is the

quantitative relation between these detectors, starting from
the algebraic and numerical properties of the image auto-
correlation matrix. This is motivated by the fact that all the
detection rules are based on the spectral structure of this
matrix. Our first contribution to this analysis is to observe
that any function (based on the auto-correlation matrix) used
to detect tie points should satisfy a monotonicity constraint that
arises naturally from the “physical” interpretation of the auto-
correlation matrix. Then, after having noticed that the rationale
behind the point detectors proposed by Harris, Stephens and
Noble and by Shi and Tomasi entail a notion of computational
stability, we shall see how these considerations can be restated
from first principles using a mathematical framework based
on condition theory. This approach will shed new light on
the rules used to detect tie points, demonstrating that the
previously mentioned approaches are equivalent modulo a
suitable choice of a matrix norm.

The paper is structured as follows: section II introduces
some of the notation that will be used throughout the paper,
section III summarizes the condition theory framework used
to relate the different point detectors, which are presented in
section IV together with the nondecreasing constraint. The
main results of the paper are stated, proved and discussed
in section V, whereas the final conclusions can be found in
section VI.

II. PRELIMINARIES

A. Geometric Transformations of Images

A single channel imageI can be thought as a bounded
scalar function defined over a compact subset ofR2:

I : D → [Imin, Imax] ⊂ R q 7→ I(q)

We are interested in detecting tie points in images related by
a geometric transformationTθ : R2 → R2 that depends on
the parameter vectorθ. These transformations can be grouped
in transformation classesdefined as:

T def= {f : ∃θ such thatf = Tθ}
In this paper we will focus our attention on two classes of
transformations:

• Translation (TT ): Tθ(x′) def= x′ +
[

tx
ty

]

for which the parameter vector isθ =
[

tx ty
]T



• Rotation and translation (TRT ):

Tθ(x′) def=
[

cos φ sin φ
− sin φ cos φ

]
(x′ − q′) +

[
tx
ty

]

for which the parameter vector isθ =
[

φ tx ty
]T

andq′ is the point about which the image patch rotates.

For an example of a transformation in the classTRT see
Figure 1. Note that we did not consider transformations that
involve scale, since scale requires a specific treatment. This is
because the point detection methods we will be considering
are intensity based methods. This means that they process the
image intensities in a neighborhood centered about the point
of interest and therefore such neighborhood should transform
covariantly with the images. As an example consider two
images related only by a change of scale: the neighborhood
of correspondent points will contain the same image portion
only if it scales covariantly with the images. The only set
of transformations where the structure of the neighborhood is
preserved is the class of rotations and translation (the shape
of a circle which is translated and rotated does not change). A
discussion about automatic methods to retrieve correspondent
neighborhoods in images related by transformation that do not
preserve circular neighborhoods can be found in [6] and [7].

B. The Auto-Correlation Matrix

The smoothed version of the imageI is given by:

L(q, σ, I) = (Gσ ∗ I) (q)

whereGσ is a Gaussian function with standard deviationσ.
The gradient (indicated using the symbol∇x) of L is used to
compute theauto-correlation matrixassociated to imageI:

µ(q, σI , σD, I) =(
wσI

∗ ∇xL(·, σD, I)∇T
xL(·, σD, I)

)
(q) =∫

R2
wσI

(q− x)∇T
xL(x, σD, I)∇xL(x, σD, I)dx (1)

where wσ is a weighting function whose size is dependent
on the parameterσI . We shall refer toσI as the integration
scale (it is the parameter that defines size of the window
about the pointq′), and to σD as the differentiation scale.
The discretized version of equation (1) is:

µ(q, σI , σD, I) ≈∑
xi

wσI
(q− xi)∇T

xL(xi, σD, I)∇xL(xi, σD, I) (2)

The vectorsxi are the points that form the discretized support
set1 of the weighting functionwσI

. Expression (2) can be
rewritten compactly in matrix form as:

µ(q, σI , σD, I) ≈ AT WA (3)

1Often timeswσI is chosen to be a Gaussian function, whose support is the
entire plane. In this case the right hand side of equation (2) becomes an infinite
summation. However, to deal with finite dimensional matrices, we can con-
sider the support ofwσI to be the compact set

{
x ∈ R2 : xT Σ−1x ≤ c

}
,

wherec is some suitable constant. Discretizing the previous set we obtain a
finite summation.

Fig. 1. The figure shows the mapping between the image pairI and Î.
The shaded circle represents the neighborhood of the pointq and the black
dots inside the shaded circle in the left image represent the points in the
neighborhood ofq that are used to construct the matrixA (see equation (3)).

where the matrixA ∈ RN×2 is formed by stacking the
gradients∇xL(xi, σD, I) one on top of the other andW is a
diagonal weighting matrix such thatWii = wσI

(q− xi). The
matrix A = A(q, σD, I) depends both on the pointq and on
the differentiation scaleσD. Similarly the matrixW = W (σI)
depends on the integration scaleσI . However, to simplify
the notation we will henceforth avoid to write explicitly such
dependencies.

The auto-correlation matrix provides an important infor-
mation about the image neighborhood for which the window
function is non zero. Each eigenvalueµ measures the image
gradient strength along the directions of the eigenvectors of
µ. The larger the gradient strength the stronger the corner-like
structure is.

C. Matrix Norms

In this section we will introduce the notation and the basic
concepts about matrix norms that are used in this paper. For
a more thorough discussion of these topics please refer to [8],
[9]. Let’s first introduce the vectorp-norm:

‖x‖p
def=

(∑

i

xp
i

) 1
p

Vector p-norms lead to the definition of theinduced matrix
p-norm:

‖A‖p
def= sup

x 6=0

‖Ax‖p

‖x‖p
(4)

It can be shown that‖A‖2 = σmax(A), whereσmax(A) is
the maximum singular value of the matrixA. The Schatten
matrix p-normis defined as:

‖A‖S,p
def=

(∑

i

σi(A)p

) 1
p

(5)

whereσi(A) is the ith singular value of the matrixA.



III. C ONDITION THEORY FORPOINT MATCHING

In this section we will introduce the fundamental facts
about condition theory for point matching. A more thorough
discussion of this theory can be found in [4]. The basic idea is
to identify which points in an image can be used to estimate
robustly the parameters that define a certain transformation.
SupposeI and I ′ are two images related by the transfor-
mation Tθ so thatI(Tθ(q′)) = I ′(q′), and let’s define the
transformed image plus noise as:

Î(q′) def= I(Tθ(q′)) + η(q′)

Let’s also introduce the error cost function:

JTθ
(q′) def=

1
2

∫

R2
wσ(q′ − x′)

[
I(Tθ(x′))− Î(x′)

]2

dx′

(6)
In the noise free case (i.e.η = 0) the minimizer for (6) is
given by θ∗ whereas in presence of noise such minimizer is
moved toθ∗ + ∆θ∗. We would like to quantify the effect of
the noise on the estimation of the transformation parameterθ.
To achieve this goal we define a number that relates∆θ to η
in the limit for the noise tending to zero.

Definition 1: The transformation condition number(TCN)
at point q′ with respect to the transformationTθ is defined
as:

KTθ
(q′) def= lim

δ→0
sup
‖η‖≤δ

‖∆θ∗‖
‖η‖ (7)

where‖η‖ takes into consideration the noise over the support
of the window functionwσ.

The interpretation of expression (7) is the following: a large
condition number means that small perturbations in the lu-
minance of the image can greatly affect the value of the
minimizer of (6). Therefore it is reasonable to seek a set of
tie points for which the TCN has a small value. Unfortunately
for an arbitrary transformation the TCN depends on the
parameters of the transformation itself, so it is of little use
if we want to assess the suitability of certain point to estimate
θ by using just one single image: in fact at this timeθ∗ is
unknown. This consideration leads us to a further definition.

Definition 2: The class condition number(CCN) at point
q′ with respect to the class of transformationsT is defined
as:

KT (q′) def= max
Tθ∈T

KTθ
(q′) (8)

In this case the condition number is independent from the
transformation parameters. The following theorems provide a
mean to calculate the condition numbers. For the proofs see
the appendices I and II.

Theorem 1: The CCN at pointq′ for the class of transla-
tions TT is approximated by:

KTT
(q′) =

∥∥∥
(
AT WA

)−1
AT W

∥∥∥ (9)

where the matricesA andW are defined as in (3).

Theorem 2: For W = I, using the induced matrix 2-norm
in (9), the CCN satisfy the following inequality:

KTT (q′) ≤ KTRT (q′)

Moreover, the scalar‖ (
AT A

)−1 ‖22 is a lower bound for
KTT

(q′) andKTRT
(q′) for any weighting matrixW .

Theorem 1 provides a closed form expression for the CCN
with respect to the class of translation transforms. Theorem 2
states that if a point is badly conditioned with respect to the
class of transformationsTT it will also be bad conditioned with
respect to the class of transformationsTRT . This result agrees
with the intuition: if we have to estimate more parameters
using the same amount of data, then the noise will have a
stronger influence on the estimate, producing a larger variation
∆θ∗. The lower bound introduced in Theorem 2 provides a
computationally efficient method to discard points that are
bad conditioned: its calculation requires the computation of
a matrix product and the solution of a second order equation
to detect the minimum eigenvalue.

IV. POINT DETECTORS

A point detector is an algorithm that takes one image
as input and then outputs a set oftie points that can be
identified with high repeatability in images that are related by
a transformationTθ. Such an algorithm is completely defined
as long as we specify therule for detecting the tie points.
In this section we will briefly describe the Harris-Stephens
corner detector rule [1] (with a particular emphasis on the
modification proposed by Noble [2]), the Shi-Tomasi point
detector rule [3] and finally the point detector rule proposed
by Kenney et al. in [4]. In all these works the detection rule
is strongly connected to the spectral structure of the auto-
correlation matrixµ. In general a pointq is considered to be
a tie-point as long as:

M (λ (µ(q, σI , σD, I))) ≥ T (10)

where M is a function of the eigenvalues of the auto-
correlation matrix (which are indicated using the notation
λ (·)) andT is some suitable threshold.

As discussed at the end of section II, the strength of corner-
like image structures is reflected in the magnitude of the
eigenvalues ofµ. Therefore it is natural to requireM to be a
non decreasing function of the eigenvalues ofµ (in other words
the stronger is a corner-like structure the stronger must be the
response of the function 10). We will refer to this condition
as thenondecreasing constraintonM:

Constraint 1: Any function M used to measure the
strength of a corner-like image structure based on the auto-
correlation matrixA must be a non-decreasing function of the
eigenvalues ofA. In other words, for anyλ1 ≤ λ′1, λ2 ≤ λ′2:

M(λ1, λ2) ≤M(λ′1, λ
′
2) (11)



A. Harris-Stephens and Noble Corner Detector

Harris and Stephens’s corner detector draws its origins in
the corner detector proposed by Moravec [10], where the
authors consider to be good corners those points for which
the difference between their neighborhood and shifted version
of the same neighborhood produces an error surface with
a well defined minimum. This idea encapsulates the notion
of computational stability that is the core of the condition
theory presented in [4] and summarized in section III. Harris
and Stephens proposed the following function to measure the
corner strength:

MH(q, σI , σD, I) =

det
(
AT WA

)− α
(
trace

(
AT WA

))2
(12)

The larger the value ofα the less sensitive is the detector
to corner like structures. The major drawback of this corner
detector is the presence of a parameterα that needs to
be manually tuned. To overcome this difficulty Noble [2]
proposed a modified version of the Harris function that does
not contain any constant:

MN (q, σI , σD, I) =
det

(
AT WA

)

trace(AT WA) + ε
(13)

The small constantε is used to avoid a singular denominator
in case of a rank zero auto-correlation matrix.

B. Shi-Tomasi Point Detector

In [3] Shi and Tomasi proposed a criterion to decide which
points are suitable for tracking (see also [11]). Their idea is to
select points for which the system that provides an estimate of
the displacement from one frame to the other is numerically
well conditioned. Also in this case we find a connection with
the core ideas of the condition theory summarized in section
III. The Shi and Tomasi function is defined as:

MS(q, σI , σD, I) = λmin(AT WA) (14)

whereλmin(AT WA) indicates the smallest eigenvalue of the
auto-correlation matrix.

C. Kenney et al. Point Detector

As discussed in section III, Theorem (1) and Theorem (2)
suggest the following rule to detect tie points: select those
points that have a small condition number with respect to the
classTT . The detection rule can be formalized by defining the
Kenney’s function:

MK,∗(q, σI , σD, I) =
1∥∥∥(AT WA)−1

AT W
∥∥∥

2

∗

where∗ indicates which matrix norm has been used.

V. RELATION BETWEEN POINT DETECTORS

A. Equivalence of Point Detectors

As pointed out in section IV, both the Harris-Stephens
detector (and consequently the Nobel detector) and the Shi-
Tomasi detector somehow encapsulate a notion of computa-
tional stability. This fact suggests that the functions (13) and
(14) should reflect in some way this notion. To support this
observation we will prove a theorem that establishes a relation
between the point detectors described before, showing that
the Noble function, the Shi-Tomasi function and the Kenney
function are equivalent modulo the choice of a suitable matrix
norm.

Theorem 3: For ε = 0 andW = I:

MN = MK,1−Schatten (15)

MS = MK,2 (16)

Proof: Suppose the spectrum of the matrixAT WA =
AT A is given by λ2 ≥ λ1 ≥ 0. We will first show
the equivalence relation between the Harris-Stephens-Nobel
function and Kenney’s one when the 1-Schatten norm is used.
Consider the matrixM = (AT A)−1AT . First we will prove
that:

σ2
i (M) = σi((AT A)−1) (17)

This results follows directly from the SVD decomposition of
the matricesM and (AT A)−1:

(AT A)−1 = (V ΣT UT UΣV T )−1 = V Σ−2V T

M = (AT A)−1AT = V Σ−2V T V ΣT UT =

V
[

Σ−1 0
]
UT

whereΣ−2 is the diagonal matrix containing the 2 singular
values of(AT A)−1. From the definition of the Schatten norm
(5) it follows that:

‖(AT A)−1‖S,p =

[∑

i

σi((AT A)−1)p

] 1
p

=

[∑

i

σi(M)2p

] 1
p

=

[∑

i

σi(M)2p

] 1
2p ·2

= ‖M‖2S,2p

Given that for a symmetric matrix the singular values coincide
with the eigenvalues we have that:

MK,1−Schatten =
1

‖(AT A)−1‖S,1
=

1
‖M‖2S,2

=

(because of (17)) =
1

1
λ1

+ 1
λ2

=
λ1λ2

λ1 + λ2
=

(for ε = 0) = MN

which proves the first part of the theorem, since the Nobel
function (13) can be rewritten as:

MN =
λ1λ2

λ1 + λ2 + ε



Now let’s consider the equivalence between the Shi and
Tomasi function and Kenney’s one. Since the 2-norm of a
matrix coincides with the largest singular value, using the
identity (17) we can write:

‖M‖22 = ‖(AT A)−1‖2
Therefore the following equality holds:

MK,2 =
1

‖M‖22
=

1
‖(AT A)−1‖2 = λ1 = MS (18)

which proves also the second equivalence.

B. The Nondecreasing Constraint

The nondecreasing constraint (11) introduced at the end
of Section IV says that the detection function should be
nondecreasing inλ1 andλ2. The following lemma shows that
MN andMS satisfy such constraint, whereas for the Harris-
Stephens functionMH the constraint holds true only when
α ≤ 1

4 (this fact provides a justification of the common habit
of settingα = 0.04).

Lemma 1: The functionsMN , MS (and consequently
MK,1−Schatten and MK,2) all satisfy the nondecreasing
constraint (11). The functionMH satisfies (11) provided that
α ≤ 1

4 .

Proof: The constraint (11) is satisfied as long as the
partial derivatives of the functionM are non negative:

∂M
∂λ1

≥ 0
∂M
∂λ2

≥ 0

For the Nobel function we have that the partial derivatives are
given by:

∂MN

∂λi
=

λj(λj + ε)
(λi + λj + ε)2

which shows that they are always nonnegative. Now assume
that λ2 ≥ λ1 ≥ 0. For the Shi-Tomasi function we have that:

∂MN

∂λi
=

{
1 for λi = λ1

0 for λi = λ2

Therefore also in this case the partial derivatives are always
non negative. From Theorem 3 it follows that Kenney’s point
detector satisfies the nondecreasing constraint whenW = I
and either the 2-norm or the Schatten 1-norm are used. Finally
let’s consider the Harris-Stephens function for which:

∂MH

∂λi
= λj − 2α(λi + λj)

The partial derivatives are non negative if and only if:

α ≤ λ1

2(λ1 + λ2)

Since λ1
2(λ1+λ2)

≥ 1
4 for any λ2 ≥ λ1 ≥ 0, we conclude that

MH will satisfy (11) if and only ifα ≤ 1
4 .

VI. CONCLUSION

In this paper we reformulated the point detection rules
proposed by Harris, Stephens and Nobel, by Shi and Tomasi
and by Kenney using a common framework based on condition
theory introduced in [4] and summarized in section III. We
restricted our attention to rotation and translation since more
complex transformation would require an automatic procedure
to detect neighborhoods that vary covariantly with the transfor-
mation [7]. The central result is stated in Theorem 3, where we
showed that the point detectors previously listed are equivalent
modulo a suitable choice of a matrix norm, (as long as the
weighting function is constant over its support). This results
tells that the Harris, Stephens and Nobel corner detector and
the feature detector proposed by Shi and Tomasi both select
points that are suitable to estimate robustly the parameters
of a translation between an image pair. We also introduced a
constraint that should be satisfied by all the functionsM used
to detect tie points based on the auto-correlation matrix. We
showed that all the detectors studied in this paper satisfy the
previous constraint automatically, with the relevant exception
of the Harris Stephens corner detector, for which it is necessary
to forceα to be less than14 .

Future research directions aim at considering a more flexible
definition of condition numbers, in order to be able to cope
with a larger variety of transformations possibly without
having to solve explicitly the problem of the detection of a
covariant neighborhood. We would also like to study in more
detail which is the role of the weighting functionwσ, in order
to present an extension of these results that holds also in the
case whereW 6= I.
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APPENDIX I
PROOF OF THEOREM1.

Proof: Our goal is to express the parameter vectorθ∗ that
minimizes the cost (6) in terms of the noiseη. Supposeη 6= 0:
then the minimizerθ∗ will move to θ∗ + ∆θ∗. A necessary
condition for optimality is that∇θJTθ∗+∆θ∗ (q

′) = 0, i.e. :
∫

R2
wσ(q′ − x′)

[
I(Tθ∗+∆θ∗(x′))− Î(x′)

]

∇xI(Tθ∗+∆θ∗(x′))JθTθ∗+∆θ∗(x′)dx′ = 0 (19)

where∇xI(Tθ∗+∆θ∗(x′)) is the image gradient computed at
the pointTθ∗+∆θ∗(x′) andJθTθ∗(x′) is the Jacobian of the
transformationTθ∗ . The Taylor truncated expansion of the last
three factors in (19) is given by:

I(Tθ∗+∆θ∗(x′))− Î(x′) ≈
∇xI(Tθ∗(x′))JθTθ∗(x′)∆θ∗ − η(x′)

∇xI(Tθ∗+∆θ∗(x′)) ≈
∇xI(Tθ∗(x′)) + ∆θ∗T JT

θ Tθ∗(x′)HxI(Tθ∗(x′))



where HxI(Tθ∗(x′)) is the image Hessian. As far as the
Jacobian is concerned we have that in the pure translation
case:

JθTθ∗+∆θ∗(x′) = JθTθ∗(x′) = I (20)

whereas in the case of rotation and translation:

JθTθ∗+∆θ∗(x′) ≈ JθTθ∗(x′) + M∆θ∗ =[
R(φ + π

2 )∆q I
]
+

[
R(φ)∆q 0

]
∆θ∗

The matrix R(α) is the matrix in SO(2) that produces a
rotation of an angleα and ∆q = x′ − q′. By dropping
the second order terms (i.e. the terms containing the products
∆θ∗T ∆θ∗ and∆θ∗T η(x′)), we obtain the new equation:

∫

R2
wσ(q′ − x′) [∇xI(Tθ∗(x′))JθTθ∗(x′)∆θ∗ − η(x′)]

∇xI(Tθ∗(x′))JθTθ∗(x′) ≈ 0 (21)

Let’s now consider the discretized version of equation (21):

∑

x′
wσ(q′ − x′)

[∇xL(Tθ∗(x′), σD, I)JθTθ∗(x′)∆θ∗ − η(x′)]
∇xL(Tθ∗(x′), σD, I)JθTθ∗(x′) ≈ 0 (22)

where the continuous derivatives are replaced by convolutions
with the derivatives of a gaussian kernel with standard devia-
tion σD. By settingvT (x′) = L(Tθ∗(x′), σD, I)JθTθ∗(x′),
(22) can be written as:

[∑

x′
v(x′)wσ(q′ − x′)vT (x′)

]
∆θ∗ ≈

∑

x′
wσ(q′ − x′)v(x′)η(x′) (23)

By definingW as in (3) and:

η =
[

η(x′1) . . . η(x′n)
]T

(23) can be written as:

AT
Tθ∗ (q

′)WATθ∗ (q
′)∆θ∗ ≈ AT

Tθ∗ (q
′)Wη (24)

The expression for the TCN is obtained by solving in a least
square sense the normal equation (24). For a pure translation
A does not depend onθ∗ (becauseJθTθ∗(x′) = I) and
therefore:

KTT
(q′) = KTθ

(q′) =
∥∥∥
(
AT WA

)−1
AT W

∥∥∥
provides also an expression for the CCN for translation. The
matrix A is the same as in (3). For the rotation and translation
case the JacobianJθTθ∗(x′) unfortunately depends onθ∗ and
therefore only an expression for the TCN can be provided:

KTθ
(q′) =

∥∥∥
(
AT

Tθ∗ (q
′)WATθ∗ (q

′)
)−1

AT
Tθ∗ (q

′)W
∥∥∥

APPENDIX II
PROOF OF THEOREM2.

We first show the following lemmas.

Lemma 2: Let A be defined as in (3) and letw ∈ RN .
Let’s also define the matrixAJ

def=
[

w A
]
. Then the

following inequality holds:

‖ (
AT

J AJ

)−1
AT

J ‖2 ≥ ‖ (
AT A

)−1
AT ‖2 (25)

Proof: As shown in the proof of Theorem 3, if (25)
holds, then such inequality can be rewritten as:

‖ (
AT

J AJ

)−1 ‖2 ≥ ‖ (
AT A

)−1 ‖2
or equivalently as:

λmin

(
AT

J AJ

) ≤ λmin

(
AT A

)
(26)

Therefore the lemma will be proved if we are able to prove
(26). For our purposes it is more convenient to consider the
transpose of the matricesAT

J AJ and AT A; in particular we
have that:

λ(AJAT
J ) = λ(AT

J AJ) ∪ {0, · · · , 0︸ ︷︷ ︸
N−3

} = {λ′3, λ′2, λ′1, 0, · · · , 0︸ ︷︷ ︸
N−3

}

whereλ′3 ≥ λ′2 ≥ λ′1 ≥ 0 and analogously:

λ(AAT ) = λ(AT A) ∪ {0, · · · , 0︸ ︷︷ ︸
N−2

} = {λ2, λ1, 0, · · · , 0︸ ︷︷ ︸
N−2

}

whereλ2 ≥ λ1 ≥ 0. If we rewrite the matrixAJAT
J aswwT +

AAT we can exploit the interlacing property of the eigenvalues
(see in particular Theorem 8.1.8 p. 397 in [9]) according to
which λ′1 ∈ [0, λ1]. Therefore we can conclude that:

λmin

(
AT

J AJ

)
= λ′1 ≤ λ1 = λmin

(
AT A

)

which proves the lemma.

Lemma 3: For any matricesA and W with compatible
dimensions the following inequality holds true:

‖ (
AT WA

)−1
AT W‖2 ≥ ‖ (

AT A
)−1

AT ‖2 (27)

Proof: As showed in more detail in the proof of Theorem
3, the SVD decomposition of the matrixA is:

A = U

[
Σ
0

]
V T

and the SVD decomposition ofM =
(
AT A

)−1
AT is:

M = V
[

Σ−1 0
]
UT

Because the matrix 2-norm is invariant with respect to orthog-
onal rotations we have:‖M‖2 =

∥∥[
Σ−1 0

]∥∥
2

= ‖Σ−1‖2.
Introducing the matrix:

[
m11 m12

m21 m22

]
= UT WU



compatibly dimensioned with U, it is possible to show that2:
(
AT WA

)−1
AT W = V

[
Σ−1 Σ−1m−1

11 m12

]
UT

and consequently:

‖ (
AT WA

)−1
AT W‖2 =

∥∥[
Σ−1 Σ−1m−1

11 m12

]∥∥
2

At this point the lemma is proved, since:
∥∥[

Σ−1 Σ−1m−1
11 m12

]∥∥
2
≥

∥∥[
Σ−1 0

]∥∥
2

Using these results we can now prove Theorem 2.

Proof: In the proof of Theorem 1 we showed that for
rotation and translation the rows of the matrixATθ∗ (q

′) can
be written asvT (x′) = L(Tθ∗(x′), σD, I)JθTθ∗(x′), where
the JacobianJθTθ∗(x′) has the form

[
u I

]
. Therefore we

can write:
ATθ∗ (q

′) =
[

w A
]

If we renameATθ∗ (q
′) with AJ then we can apply Lemma 2,

showing directly that the TCN for rotation and translation is
always greater or equal than the CCN for translation (provided
W = I). Since Lemma 2 holds for any vectorw, then the
result can be extended to the CCN for rotation and translation,
yielding the desired inequality:

KTT (q′) ≤ KTRT (q′)

The proof of the last part of the theorem is a straightforward
application of Lemma 3.
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