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A Unified Rate-Distortion Analysis Framework
for Transform Coding

Zhihai He, Member, IEEE,and Sanjit K. Mitra, Life Fellow, IEEE

Abstract—In our previous work, we have developed a rate-dis-
tortion (R-D) modeling framework H.263 video coding by
introducing the new concepts of characteristic rate curves and
rate curve decomposition. In this paper, we further show it is
a unified R-D analysis framework for all typical image/video
transform coding systems, such as EZW, SPIHT and JPEG image
coding; MPEG-2, H.263, and MPEG-4 video coding. Based on
this framework, a unified R-D estimation and control algorithm is
proposed for all typical transform coding systems. We have also
provided a theoretical justification for the unique properties of
the characteristic rate curves. A linear rate regulation scheme is
designed to further improve the estimation accuracy and robust-
ness, as well as to reduce the computational complexity of the R-D
estimation algorithm. Our extensive experimental results show
that with the proposed algorithm, we can accurately estimate the
R-D functions and robustly control the output bit rate or picture
quality of the image/video encoder.

Index Terms—Rate control, rate-distortion analysis, source
modeling, transform coding, video coding and transmission.

I. INTRODUCTION

RECENT advances in computing and communication
technology have stimulated the research interest in digital

techniques for recording and transmitting visual information.
The exponential growth in the amount of visual data to be
stored, transferred, and processed has created a huge need for
data compression. Compression of visual data, such as images
and videos, can significantly improve the utilization efficiency
of the limited communication channel bandwidth or storage
capacity.

A. Transform Coding

The demand for image and video compression has triggered
the development of several compression standards, such
as JPEG [2], JPEG-2000 [3], MPEG-2 [4], H.263 [5], and
MPEG-4 [6]. Besides the standard image/video compression
algorithm, many other algorithms have also been reported in
the literature, such as embedded zero-tree wavelet (EZW) [7]
image coding, set partitioning in hierarchical trees (SPIHT) [8]
and stack-run (SR) [9] image coding. In both the compression
standards and the algorithms reported in the literature, trans-
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Fig. 1. Generic transform coding system for images and videos.

form coding has become the dominant approach for image
and video compression. A generic transform coding system
is depicted in Fig. 1. The transform, either discrete wavelet
transform (DWT) or discrete cosine transform (DCT), is
applied to the input picture. Here, a picture can be either a still
image or motion-compensated video frame. After quantization,
the quantized coefficients are converted into symbols according
to some data representation scheme. For example, zig–zag
scan and run-level data representation are employed in JPEG
and MPEG coding [2], [4]. In embedded zero-tree wavelet
(EZW) coding [7], all insignificant coefficients in a spatial
orientation tree are represented by one zero-tree symbol. After
data representation, the output symbols are finally encoded by
a Huffman or arithmetic coder [13].

B. R-D Analysis

In transform coding of images and videos, the two most im-
portant factors are the coding bit rate and picture quality. The
coding bit rate determines the channel bandwidth required
to transfer the coded visual data. One direct and widely used
measure for the picture quality is the mean-square error (MSE)
between the coded image/video and the original one. The recon-
struction error introduced by compression, often referred to as
distortion, is denoted by . In typical transform coding, both

and are controlled by the quantization parameter of the
quantizer . The major issue here is how to determine the value
of to achieve the target coding bit rate , or target picture
quality . To this end, we need to analyze and estimate the
R-D behavior of the image/video encoder; this behavior is char-
acterized by its rate-quantization (R-Q) and distortion-quantiza-
tion (D-Q) functions, and , respectively [10], [11]. In
this work, they are collectively calledR-D functionsor curves.
Based on the R-D functions, the quantization parametercan
be readily determined to achieve the target bit rateor picture
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quality [12], [14]. Therefore, the major issue becomes this:
how to analyze, model and estimate the R-D functions for the
image/video encoder.

Analysis and estimation of the R-D functions have important
applications in visual coding and communication. First, with the
estimated R-D functions we can adjust the quantization setting
of the encoder and control the output bit rate or picture quality
according to the channel condition, the storage capacity, or the
user’s requirement [14]–[16]. Second, based on the estimated
R-D functions, optimum bit allocation as well as other R-D opti-
mization procedures can be performed to improve the efficiency
of the coding algorithm and, consequently, to improve the image
quality or video presentation quality [17], [18].

There are two basic approaches for R-D modeling. The first
is the analytic approach. Its objective is to derive a set of math-
ematical formulas for the R-D functions based on the statistical
properties of the source data. In this approach, both the coding
system and the image are first decomposed into components
whose statistical models are already known. These models are
then combined to form a complete analytic model for the whole
coding system. The R-D functions for a simple quantizer have
been developed for a long time [10], [11]. In the analytic source
model proposed by Hang and Chen [12], a theoretical entropy
formula for the quantized DCT coefficients is developed based
on the R-D theory of the Gaussian source and the uniform quan-
tizer. The mismatches between the theoretical entropy and the
actual coding bit rate of the entropy encoder is, however, com-
pensated by empirical estimation.

The second approach is the empirical approach. Here, the
R-D functions are constructed by mathematical processing of
the observed R-D data. In the R-D estimation algorithm pro-
posed by Lin and Ortega [23], eight control points on the R-D
curves are first computed by running the coding system eight
times. The whole R-D curves are then constructed by cubic in-
terpolation. In the MPEG rate control algorithm proposed by
Ding and Liu [15], the R-D curves are fitted by mathematical
functions with several control parameters which are estimated
from the observed R-D data of the coding system. In general,
this type of R-D estimation algorithms have very high compu-
tational complexity. In addition, such algorithms do not provide
us with insights into the R-D behaviors of the transform coding
systems

Within the context of video coding, the coding results of
the previous frames or macroblocks (MBs) can be utilized to
estimate the R-D functions of the current frame or MB. This
adaptive estimation scheme is employed in many rate control
algorithms proposed in the literature, such as the MPEG-2 Test
Model Version 5 (TM5) rate control algorithm [19], the H.263
Test Model Near-term Version 8 (TMN8) algorithm [20], and
the MPEG-4 Verification Model Version 8 (VM8) algorithm
[16], [21]. These rate control algorithms often suffer from
relative large control errors and perform degradation at scene
changes, especially at low bit rates for active videos.

C. Proposed R-D Analysis Framework

It is well known that the R-D behavior of an image/video
encoder is determined both by the characteristics of the input
source data and by the capability of the coding algorithm to

explore these characteristics. The R-D models reported in the
literature try to use some statistics of the input source data,
such as variance, to describe the input image or video data [10],
[12], [14]. They also try to analyze and model each step of the
coding algorithms and formulate an explicit expression of the
coding bit rate. To achieve high coding performance, an effi-
cient coding algorithm must employ a sophisticated data repre-
sentation scheme as well as an efficient entropy coding scheme.
To improve the rate estimation accuracy for these coding algo-
rithms, the rate models are becoming very complex [12], [14],
[24], [25]. However, with complex and highly nonlinear expres-
sions, the estimation and rate control process becomes increas-
ingly complicated and even unstable with the image-dependent
variations [23].

It should also be noted that, for different coding algorithms,
the R-D models and rate control algorithms reported in the lit-
erature are quite different from each other [12], [14]–[16], [24],
[25]. It would be ideal to develop a simple, accurate, and uni-
fied rate model for all typical transform coding systems. Based
on this simple model, we could then develop a unified rate and
picture quality control algorithm which could be applied to all
typical transform coding systems. To this end, we need to un-
cover the common rules that govern the R-D behaviors of all
transform coding systems. Obviously, this will provide us with
valuable insights into the mechanism of transform coding. From
a practical point of view, the simple and unified rate model and
control algorithm would enable us to control the image/video
encoder accurately and robustly with very low computational
complexity and implementation cost.

In this work, based on the so-called-domain analysis
method proposed in [1], [22], we develop a generic source
modeling framework for transform coding of images and
videos by the following two major steps. In the first step, we
introduce the concepts of characteristic rate curves and rate
curve decomposition to characterize the input source date and
to model the coding algorithm, respectively. In the second step,
we propose a linear regulation scheme to improve the accuracy
and robustness of the R-D estimation. Our extensive simulation
results show that the proposed framework is a unified R-D
analysis framework for all typical transform coding, such as
EZW, SPIHT, and JPEG image coding and MPEG-2, H.263,
and MPEG-4 video coding. With the estimated R-D functions,
the output bit rate and picture quality of the image/video
encoder can be controlled in flexible way according to the
requirements imposed by the specific applications.

D. Paper Organization

The remainder of this paper is organized as follows. In Sec-
tion II, we generalize the-domain R-D analysis methodology
for all typical transform coding system. Section III outlines the
proposed source modeling framework. In Section IV, we define
the characteristic rate curves and show their unique properties.
Based on these properties, we then propose a fast algorithm to
estimate them with very low computational complexity. The rate
curve decomposition scheme is explained in Section V. A rate
regulation scheme is proposed in Section VI to improve the R-D
estimation accuracy and robustness. The R-D estimation algo-
rithm is summarized in Section VII. In Section VIII, we present
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the R-D estimation and control results for still image and video
coding. Concluding remarks are provided in Section IX.

II. -DOMAIN R-D ANALYSIS

It has been observed that zeros play a key role in transform
coding, especially at low bit rates. All typical coding algorithms
treat zeros in a special way and address most of the effort to effi-
cient coding of them. For example, in JPEG and MPEG coding,
run-length representation and a special symbol of end-of-block
(EOB) are employed to code the zeros [2], [4]. In H.263 video
coding, a special binary flag named “LAST” is introduced to
signal that all the remaining coefficients in a zig–zag order in the
current block are zeros [5]. After the DCT coefficients are quan-
tized with a quantization parameter, let be the percentage
of zeros among the quantized coefficients. Note that in typical
transform coding systems, monotonically increases with.
(Here, we have made a trivial assumption that the distribution
of the transform coefficients is continuous and positive.) Hence,
there is a one-to-one mapping between them. This implies that,
mathematically, and are also functions of , denoted by

and . A study of the rate and distortion as functions
of is called -domain analysis.

A. Typical Quantization Schemes

To map the R-D functions between the- and -domains, we
first need to obtain the one-to-one mapping betweenand .
Note that this mapping depends on the quantization scheme.
In the following, we briefly review the quantization schemes
employed by the typical transform coding systems before dis-
cussing the computation of the mapping betweenand .

1) Quantization in Wavelet Image Coding:In the typical
wavelet-based image coding systems, uniform threshold quan-
tization (UTQ) is often used, either explicitly or implicitly.
In this case, the quantization parameterrefers to the UTQ
stepsize. Let be the UTQ dead zone threshold. In general,
is proportional to . For any transform coefficient, its UTQ
output index is given by

if
if

if
(1)

2) H.263 Quantization Scheme:The quantization scheme
employed by H.263 video coding is similar to UTQ. To be more
specific, the quantization index of in the H.263 style quanti-
zation scheme is given by (2), shown at the bottom of the page.
Note that the range of the unquantized DC coefficient is 0–2048,
which implies the range of its differential value is2048 to
2048. In H.263 coding, it is quantized by a uniform quantizer
with fixed step size 8, as shown in (2).

3) JPEG Quantization Scheme:In JPEG still image coding,
a perceptual quantization scheme is employed. Each of the 64
DCT coefficients in an 8 8 block is quantized by a different
uniform quantizer (UQ). The actual step sizes for the coeffi-
cients in the luminance component are associated with a quan-
tization matrix, denoted by , where

(3)
Let be the DCT coefficient located at inside a lu-
minance block. Its quantization output is given by

Round (4)

where the quantization parameterfunctions as a scaling factor
which controls the coding bit-rate and the picture quality. If

is from a chrominance block, in (4) is then
replaced by the chrominance quantization matrix ,
where

(5)

4) MPEG Quantization Scheme:In MPEG-2 coding, the
JPEG-style perceptual quantization scheme is employed. The
quantization matrices for intracoded and intercoded MBs,
denoted by and , respectively, are given as
follows:

(6)

Round if is a DC coefficient in an intra-MB
if is an AC coefficient in an intra-MB
if is a coefficient in an inter-MB.

(2)
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(7)

Unlike the JPEG quantization, in the same MB, both the lu-
minance and chrominance component use the same quantiza-
tion matrix. In MPEG-2 coding, the quantization index of the
DCT coefficient is given by (8), shown at the bottom
of the page. In MPEG-4 standard, both the H.263 style and the
MPEG-2 style quantization are adopted. The user needs to con-
figure the encoder to choose the quantization scheme. It can be
seen that all the quantization schemes listed in the above are
very close to the uniform threshold quantization.

B. The Mapping Betweenand

The one-to-one mapping betweenand can be directly
computed from the distribution information of the transform co-
efficients. This is because in all typical transform coding sys-
tems each transform coefficient is quantized separately. In the
following, we describe in detail how to compute the one-to-one
mapping between and for different coding systems.

1) Wavelet Image Coding:The wavelet-based image coding
schemes such as EZW and SR employ the uniform threshold
quantization scheme given by (1), either explicitly or implicitly.
Let the distribution of the wavelet coefficients be . After
quantization, the percentage of zeros among the quantized trans-
form coefficients is given by

(9)

where is the image size.
2) H.263 Coding: The H.263 quantization scheme is given

by (2). Let and be the distributions of the DCT
coefficients in the intracoded and intercoded MBs, respectively.
Note that, in general, the DC coefficients from the intracoded
MBs will not be quantized to zeros because of their relatively
large values. Therefore, for any quantization parameter, the
corresponding percentage of zeroscan be obtained as follows:

(10)

where is the number of coefficients in the current video
frame. Note that in the H.263 codec, the DCT coefficients are

rounded to integers [27]. Therefore, and are actu-
ally histograms of the DCT coefficients, and (10) actually be-
comes

(11)

3) JPEG and MPEG Coding:Perceptual quantization is
employed in the JPEG image coding, and in MPEG-2 and
MPEG-4 video coding. Detailed descriptions are given in (4)
and (8). After DCT, we first divide each DCT coefficient by
its associated perceptual weight, then generate the distribution
of these scaled DCT coefficients. After scaling, the perceptual
quantization becomes uniform, as we can see from (4) and (8).
Therefore, (9) and (11) can be also used to compute the value of

from for JPEG and MPEG coding algorithms, respectively.

C. Implementation

From the distribution of the transform coefficients, for
any given quantization parameter we can compute the
corresponding . In software implementation, we can store
the one-to-one mapping betweenand in a look-up table.
For example, in H.263 and MPEG video coding, the possible
values of are . So, the look-up table has at most
31 entries. Using this look-up table, we can easily map the R-D
functions between the-domain and the-domain.

III. PROPOSEDR-D MODELING FRAMEWORK

In Fourier analysis, which is a powerful tool for digital signal
processing, to study the behavior of a function , we first
represent by a linear combination of the basis functions

which have well-known properties as fol-
lows:

(12)

where are called Fourier coefficients. By studying
these Fourier coefficients, we can then analyze the behavior
of . This method is referred to assignal decomposition
and spectrum analysis. In this chapter, we apply this decompo-
sition scheme to analyze and estimate the rate function of an
image/video encoder.

To estimate using the decomposition scheme, we first
define two basis functions and , called charac-
teristic rate curves, to characterize the input source data. Here,
the source data can be a still image or a video frame. We then
show that, in the -domain, and have unique be-
haviors that enable us to estimate them with very low computa-
tional complexity. In our decomposition scheme, the actual rate

Round if is a DC coefficient in an intra-MB

Round if is an AC coefficient in an intra-MB

Round if is a coefficient in a nonintra MB.

(8)
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function is represented by a linear combination of and

(13)

where , , and are the rate decomposition coef-
ficients. For a given input image, and are de-
termined by their definitions. If we use different coding algo-
rithms to encode this image, we should obtain different .
According to (13), we know the corresponding decomposition
coefficients should also be different. In other words, different
coding algorithms correspond to different decomposition coef-
ficients. Therefore, we can say that model
the coding algorithm, while characterize the
input source data. As mentioned above, the R-D performance
of a coding system is determined by these two components. We
see that both of these components have been integrated by linear
combination into (13), which serves as the framework for our
-domain source modeling. In Section IV, we define and

, analyze their properties, and discuss the rate decompo-
sition scheme in detail.

IV. CHARACTERISTIC RATE CURVES

In [1], we have defined two characteristic rate curves,
and , to describe the input source data for H.263 video
coding. In this work, we generalize their definitions for all typ-
ical image/video transform coding systems. Based on our exten-
sive simulations, we then show that they have unique statistical
properties, which hold for any of these coding systems. We also
provide a theoretical justification for the unique properties. With
these properties, a fast algorithm is proposed to estimate these
two rate curves.

A. Definition

The characteristic rate curves and are em-
ployed to characterize the transform coefficients to be quan-
tized and coded by the image/video encoder. Their definitions
are based on the binary representation of the nonzero coeffi-
cients and the run length numbers of zeros. This is because, as
explained in [1], we believe that the binary representation col-
lects the most valuable information about the R-D behavior of
the transform coefficients. Based on the binary representation,
we define and as follows.

Step 1) Conversion to 1-D array: After transform and quan-
tization with a quantization parameter, the trans-
form coefficients are rearranged into a 1-D array.
If DWT is used, the subband coefficients are rear-
ranged into in a raster scan order. If DCT is used,
all the DCT coefficients are rearranged intoin a
zig–zag scan order inside each block and a block-
wise raster scan order at the block level.

Step 2) Binary Representation: For any nonzero number,
its size is defined as

(14)

which is exactly the number of bits for its sign-mag-
nitude representation. Note that, according to the
above definition, is 2 instead of 1. For each
continuous string of zeros in, we count their run
length. Let be the sum of the sizes of all the run
length numbers. For all the nonzero transform coef-
ficients in , we define

(15)

which is the sum of their sizes. Let

(16)

where is the number of coefficients inside the pic-
ture. and can be respectively regarded as
the pseudo-coding bit rates for the nonzeros and zero
coefficients. Obviously, they are functions of. Let

be the percentage of zeros among the quantized
transform coefficients. From Section II, we know
that there is a one-to-one mapping betweenand
. Therefore, mathematically, and are also

functions of , denoted by and , re-
spectively. These two functions are called the char-
acteristic rate curves.

We would like to point out one implementation detail about
this definition. In H.263 video coding, the DC coefficients from
the intracoded MBs are quantized with a fixed quantization pa-
rameter 8 and encoded with a fixed number of bits which is also
8. This implies that the coding bit rate of these DC coefficients is
fixed and does not depend on the quantization parameter. There-
fore, when we scan the picture to form the 1-D array, the DC
coefficients from the intracoded MBs are all skipped. However,
their coding bit rate will be compensated by our rate decompo-
sition scheme presented in Section V.

B. Statistical Properties

In [1], we observed that the two characteristic rate curves
and have unique properties for H.263 video

coding. In this section, we show that these properties hold for
all typical image/video transform coding systems.

1) Still Image Coding:For each sample image in Fig. 2, we
first decompose it with a 9–7 Debauchies wavelet [26]. Ac-
cording to their definitions, we generate the rate curves
and and plot them in Fig. 3. Two observations can be
made from these plots. First, although the sample images are
quite different from each other, their characteristic rate curves
share the same pattern. The second observation is thatis
approximately a straight line. Note that whenis 1.0, which
means all the coefficients are quantized to zeros, by definition

is 0, i.e., must pass through the point .
Hence, it has the following expression:

(17)



1226 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 12, DECEMBER 2001

Fig. 2. Sample images selected for our simulations.

Fig. 3. Plots ofQ (�) (solid) andQ (�) (dotted) for the 24 sample images with wavelet transform and uniform threshold quantization. Thex axis represents
the percentage of zeros� while they-axis represents the pseudo coding bit rate. All the plots have the same coordinate system.

where is a constant. Besides this, for each sample image,
also has a rather simple behavior. In Fig. 4, we plot these

two characteristic rate curves in the-domain. It can be seen
that in the -domain, they have large image-dependent varia-
tions and highly nonlinear behaviors. The unique behaviors of

and exist not only for wavelet coding, but also for
the DCT-based image coding. For each sample image in Fig. 2,
according to their definitions, we generate and
with DCT and JPEG-style quantization, and plot them in Fig. 5.
The above observations also hold.

2) DCT Video Coding:Next, we show that unique proper-
ties of and exist not only for still images, but
also for motion-compensated pictures which are the major type
of source data in video coding. Let us take two QCIF video
sequences “Carphone” and “News” as examples. First, we run
the MPEG-2 and MPEG-4 coders on these two videos at a
fixed quantization parameter 8, respectively. For each video,
we output 30 sample motion-compensated difference pictures.
Each sample picture is taken at every ninth frame. (The first is
an I frame without motion compensation; all of the others are
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Fig. 4. Plots ofQ (q) (solid) andQ (q) (dotted) for the 24 sample images with wavelet transform and uniform threshold quantization. Thex-axis represents
the quantization parameterq while they-axis represents the pseudo coding bit rate. All the plots have the same coordinate system.

Fig. 5. Plots ofQ (�) (solid) andQ (�) (dotted) for the 24 sample images with DCT and JPEG quantization. Thex axis represents the quantization parameter
q, while they axis represents the pseudo coding bit rate. All the plots have the same coordinate system.

P frames.) We plot and for each sample picture
from “Carphone” and “News” in Figs. 6 and 7, respectively. It
can be seen that the unique properties of and
also exist in MPEG-2 and MPEG-4 video coding.

C. Justification of the Linearity of

The definition of is based on the pseudo coding of the
nonzero transform coefficients, which is actually the sign-mag-
nitude representation given by (14). From the simulation results
presented in the above, we observe that it has a very interesting
linear behavior. In the following, we provide a theoretical justi-

fication for the linearity of . Note that the quantization
schemes employed in the typical transform coding systems are
all essentially uniform threshold quantizers. Therefore, in the
following, we take the uniform threshold quantizer as an ex-
ample to show the linearity of . It is well known that the
transform coefficients have a generalized Gaussian distribution
given by

(18)
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Fig. 6. Plots ofQ (�) (solid line) andQ (�) (dash–dot line) for the 30 sample difference pictures from “Carphone” coded by MPEG-2. Thex axis represents
the percentage of zeros�. All the subplots have the same coordinate system as the one at the bottom-left corner.

Fig. 7. Plots ofQ (�) (solid line) andQ (�) (dash–dot line) for the 30 sample difference pictures from “News” coded by MPEG-4. Thex axis represents the
percentage of zeros�. All the subplots have the same coordinate system as the one at the bottom-left corner.

where

(19)

Here, is the standard deviation of the transform coefficients,
and is a model parameter which controls the shape of the dis-
tribution. For example, when and 1.0, becomes

Gaussian and Laplacian distributions, respectively. According
to (15), for any given quantization step size, we have

(20)

where

(21)
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Fig. 8. Plots of the theoretically computedQ (�) for the generalized Gaussian distribution with different shape control parameters�. Here, we set� = q.

is the quantization index of. The corresponding percentage of
zeros is given by

(22)

It is very difficult to derive a closed-form expression for
directly from (20) and (22). However, we can evaluate them nu-
merically and compute a few points on . In Fig. 8, we
plot them for different values of which is the shape control pa-
rameter of . It can be seen that these points almost lie on a
straight line. This implies that, if we assume that the transform
coefficients have a generalized Gaussian distribution,
must be an approximately linear function.

D. Fast Estimation of

Since is modeled as a straight line passing through
the point , we need to compute only one point on it in
order to estimate the whole rate function. In the following, we
discuss the estimation procedure in detail for different transform
coding systems.

Typical wavelet-based image coding, such SPIHT, EZW, and
SR, employ the uniform threshold quantizer. After transform,
we scan the subband image and generate the distribution of
the transform coefficients, denoted by . We then choose
one quantization parameter, and compute the corresponding
value of and using (20) and (22) with re-
placed by the actual distribution . With the two points of

and , we can construct the whole rate
curve with (17) where

(23)

For H.263 video coding, the computation of the slopeis
outlined in [1]. In MPEG-2 coding, a perceptual quantization
scheme is employed. Its quantization scheme is given by (8).
As mentioned before, the perceptual quantizer is equivalent
to a uniform quantizer applied to the DCT coefficients which
are pre-scaled by their corresponding perceptual weights.
Therefore, to compute the slope for the MPEG-2 video
coding, we just generate the distribution information of the
DCT coefficients after pre-scaling, and then apply the formula
for the H.263 video coding. In MPEG-4 coding, both the
H.263 style and the MPEG-2 style quantization schemes are
adopted. Therefore, according to the user’s configuration of the
quantizer, the corresponding formula can be used to compute
the value of .

E. Fast Estimation of

In the following, by exploring the correlation between
and , we develop a fast estimation scheme for .
To study the correlation between two curves, we first define
feature variables for each curve, then study the correlation be-
tween these feature variables. The feature variable for
is its slope . The feature variables for are its function
values at . Considering the characteristic rate curves plotted
in Fig. 3, we choose 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95.
Consider the characteristic rate curves plotted in Fig. 3. For each

, and for each of the 24 sample images, we know,
which is the slope of , and , which is the value of

at . Therefore, for each , we have a total of 24 points
of which are depicted in Fig. 9. It can be seen that
there is very strong correlation betweenand

Fig. 10 illustrates the correlation betweenand for
the characteristic rate curves in Fig. 5. We can see that the strong
correlation also holds for JPEG coding. In our extensive simu-
lations with a wide range of images, this strong correlation has



1230 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 12, DECEMBER 2001

Fig. 9. Linear correlation between� and the valuesQ (� ) at 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95 with wavelet transform.

Fig. 10. Linear correlation between� and the valuesQ (� ) at 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95 with DCT.

been found to exist in all cases. Therefore, we have the following
linear correlation model:

(24)

which can be employed to estimate . The coefficients
and are obtained by statistical regression and the corre-

sponding linear model is also plotted in Figs. 9 and 10. Based
on (24), we can estimate six points on . If necessary,
the whole rate curve can be constructed by linear interpolation.
In [1], a cubic correlation model is employed for H.263 video
coding. The correlation models for MPEG-2 and MPEG-4 video
coding can also be obtained in the same way.

V. RATE CURVE DECOMPOSITION

In Section IV, we have defined two rate curves and
to characterize the input source data, and proposed a

fast algorithm to estimate them. According to our decompo-
sition and analysis scheme, the actual rate curve in the-do-
main is represented by a linear combination of and

, as shown in (13), where the coding algorithm is mod-
eled by the decomposition coefficients . In
the following, we take the JPEG coding algorithm as an ex-
ample to explain how to determine the decomposition coeffi-
cients for a specific coding algorithm.
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A. Decomposition Coefficients

For the 24 sample images shown in Fig. 2, with the fast algo-
rithms developed in Section IV, we can estimate the values of

and where , . By
running the JPEG coding algorithm at different quantization pa-
rameters, we can generate some points on its actual rate curve

. With interpolation, we can obtain .
According to (13), we should have

(25)

The values of are obtained by linear re-
gression over the sample data for the
24 sample images. The decomposition coefficients for the JPEG
coding algorithm are listed in Table I. Following the same pro-
cedure, we can also obtain the decomposition coefficients for
other coding algorithms, such as EZW, SPIHT, SR, MPEG-2,
and MPEG-4. Once they are obtained, they are fixed during the
actual rate curve estimation process. In practice, to improve the
modeling accuracy, we can also update the decomposition coef-
ficients after a certain number of frames are coded.

VI. L INEAR RATE REGULATION

Using the characteristic rate curves and the rate curve decom-
position scheme introduced in Sections IV and V, we can esti-
mate six points on the rate curve . The whole rate curve can
be then obtained by linear interpolation. To further improve the
estimation accuracy and robustness, we propose the following
linear rate regulation scheme.

In our previous work [22], based on extensive experimental
results, we have shown that in any typical image/video trans-
form coding system, the actual coding rate function in the-do-
main is approximately a linear function. In other words,
we have the following linear rate model

(26)

This rate model is very accurate because it is derived from the
actual coding results. The only parameter of the rate model is the
slope . Within the context of video coding, we can estimate the
value of from the coding statistics of previous video frame or
MBs. However, in still image coding, we only have one image.
In other words, there is no previous image with similar statistics
available. Furthermore, typical still image coding algorithms,
such as EZW, SPIHT, SR, and JPEG image coding, do not use
adaptive quantization. In other words, the quantization of each
transform coefficient is nonadaptive and does not depend on the
quantization of its preceding coefficients. The quantization of
all transform coefficients is controlled only by the picture quan-
tization step size. The lack of the coding statistics of previous
data and the nonadaptive quantization scheme make it very diffi-
cult to estimate the value of. Therefore, the linear rate model in
(26) can not be directly used to estimate the rate function before
quantization and coding. However, (26) indicates that the rate
curve estimated by Sections IV and V should be a linear func-
tion. In other words, the estimated six points
should lie on a straight line. (Because of the source modeling

TABLE I
DECOMPOSITIONCOEFFICIENTSA(�), B(�), AND C(�) AT � FOR THE

JPEG CODING ALGORITHM

error, this is often not the case.) Therefore, We can utilize this
linear constraint to remove the source modeling error signifi-
cantly. This procedure is calledlinear rate regulation.

The linear rate regulation operates as follows. From
, we first estimate the slope and then

construct using the linear rate model in (26). According
to the linear regression theorem, the optimum estimation of
is given by

(27)

According to the linear rate model, the estimated rate curve
after linear regulation is then given by

(28)

VII. U NIFIED R-D CURVE ESTIMATION ALGORITHM

Based on the fast estimation of and , the rate
curve decomposition, and the linear rate regulation, a unified
R-D curve estimation algorithm for all typical transform-coding
systems is proposed as follows.

Step 1) Generation of the Distribution: After applying ei-
ther the DWT or the DCT transform, generate the
distribution of the transform coefficients. Note that
the transform coefficients are real numbers. We can
approximate their distribution by the histogram of
their integer parts. In the implementation of standard
video coding such as MPEG and H.263, the DCT co-
efficients automatically have integer values. In this
case, no approximation is needed. Depending on the
specific quantization scheme, the distribution gen-
eration process varies. For example, in H.263, the
distributions of the intracoded and intercoded MBs
need to be stored separately. In JPEG and MPEG
coding, we need to generate the distribution after
pre-scaling of the DCT coefficients, as described in
Section IV. Based on the distributions of the trans-
form coefficients, the one-to-one mapping lookup
table between and is obtained as discussed in
Section II.
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Fig. 11. Six test images for the evaluation of the proposed R-D estimation algorithm when applied to the SPIHT and SR encoders.

Step 2) Estimate and : Choose one quantiza-
tion parameter and compute the corresponding

and as discussed in Section IV-D.
The slope of is obtained by (23). The value
of at is given by

(29)

With the linear correlation model in (24), the value
of is determined.

Step 3) Rate Curve Estimation: With (25), compute .
After linear regulation, the estimated rate curve
is given by (28). With the- mapping lookup table,

is mapped into the-domain to obtain .

Step 4) Compute Distortion Curve: In typical image/video
transform coding, each coefficient is quantized inde-
pendently, the overall distortion is exactly the sum-
mation of the distortion at each coefficient. There-
fore, the D-Q curve can be directly computed
from the distribution information.

We can see that, in the proposed algorithm, the major com-
putation is to generate the distribution of the transform coeffi-
cients. The remaining computation involves only a few addition
and multiplication operations that are carried out on the distribu-
tion. Compared to the complexity of the whole coding process,
the overall complexity of the proposed estimation algorithm is
very low. We can see that the R-D curves are estimated before
quantization and coding.

VIII. E XPERIMENTAL RESULTS

In this section, we apply the algorithm presented in Sec-
tion VII to estimate the R-D curves for transform coding of
still images and videos. Based on the estimated R-D functions,

we can then control the output bit rate or picture quality of the
encoder.

A. Application in Still Image Coding

The proposed estimation algorithm has been applied to the
SPIHT and the SR encoders. We arbitrarily choose six test im-
ages as shown in Fig. 11. The estimated R-D curves and the ac-
tual ones for SR and SPIHT coding are shown in Figs. 12 and 13,
respectively. It can be seen that the estimated R-D curves are
very close to the actual ones curves.

The R-D estimation algorithm is also applied to JPEG coding
of still images. The six test images with a wide range of R-D
characteristics are shown in Fig. 14. We apply the proposed es-
timation algorithm to estimate their rate curves. The estimated
rate curves and the actual curves are plotted in Fig. 15. The rel-
ative estimation errors of the rate curve at , 0.8,
1.2, 2.0, 2.8, 3.2, 4.5, and 5.5 for each test image are listed in
Table II. The estimation errors are very small, mostly less than
2% in their absolute values. Table III shows the relative esti-
mation errors without linear rate regulation. Clearly, we can see
that linear rate regulation significantly improves the estimation
accuracy and robustness.

B. Application in DCT Video Coding

We next show that the proposed R-D estimation algorithm
also works very well for DCT-based video coding. Based on the
estimated R-D functions of each video frame, we can then con-
trol the output bit rate of the video encoder. We first show that,
for a given MC difference video frame, the proposed algorithm
can accurately estimate its R-D function. To this end, we run
the MPEG-4 codec on the “Carphone” QCIF video sequence at

and output the 10-th and 70-th MC difference frames.
Using the algorithm presented in Section VII, we estimate their
R-D curves and compare them with the actual ones generated
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Fig. 12. R-D curve-estimation results for the SR coding system.

Fig. 13. R-D curve-estimation results for the SPIHT coding system.

by the MPEG-4 codec in Fig. 16. It can be seen that the R-D
estimation is very accurate.

C. Frame-Level Rate Control Algorithm

WiththeestimatedR-Dfunctions,wecanthendevelopaframe-
level rate control algorithm for DCT video coding. The rate con-
trol process consists of the following major steps. In the first step,
the target bit rate of the current video frame is determined ac-
cording to the channel bandwidth and buffer status, as explained
in [1], [14]. In the second step, based on estimated the rate curve

, the frame quantization parameter can be determined

to achieve the target bit rate . Obviously, satisfies
, where is the estimated R-Q function. We see that

this rate control algorithm operates at the frame level.
It should be noted that, in standard video encoders, the quan-

tization parameter should have an integer value between 1 and
31 [4]–[6]. However, the frame quantization parameter ob-
tained in the frame-level rate control algorithm is a real number.
For example, could be 5.30. If we round to its nearest
integer 5 and use it for the quantization parameter for each MB
in the current frame, the actual coding bitwill be quite dif-
ferent from the target bit rate , which is actually achieved by
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Fig. 14. The six images for testing the performance of the proposed algorithm.

Fig. 15. The estimated rate curves and the real JPEG rate curves of the six test images. Thex-axis represents the quantization parameterq.

. In the following, we propose a very simple ap-
proach to solve this problem. Let

(30)

which are the two closest integers to . Let .
Let be a random variable with a uniform distribution on .
Each time when we determine the quantization parameter
for a MB, we produce a sample value for. If its sample value is
less than , we set . Otherwise, we set .
Thus, approximately percent of MBs in the current video
frame use the quantization parameter while all the rest use

. Consequently, the average frame quantization parameter

is very close to . As a result, the actual coding bit rate will
be very close to the target bit rate . Let and be the
groups of MBs which use and , respectively. The
overall activity of is almost the same as that of because
the MBs from each set are chosen by a uniform random variable.
This is another advantage of this approach.

We implement the above rate control algorithm in MPEG-2
and MPEG-4 video coding. (The rate control algorithm for
H.263 and the corresponding simulation results have been
presented in [1].) Fig. 17 depicts the relative rate control errors
for “Foreman” and “Coastguard” coded with MPEG-2 when
the proposed algorithm and the TM5 rate control algorithm are
applied. Fig. 18 shows the output coding bits of each frame in
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TABLE II
RELATIVE ESTIMATION ERROR FORJPEG CODING OF THETEST IMAGES

FIG. 14—WITH LINEAR RATE REGULATION

TABLE III
RELATIVE ESTIMATION ERROR FORJPEG CODING OF THETEST IMAGES

FIG. 14—WITHOUT LINEAR RATE REGULATION

Fig. 16. R-D estimation results for Frames 10 and 70 in “Carphone” QCIF
video coded by MPEG-4.

“News” QCIF video sequence coded by MPEG-4. (It should
be noted that in this experiment, the whole scene is coded as
one object.) It can be seen that with the proposed rate control
algorithm, the actual output bit rate is more accurately matched
to the bit’s target.

Compared to other rate control algorithms, such as the TM5,
TMN8, and VM8 algorithms, the proposed algorithm has the

Fig. 17. The relative rate control error (in percentage) of each frame of
“Foreman” and “Coastguard” coded with MPEG-2 when the proposed rate
control algorithm and the TM5 algorithm are applied.

Fig. 18. The output coding bits of each frame in “News” coded with MPEG-4
when the proposed rate control algorithm and the VM8 algorithm are applied.

following advantages. First, our algorithm operates at the frame
level, which implies the rate control procedure only needs to
perform once per frame. However, in the MB-level TM5 and
TMN8 rate control algorithms, after each MB is coded, the al-
gorithm has to update its model parameters, which inherently in-
creases the computational complexity. Second, based on the es-
timated R-D functions, the proposed algorithm select the mean
quantization parameter for the current frame. In this way, the
whole frame is almost uniformly quantized. However, in the
TM5 and TMN8 rate control algorithms, the quantization pa-
rameter for each MB is adaptively selected based on the current
coding statistics. In this way, inside one frame, the quantiza-
tion settings of each MB is different (sometimes, quite different)
from others. As a result, this often degrades the overall visual
quality, as explained in [1]. Finally, unlike other rate control al-
gorithms, the proposed algorithm performs the rate estimation
and control for each frame independently. Therefore, it does not
suffer from performance degradation at scene changes at all.
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IX. CONCLUDING REMARKS

By introducing the concepts of characteristic rate curve and
rate curve decomposition, a generic framework for source mod-
eling has been developed for all typical transform coding sys-
tems. We have provided a theoretical justification for the unique
property of the characteristic rate curves. A linear rate regulation
scheme has also been proposed to improve the modeling accu-
racy and robustness. Based on this source modeling framework,
a unified R-D estimation and control algorithm is proposed for
image and video coding. There are two major contributions of
this work. First, we present a novel methodology for R-D anal-
ysis. Compared to the conventional analytic R-D formulation, it
is much more accurate. Compared to the operational R-D com-
putation method, it has much lower complexity. The second con-
tribution of this work is the unified R-D estimation and control
algorithm, which outperforms other rate control algorithms in
terms of control accuracy and robustness.
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