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Abstract— Selecting salient points from two or more images for quantitative relation between these detectors, starting from
computing correspondences is a fundamental problem in image the algebraic and numerical properties of the image auto-
analysis. Three methods originally proposed by Harris et al. in - o rejation matrix. This is motivated by the fact that all the

[1], by Noble et al. in [2] and by Shi et al. in [3] proved to be quite . .
effective and robust and have been widely used by the computer detection rules are based on the spectral structure of this

vision Community. The goa| of this paper isto ana|yze these point matriX. Our fil’St Contribution to thIS ana|ySiS iS to Obsel’ve
detectors starting from the algebraic and numerical properties of that any function (based on the auto-correlation matrix) used
the image auto-correlation matrix. To accomplish this task we will - to detect tie points should satisfy a monotonicity constraint that
first introduce a “natural” constraint that needs to be satisfied by arises naturally from the “physical” interpretation of the auto-

any point detector based on the auto-correlation matrix. Then, by lati trix. Th fter havi ticed that th fi |
casting the point detection problem in a mathematical framework correlation matrix. then, arter having notice atthe rationale

based on condition theory [4], we will show that under certain behind the point detectors proposed by Harris, Stephens and
hypothesis the point detectors [2], [3], [4] are equivalent modulo Noble and by Shi and Tomasi entail a notion of computational
the choice of a specific matrix norm. The results presented in stability, we shall see how these considerations can be restated
this paper will provide a novel unifying description for the most 5 first principles using a mathematical framework based
commonly used point detection algorithms. o . . .
on condition theory. This approach will shed new light on

the rules used to detect tie points, demonstrating that the
previously mentioned approaches are equivalent modulo a

In order to establish correspondences among a collectionsoitable choice of a matrix norm.
images it is first necessary to identify a set of salient pointsThe paper is structured as follows: section Il introduces
in each image. Point correspondences constitute the input $ome of the notation that will be used throughout the paper,
more complex algorithms that aim at registering images, séction Ill summarizes the condition theory framework used
reconstructing the three dimensional structure of a scene ot@telate the different point detectors, which are presented in
monitoring activities in a certain area, just to list a few. One afection IV together with the nondecreasing constraint. The
the paradigms to compute point correspondences that is largelgin results of the paper are stated, proved and discussed
used by the computer vision community is composed of twn section V, whereas the final conclusions can be found in
steps: initially a set of tie points is detected in each inpgection VI.
image and then this set is fitted to a model that is supposed
to describe the transformation between the images. A typical Il. PRELIMINARIES
example is the estimation of the planar homography betwe&n Geometric Transformations of Images

two views of a planar scene. Crucial for the success of this 5 single channel imagd can be thought as a bounded

approach is a high repeatability rate of the point detector (Sg&iar function defined over a compact subseRaf
[5]). This means that if a point is detected in image

then, with high probability, the corresponding poiritwill be T:D = [Zmin,Imaz) CR qa— Z(q)

detected in imag&’. Since the transformation that relates the

images is not known a priori, a point detector should eproWe are mtgrested n detgctmg t|e2 p0|nts2 in images related by
geometric transformatioy : R* — R= that depends on

only the information contained in one single image. Intensi? ¢ @ Th ¢ ¢ i b d
based methods achieve this goal by associating to each poi barameter Vectd. These fransiormations can be groupe
transformation classedefined as:

q a scalar value that defines its “goodness” as a tie poim

This evaluation is done by performing some operations on o def {f : 30 such thatf = Tg}

the image intensity values in a neighborhood of the pgint

The methods proposed by Harris and Stephens [1] (and ihethis paper we will focus our attention on two classes of

modified version introduced by Noble [2]), by Shi and Tomagiansformations:

[3] and by Kenney et al. [4] can all be considered intensity | translation Tr): To(x') dof o1 4 [ 129 }

based methods. ly
The goal of this work is to explore in detail what is the  for which the parameter vector &= [ te ty

I. INTRODUCTION

]T



« Rotation and translatiorZ§r):
;def | cos¢  sing ;o te
To(x') = [ —sing cos ¢ (' =)+ [ ty }
for which the parameter vector 8= [ ¢ t, t, ]T
andq’ is the point about which the image patch rotate: “EEE %

150,

For an example of a transformation in the cldgsr see
Figure 1. Note that we did not consider transformations th |
involve scale, since scale requires a specific treatment. Thig
because the point detection methods we will be consideri .. ===
are intensity based methods. This means that they process u.c
image intensities in a neighborhood centered about the poif | e figure shows the mapping between the image Faind 7.

of interest and therefore such neighborhood should transfom® shaded circle represents the neighborhood of the ppand the black
covariantly with the images. As an example consider twipts inside the shaded circle in the left image represent the points in the
images related only by a change of scale: the neighborhorbeéghborhood ofy that are used to construct the matrlx(see equation (3)).

of correspondent points will contain the same image portion
only if it scales covariantly with the images. The only set ) Nx2 i
of transformations where the structure of the neighborhood/{1€Te the matrixA € R is formed by stacking the
preserved is the class of rotations and translation (the sh&@dientsVxL(xi,op,Z) one on top of the other and’ is a
of a circle which is translated and rotated does not change) ¢fgonal weighting matrix such thats; = w,, (q —x;). The
discussion about automatic methods to retrieve correspondg\"f\m_x A= /_1(97 op,7) depe_n(_js both on th(_e point and on
neighborhoods in images related by transformation that do B¢ differentiation scale p. Similarly the matrixiV = W (o)

preserve circular neighborhoods can be found in [6] and [7§€PeNds on the integration scalg. However, to simplify
he notation we will henceforth avoid to write explicitly such

B. The Auto-Correlation Matrix dependencies.
The smoothed version of the imageis given by: The auto-correlation matrix provides an important infor-
mation about the image neighborhood for which the window
L(q,0,7) = (G5 * 1) (q) function is non zero. Each eigenvaluemeasures the image

whereG,, is a Gaussian function with standard deviation gradient strength along the directions of the eigenvectors of
The gradient (indicated using the symbal) of L is used to #- The larger the gradient strength the stronger the corner-like
compute theauto-correlation matrixassociated to imagg: ~ Structure is.

wa,or,0p,I) = C. Matrix Norms

T
(o, # VoL (-, 00, T)V (00, T)) (a) = In this section we will introduce the notation and the basic
/ wy, (q —X)VIL(x,0p,T)VxL(x,0p,T)dx (1) concepts about matrix norms that are used in this paper. For

R? a more thorough discussion of these topics please refer to [8],
where w,, is a weighting function whose size is dependeri]. Let’s first introduce the vectop-norm
on the parameter;. We shall refer tos; as the integration
scale (it is the parameter that defines size of the window ®
about the pointq’), and toop as the differentiation scale. 1% e (Z p)
The discretized version of equation (1) is:

i
%

Vector p-norms lead to the definition of thimduced matrix
p-norm

,Ll(q, 0—170D71) ~
> we,(q - xi)VEL(Xi, 00, T) Vs L(xi,00,T)  (2)
def || Ax]]p
The vectorsk; are the points that form the discretized support x70 P

set of the weighting functionw,,. Expression (2) can be It can be shown thallAljs = dymas(A)
rewritten compactly in matrix form as: i

(4)

, where o4, (A) is
the maximum singular value of the matrit. The Schatten
p(a,or,0p,I) ~ ATWA (3) Matrix p-normis defined as:

1

1often timesw,, is chosen to be a Gaussian function, whose support is the P
entire plane. In this case the right hand side of equation (2) becomes an infinite A def (AP 5
; thand side of eq . [Alls,p oi(A) (®)
summation. However, to deal with finite dimensional matrices, we can con- ’ -
sider the support ofu,, to be the compact sdix € R? : xT¥~1x < ¢}, v
wherec is some suitable constant. Discretizing the previous set we obtain a ) ) )
finite summation. whereo;(A) is thei'" singular value of the matrixi.



I11. CONDITION THEORY FORPOINT MATCHING Theorem 2: For W = I, using the induced matrix 2-norm

In this section we will introduce the fundamental factd! (9), the CCN satisfy the following inequality:
about condition theory for point matching. A more thorough X N < K ,
discussion of this theory can be found in [4]. The basic idea is 72 (@) < K732 ()
to identify which points in an image can be used to estimate 7 oo—1g
robustly the parameters that define a certain transformati%c.)reover’ the scalaf| (A A> I3 is a lower bound for

X ) 2 > :
SupposeZ and T’ are two images related by the transfor!t7r(4') @nd Kz,...(a') for any weighting matrixiy’.

mation Ty so thatZ(Te(q')) = Z'(q’), and let's define the Theorem 1 provides a closed form expression for the CCN

transformed image plus noise as: with respect to the class of translation transforms. Theorem 2
A,y def , , states that if a point is badly conditioned with respect to the
L(a') = Z(To(d)) + n(d) class of transformatior it will also be bad conditioned with
Let's also introduce the error cost function: respect to the class of transformatidhgr. This result agrees
1 . 9 with the intuition: if we have to estimate more parameters
Jre(q) def 5/ we(q —x) [Z(TQ(X/)) —I(x’)} dx’ using the same amount of data, then the noise will have a
RZ

(6) Stronger influence on the estimate, producing a larger variation
In the noise free case (i.e, = 0) the minimizer for (6) is 26" The lower bound introduced in Theorem 2 provides a
given by 8* whereas in presence of noise such minimizer fmputationally efficient method to discard points that are
moved t08* + A8*. We would like to quantify the effect of Pad conditioned: its calculation requires the computation of
the noise on the estimation of the transformation parangeter® Matrix product and the solution of a second order equation
To achieve this goal we define a number that relatésto , 0 detect the minimum eigenvalue.

in the limit for the noise tending to zero.

Definition 1: Thetransformation condition numbé&mCN) V. POINT DETECTORS

at pointq’ with respect to the transformatidlle is defined A point detector is an algorithm that takes one image

as: 186" as input and then outputs a set té points that can be
Kr,(q') 4 i sup (7) identified with high repeatability in images that are related by
=0 g<s 1] a transformatiorTs. Such an algorithm is completely defined
where||n|| takes into consideration the noise over the suppd¥® long as we specify thriule for detecting the tie points.
of the window functionw, . In this section we will briefly describe the Harris-Stephens

_ ) ) _ ) corner detector rule [1] (with a particular emphasis on the
The |_n_terpretat|on of expression (7) is the foII(_)wmg_: a larggodification proposed by Noble [2]), the Shi-Tomasi point
condition number means that small perturbations in the lystector rule [3] and finally the point detector rule proposed
minance of the image can greatly affect the value of thg, Kenney et al. in [4]. In all these works the detection rule

minimizer of (6). Therefore it is reasonable to seek a set @f strongly connected to the spectral structure of the auto-
tie points for which the TCN has a small value. Unfortunatelyq rejation matrixz. In general a point is considered to be

for an arbitrary transformation the TCN depends on th&‘tie-point as long as:

parameters of the transformation itself, so it is of little use

if we want to assess the suitability of certain point to estimate M\ (u(q,01,0p,2)) >T (10)

6 by using just one single image: in fact at this tir@é is

unknown. This consideration leads us to a further definitiorwhere M is a function of the eigenvalues of the auto-
t correlation matrix (which are indicated using the notation

Definition 2: The class condition numbefCCN) at poin
(CCN) at p (1)) andT is some suitable threshold.

q’ with respect to the class of transformatiofsis defined A

as: As discussed at the end of section I, the strength of corner-
det L . , X
Kr(q) & max Kr,(q) @8) I|l§e image structures is r(.afl.ected in the mqgmtude of the
TocT eigenvalues of.. Therefore it is natural to requird1 to be a

In this case the condition number is independent from tton decreasing function of the eigenvalueg.¢in other words
transformation parameters. The following theorems providetlae stronger is a corner-like structure the stronger must be the
mean to calculate the condition numbers. For the proofs g@sponse of the function 10). We will refer to this condition

the appendices | and II. as thenondecreasing constrairgn M:
Theorem 1: The CCN at pointg’ for the class of transla- Constraint 1: Any function M used to measure the
tions 77 is approximated by: strength of a corner-like image structure based on the auto-
) . 1 correlation matrixA must be a non-decreasing function of the
Kz.(d') = H (Atwa) A WH (9) eigenvalues ofd. In other words, for any\; < M, Ay < Aj:

where the matrices! and W are defined as in (3). M1, Aa) < MOV A 11)



A. Harris-Stephens and Noble Corner Detector V. RELATION BETWEEN POINT DETECTORS

Harris and Stephens’s corner detector draws its origins Ah EQuivalence of Point Detectors
the corner detector proposed by Moravec [10], where theAs pointed out in section IV, both the Harris-Stephens
authors consider to be good corners those points for whidbtector (and consequently the Nobel detector) and the Shi-
the difference between their neighborhood and shifted versibomasi detector somehow encapsulate a notion of computa-
of the same neighborhood produces an error surface withnal stability. This fact suggests that the functions (13) and
a well defined minimum. This idea encapsulates the noti¢h4) should reflect in some way this notion. To support this
of computational stability that is the core of the conditiombservation we will prove a theorem that establishes a relation
theory presented in [4] and summarized in section Ill. Harrlzetween the point detectors described before, showing that
and Stephens proposed the following function to measure tihe Noble function, the Shi-Tomasi function and the Kenney

corner strength: function are equivalent modulo the choice of a suitable matrix
norm.
Mu(q,01,0p,1) = Theorem 3: Fore =0 andW = I:
det (ATWA) — o (trace(ATWA))®  (12) My = Mir sonaien (15)
The larger the value ofv the less sensitive is the detector Ms = Mrp (16)

to corner like structures. The major drawback of this corner  proof: Suppose the spectrum of the matrid WA =
detector is the presence of a parameterthat needs to A7 A is given by A, > X\, > 0. We will first show
be manually tuned. To overcome this difficulty Noble [2}he equivalence relation between the Harris-Stephens-Nobel
proposed a modified version of the Harris function that doggnction and Kenney’s one when the 1-Schatten norm is used.
not contain any constant: Consider the matrix\/ = (A" A)~'A”. First we will prove
. that:

det (ATW A) (13) o (M) = a;((ATA)7) 17)

trace(ATW A) +

MN(q70'I7O'DaI) =
This results follows directly from the SVD decomposition of
The small constant is used to avoid a singular denominatothe matricesM and (AT A)~!
in case of a rank zero auto-correlation matrix.
(ATA) = (wxTuTusyvh)y~t =ve—2yT

B. Shi-Tomasi Point Detector M = (ATA) AT — VR 2Ty —
In [3] Shi and Tomasi proposed a criterion to decide which v [ $-1 ] uT

points are suitable for tracking (see also [11]). Their idea is to

select points for which the system that provides an estimatevafiere =2 is the diagonal matrix containing the 2 singular

the displacement from one frame to the other is numericallues of(A” A)~!. From the definition of the Schatten norm

well conditioned. Also in this case we find a connection witfb) it follows that:

the core ideas of the condition theory summarized in section

IIl. The Shi and Tomasi function is defined as:

l

I(ATA) Hsp = [Zm (AT A4)~ ] =

Zai(M)zpl = [ZUi(M)2p1 = ||M||%,2p

Given that for a symmetric matrix the singular values coincide

Ms(a,01,0p,T) = Amin(ATWA) (14)

where\,.;, (AT W A) indicates the smallest eigenvalue of the
auto-correlation matrix.

C. Kenney et al. Point Detector with the eigenvalues we have that:
As discussed in section Ill, Theorem (1) and Theorem (2) M1 Sehatten = 1 _ 1 _
. . . yL—OC en — — - -
suggest the following rule to detect tie points: select those [(ATA)Hsa M]3,
points that have a small condition number with respect to the 1 A1

(because of (17)= = =

class7r. The detection rule can be formalized by defining the + L TN N

Kenney’s function: A A (for & — 0) — My
Mgk (q,01,0p,7) = 1 5 which proves the first part of the theorem, since the Nobel
H(ATWA)‘1 ATW function (13) can be rewritten as:
’ Ao

wherex indicates which matrix norm has been used. My = A+ Ao+ e



Now let's consider the equivalence between the Shi and VI. CONCLUSION
Tomasi function and Kenney’s one. Since the 2-norm of a|n this paper we reformulated the point detection rules
matrix coincides with the largest singular value, using t'}%oposed by Harris, Stephens and Nobel, by Shi and Tomasi
identity (17) we can write: and by Kenney using a common framework based on condition
M2 = [(ATA)| theory introduced iq [4] and symmarized in sgctiop . We
2 2 restricted our attention to rotation and translation since more
complex transformation would require an automatic procedure

Therefore the following equality holds: ! ' s
to detect neighborhoods that vary covariantly with the transfor-

M o = L L =\ =M 18) Mation [7]. The central result is stated in Theorem 3, where we

K2 = 5 = T a1 — M= Ms (18) . . - .
M]3 [(ATA)7H]2 showed that the point detectors previously listed are equivalent

which proves also the second equivalence. - modulo a suitable choice of a matrix norm, (as long as the

weighting function is constant over its support). This results
tells that the Harris, Stephens and Nobel corner detector and
} } ] the feature detector proposed by Shi and Tomasi both select
The nondecreasing constraint (11) introduced at the epdints that are suitable to estimate robustly the parameters
of Section IV says that the detection function should bgr 5 transiation between an image pair. We also introduced a
nondecreasing in; and . The following lemma shows that ¢onstraint that should be satisfied by all the functigrisused
M and M satisfy such constraint, whereas for the Harrisy detect tie points based on the auto-correlation matrix. We
Stephens function\ the constraint holds true only whenspowed that all the detectors studied in this paper satisfy the
a <  (this fact provides a justification of the common habigrevious constraint automatically, with the relevant exception
of settinga = 0.04). of the Harris Stephens corner detector, for which it is necessary

Lemma 1: The functions My, Ms (and consequently t0 forcea to be less thar. o .
M 1—senatten and My o) all satisfy the nondecreasing Future research directions aim at considering a more flexible

constraint (11). The functiod ; satisfies (11) provided that d&finition of condition numbers, in order to be able to cope

B. The Nondecreasing Constraint

a< 1 with a larger variety of transformations possibly without
- having to solve explicitly the problem of the detection of a
Proof: The constraint (11) is satisfied as long as thgoyariant neighborhood. We would also like to study in more
partial derivatives of the functiont are non negative: detail which is the role of the weighting functian,, in order
IM OM to present an extension of these results that holds also in the
TMZO 87)\220 case wheréV # I.
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My A+ e) ONR #N00014-02-1-0121 (Zuliani and Manjunath) and ONR

e = Out 1o #N00014-02-1-0318 (Kenney).
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For the Nobel function we have that the partial derivatives
given by:

APPENDIX|
which shows that they are always nonnegative. Now assume PROOF OF THEOREML.

that A, > A\; > 0. For the Shi-Tomasi function we have that: Proof: Our goal is to express the parameter vetothat

OM 1 for A = Ay minimizes the cost (6) in terms of the noigeSuppose; # 0:
an 0 for h =\ then the minimize®* will move to 6* + A@*. A necessary
' N condition for optimality is thateJz,. , ,,.(a') =0, i.e.

Therefore also in this case the partial derivatives are always /
R

L wold' =) | Z(To-+a0-(x)) — Z(x)

vxZ(Tg*_'_Ag* (X/))J9T9*+Ag* (X/)dX/ =0 (19)

non negative. From Theorem 3 it follows that Kenney’s point
detector satisfies the nondecreasing constraint wier= 1
and either the 2-norm or the Schatten 1-norm are used. Finally

let's consider the Harris-Stephens function for which: whereV,Z(Te«4ne~(x)) is the image gradient computed at
M the pointTg- 1 ag+(x') and Jo Ty~ (x') is the Jacobian of the
A _ A —2a(N + ) transformatioril'y-. The Taylor truncated expansion of the last
i three factors in (19) is given by:

The partial derivatives are non negative if and only if: -
P g y T(To- s no- (x')) — T(x') ~
heo M VxZ(Te- (x') JoTo- (x')AO* — 1(x)
- 2()\1 + )\2)
/ ~
Sincem > 1 for any A\, > \; > 0, we conclude that VxI(To-+a6-(x') ~

My will satisfy (11) if and only ifa < 1. n VxI(To- (X)) + A0 Jg To- (x') HyI(To- (X))



where H,Z(Tg+(x')) is the image Hessian. As far as the APPENDIXII
Jacobian is concerned we have that in the pure translation PROOF OF THEOREM2.
case. We first show the following lemmas.

Lemma 2: Let A be defined as in (3) and let ¢ RY.
whereas in the case of rotation and translation: Let's also define the matrixd def [ w A]. Then the

following inequality holds:

Jng*JrAg* (X/) = Jng* (X/) =1 (20)

JoTo«1 g+ (X/) ~ JgTe- (X/) + MAO* = ) )
[ R(o+35)Aa I ]+[ R(9)Aq 0]Ae" 1(A7AS) ~ Afll > [ (ATA) ~ AT (25)
The matrix R() is the matrix in SO( ) that produces a Proof:  As shown in the proof of Theorem 3, if (25)
rotation of an anglen and Aq = x' — q'. By dropping holds, then such inequality can be rewritten as:

the second order terms (i.e. the terms containing the products I (ATA ) ” > | (ATA) -1 I
AO*TAO* and AB*Tn(x’)), we obtain the new equation: JET 2= 2

or equivalently as:
/ wo(q' = X') [VxZ(Te- (x')) JoTo- (x') A" — n(x')]
R2

VXI(TQ* (X/))JGTQ* (X/) ~0 (21)

Therefore the lemma will be proved if we are able to prove
Let's now consider the discretized version of equation (21)(26). For our purposes it is more convenient to consider the
transpose of the matriced”’ A; and AT 4; in particular we
ng -x') have that:

[VxL(Te-(x"),0p,T)JeTe(x")AO* — n(x')] MAATY = XATA) U{0,---,0} = {\5, X, A}, 0,---,0}
VxL(To-(x'),0p,T)JoTe-(x') = 0 (22) N3 ~

I !/ / .
where the continuous derivatives are replaced by convolutioWQere)‘ 2 A3 2 A1 2 0 and analogously:

with the derivatives of a gaussian kernel with standard devia- ) AMAAT) = A(ATA) U{0, -+ ,0} = {2, A1,0,- -, 0}
tion op. By settingv? (x') = L(Te-(x'),0p,Z)JoTe-(x'),
(22) can be written as: N2 N=2

whereXs > A > 0. If we rewrite the matrimJAf asww’! +

e i . . )
Vg (q — W ()| AG* ~ AA we can exploit the interlacing property of the e|gen\(alues
;V(X Jwo (d =XV (x) (see in particular Theorem 8.1.8 p. 397 in [9]) according to
n o which ] € [0, A\1]. Therefore we can conclude that:
Z wa - X X )U(X ) (23)

Amin (A?;AJ) = )\/1 <A1 = Amin (ATA)

By defining " as in (3) and: which proves the lemma. [ ]
T

n=[nx) ... nx,) ] Lemma 3: For any matricesA and W with compatible

(23) can be written as: dimensions the following inequality holds true:

—1 —1
AL, ()W A, (4)A0" = AL, ()W (24) | (ATWA) AW > ) (A74) AT @7)
Proof: As showed in more detail in the proof of Theorem

The expression for the TCN is obtained by solving in a least the SVD decomposition of the matrik is:

square sense the normal equation (24). For a pure translation

A does not depend of* (becauseJyTy-(x’) = I) and Ao b T
therefore: =Ul o |V

Kzp.(d') = Kmo(d') = H (ATwA) ATWH and the SVD decomposition dff = (ATA) ™" AT is:
provides also an expression for the CCN for translation. The M=v[x? o]U"

matrix A is the same as in (3). For the rotation and translation

case the Jacobiafy T~ (x') unfortunately depends a# and Because the matrix 2-norm is invariant with respect to orthog-
therefore only an expression for the TCN can be provided:onal rotations we havetM |, = ||[[ =1 0 ||, = I=7}2.
Introducing the matrix:

mi1 Mi2 :UTWU
ma21  M22

Kry(d) = || (4%, (@)W Az, (@) AF,. (@)W |



compatibly dimensioned with U, it is possible to show that [11] W. Forstner and E. Gich, “A fast operator for detection and precise

(ATWA) " ATW =V [ 571 S imptmy, U7
and consequently:

1 (A"WA) T ATW ], = [|[ 71 S tmtmas ],

At this point the lemma is proved, since:

IEs S tmitmes 1,2 0= 0],

Using these results we can now prove Theorem 2.

Proof: In the proof of Theorem 1 we showed that for
rotation and translation the rows of the matrx,. (q') can
be written asv? (x') = L(Te-(x'),0p,Z)JeTe~(x'), where
the JacobiayTe- (x) has the form| u I |. Therefore we
can write:

ATe* (q/) =

If we renameAr,. (q') with A; then we can apply Lemma 2,
showing directly that the TCN for rotation and translation is
always greater or equal than the CCN for translation (provided
W = I). Since Lemma 2 holds for any vecter, then the

[w 4]

result can be extended to the CCN for rotation and translation,

yielding the desired inequality:

KTT (q/) < KTRT (q/)

The proof of the last part of the theorem is a straightforward
application of Lemma 3. [ ]
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