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A Unified Rate-Distortion Analysis Framework
for Transform Coding
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Abstract—in our previous work, we have developed a rate-dis- P4t

tortion (R-D) modeling framework H.263 video coding by w, DCT/ |y} quantization |—> Data | Coding
introducing the new concepts of characteristic rate curves and wavelet Representation

rate curve decomposition. In this paper, we further show it is T

a unified R-D analysis framework for all typical image/video Quantization Bandwidth
transform coding systems, such as EZW, SPIHT and JPEG image parameter Picture quality

coding; MPEG-2, H.263, and MPEG-4 video coding. Based on
this framework, a unified R-D estimation and control algorithm is R D4 D(a)
proposed for all typical transform coding systems. We have also
provided a theoretical justification for the unique properties of
the characteristic rate curves. A linear rate regulation scheme is R(

. - o qa)
designed to further improve the estimation accuracy and robust-
ness, as well as to reduce the computational complexity of the R-D q
estimation algorithm. Our extensive experimental results show
that with the proposed algorithm, we can accurately estimate the
R-D functions and robustly control the output bit rate or picture
quality of the image/video encoder.
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Fig. 1. Generic transform coding system for images and videos.

Index Terms—Rate control, rate-distortion analysis, source [OfM coding has become the dominant approach for image
modeling, transform coding, video coding and transmission. and video compression. A generic transform coding system
is depicted in Fig. 1. The transform, either discrete wavelet
transform (DWT) or discrete cosine transform (DCT), is
applied to the input picture. Here, a picture can be either a still

ECENT advances in computing and communicatioimage or motion-compensated video frame. After quantization,

technology have stimulated the research interest in digithle quantized coefficients are converted into symbols according
techniques for recording and transmitting visual informatioto some data representation scheme. For example, zig-zag
The exponential growth in the amount of visual data to k&an and run-level data representation are employed in JPEG
stored, transferred, and processed has created a huge needrfdr MPEG coding [2], [4]. In embedded zero-tree wavelet
data compression. Compression of visual data, such as ima@edW) coding [7], all insignificant coefficients in a spatial
and videos, can significantly improve the utilization efficiencgrientation tree are represented by one zero-tree symbol. After
of the limited communication channel bandwidth or storagéata representation, the output symbols are finally encoded by
capacity. a Huffman or arithmetic coder [13].

I. INTRODUCTION

A. Transform Coding B. R-D Analysis

The demand for image and video compression has triggeredn transform coding of images and videos, the two most im-
the development of several compression standards, sytant factors are the coding bit rate and picture quality. The
as JPEG [2], JPEG-2000 [3], MPEG-2 [4], H.263 [5], andoding bit rateR determines the channel bandwidth required
MPEG-4 [6]. Besides the standard image/video compressitintransfer the coded visual data. One direct and widely used
algorithm, many other algorithms have also been reportedrireasure for the picture quality is the mean-square error (MSE)
the literature, such as embedded zero-tree wavelet (EZW) pgtween the coded image/video and the original one. The recon-
image coding, set partitioning in hierarchical trees (SPIHT) [&fruction error introduced by compression, often referred to as
and stack-run (SR) [9] image coding. In both the compressidistortion, is denoted by. In typical transform coding, both
standards and the algorithms reported in the literature, trads-and ) are controlled by the quantization parameter of the

quantizerg. The major issue here is how to determine the value

Manuscript received May 8, 2000; revised September 28, 2001. This pafdr¢ {0 achieve the target coding bit ratgy, or target picture
was recommended by Associate Editor S. U. Lee. quality D+. To this end, we need to analyze and estimate the

Z._He was vyith t_he Department of Electrical and Computgr Engine_ering, UR-D behavior of the image/video encoder; this behavior is char-
versity of California, Santa Barbara, CA 93106 USA. He is now with the In- ized by i . R d di . .
teractive Media Group, Sarnoff Corporation, Princeton, NJ 08543-5300 USFCLErized by its rate-quantization (R-Q) and distortion-quantiza-

(e-mail: zhe@sarnoff.com). tion (D-Q) functions,R(¢) andD(q), respectively [10], [11]. In
S. K. Mitra is with the Department of Electrical and Computer Engithis work, they are coIIectiver called-D functionsor curves

neering, University of California, Santa Barbara, CA 93106 USA (e—maié d he R-D f . h L

mitra@ece.ucsb.edu). ased on the R-D functions, the quantization paramgtan
Publisher Item Identifier S 1051-8215(01)11031-1. be readily determined to achieve the target bit ¥&teor picture

1051-8215/01$10.00 © 2001 IEEE



1222 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 12, DECEMBER 2001

quality D [12], [14]. Therefore, the major issue becomes thigxplore these characteristics. The R-D models reported in the
how to analyze, model and estimate the R-D functions for thieerature try to use some statistics of the input source data,
image/video encoder. such as variance, to describe the input image or video data [10],
Analysis and estimation of the R-D functions have importafit2], [14]. They also try to analyze and model each step of the
applications in visual coding and communication. First, with theoding algorithms and formulate an explicit expression of the
estimated R-D functions we can adjust the quantization settiogding bit rate. To achieve high coding performance, an effi-
of the encoder and control the output bit rate or picture qualityent coding algorithm must employ a sophisticated data repre-
according to the channel condition, the storage capacity, or tentation scheme as well as an efficient entropy coding scheme.
user’s requirement [14]-[16]. Second, based on the estimafdimprove the rate estimation accuracy for these coding algo-
R-D functions, optimum bit allocation as well as other R-D optithms, the rate models are becoming very complex [12], [14],
mization procedures can be performed to improve the efficienf84], [25]. However, with complex and highly nonlinear expres-
of the coding algorithm and, consequently, to improve the imag®ns, the estimation and rate control process becomes increas-
quality or video presentation quality [17], [18]. ingly complicated and even unstable with the image-dependent
There are two basic approaches for R-D modeling. The firgariations [23].
is the analytic approach. Its objective is to derive a set of math-It should also be noted that, for different coding algorithms,
ematical formulas for the R-D functions based on the statistidhle R-D models and rate control algorithms reported in the lit-
properties of the source data. In this approach, both the codargture are quite different from each other [12], [14]-[16], [24],
system and the image are first decomposed into compon€j2s]. It would be ideal to develop a simple, accurate, and uni-
whose statistical models are already known. These models fiee rate model for all typical transform coding systems. Based
then combined to form a complete analytic model for the whotn this simple model, we could then develop a unified rate and
coding system. The R-D functions for a simple quantizer hapécture quality control algorithm which could be applied to all
been developed for a long time [10], [11]. In the analytic sourdgpical transform coding systems. To this end, we need to un-
model proposed by Hang and Chen [12], a theoretical entropgver the common rules that govern the R-D behaviors of all
formula for the quantized DCT coefficients is developed basé@nsform coding systems. Obviously, this will provide us with
on the R-D theory of the Gaussian source and the uniform quamiuable insights into the mechanism of transform coding. From
tizer. The mismatches between the theoretical entropy and thpractical point of view, the simple and unified rate model and
actual coding bit rate of the entropy encoder is, however, coeentrol algorithm would enable us to control the image/video
pensated by empirical estimation. encoder accurately and robustly with very low computational
The second approach is the empirical approach. Here, twmplexity and implementation cost.
R-D functions are constructed by mathematical processing ofin this work, based on the so-callegtddomain analysis
the observed R-D data. In the R-D estimation algorithm proaethod proposed in [1], [22], we develop a generic source
posed by Lin and Ortega [23], eight control points on the R-Bodeling framework for transform coding of images and
curves are first computed by running the coding system eiglitdeos by the following two major steps. In the first step, we
times. The whole R-D curves are then constructed by cubic imroduce the concepts of characteristic rate curves and rate
terpolation. In the MPEG rate control algorithm proposed bgurve decomposition to characterize the input source date and
Ding and Liu [15], the R-D curves are fitted by mathematicab model the coding algorithm, respectively. In the second step,
functions with several control parameters which are estimateg propose a linear regulation scheme to improve the accuracy
from the observed R-D data of the coding system. In generahd robustness of the R-D estimation. Our extensive simulation
this type of R-D estimation algorithms have very high compuesults show that the proposed framework is a unified R-D
tational complexity. In addition, such algorithms do not providanalysis framework for all typical transform coding, such as
us with insights into the R-D behaviors of the transform codingZzW, SPIHT, and JPEG image coding and MPEG-2, H.263,
systems and MPEG-4 video coding. With the estimated R-D functions,
Within the context of video coding, the coding results ofhe output bit rate and picture quality of the image/video
the previous frames or macroblocks (MBs) can be utilized #ncoder can be controlled in flexible way according to the
estimate the R-D functions of the current frame or MB. Thigequirements imposed by the specific applications.
adaptive estimation scheme is employed in many rate control
algorithms proposed in the literature, such as the MPEG-2 T&st Paper Organization
Model Version 5 (TM5) rate control algorithm [19], the H.263 The remainder of this paper is organized as follows. In Sec-
Test Model Near-term Version 8 (TMNB8) algorithm [20], andion I, we generalize the-domain R-D analysis methodology
the MPEG-4 Verification Model Version 8 (VM8) algorithmfor all typical transform coding system. Section I1l outlines the
[16], [21]. These rate control algorithms often suffer fronproposed source modeling framework. In Section IV, we define
relative large control errors and perform degradation at scei@ characteristic rate curves and show their unique properties.

changes, especially at low bit rates for active videos. Based on these properties, we then propose a fast algorithm to
, estimate them with very low computational complexity. The rate
C. Proposed R-D Analysis Framework curve decomposition scheme is explained in Section V. A rate

It is well known that the R-D behavior of an image/videagegulation scheme is proposed in Section VI to improve the R-D
encoder is determined both by the characteristics of the inmsgtimation accuracy and robustness. The R-D estimation algo-
source data and by the capability of the coding algorithm tdhm is summarized in Section VII. In Section VIII, we present
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the R-D estimation and control results for still image and video 3) JPEG Quantization Schemén JPEG still image coding,

coding. Concluding remarks are provided in Section IX. a perceptual quantization scheme is employed. Each of the 64
DCT coefficients in an & 8 block is quantized by a different
Il. p-DOMAIN R-D ANALYSIS uniform quantizer (UQ). The actual step sizes for the coeffi-

It has b b d that | K lein t ¢ cients in the luminance component are associated with a quan-
has been observed that 2eros piay a key role I ranstoffvion matrix, denoted b’ (4, )]1<i j<s, Where
coding, especially at low bit rates. All typical coding algorithms

treat zeros in a special way and address most of the effort to effi- 16 11 10 16 24 40 51 611
cient coding of them. For example, in JPEG and MPEG coding, 12 12 14 19 26 58 60 55
run-length representation and a special symbol of end-of-block 14 13 16 24 40 57 €9 56
(EOB) are employed to code the zeros [2], [4]. In H.263 video s

coding, a special binary flag named “LAST” is introduced to[WfJ(i,j)] = 1; ;; :253 ?2 g; 18079 18003 g?
signal that all the remaining coefficients in a zig—zag order in the 24 35 55 64 81 104 113 92
current block are zeros [5]. After the DCT coefficients are quan- 49 64 78 87 103 121 120 101
tized with a quantization parameterlet p be the percentage 72 92 95 98 112 100 103 99 |
of zeros among the quantized coefficients. Note that in typical (3)

transform coding systemg, monotonically increases with. Let z(¢, j) be the DCT coefficient located &t, ;) inside a lu-
(Here, we have made a trivial assumption that the distributigiinance block. Its quantization output is given by
of the transform coefficients is continuous and positive.) Hence,
there is a one-to-one mapping between them. This implies that,
mathematically,R and D are also functions of, denoted by
R(p) andD(p). A study of the rate and distortion as functions
of p is calledp-domain analysis where the quantization parametgunctions as a scaling factor
which controls the coding bit-rate and the picture quality. If
A. Typical Quantization Schemes z(4,4) is from a chrominance blocky! (i, j) in (4) is then

To map the R-D functions between tieandp-domains, we Teplaced by the chrominance quantization matei (i, 7)),

Jp(@j)]::Round{gégii?7j} 4)

first need to obtain the one-to-one mapping betwegemd p. where

Note that this mapping depends on the quantization scheme. 17 18 24 47 99 99 99 99-

In the following, we briefly review the quantization schemes 18 21 2 66 99 99 99 99
employed by the typical transform coding systems before dis- 2% 2% 56 99 99 99 99 99
cussing the computation of the mapping betweeamdp. 47 66 99 99 99 99 99 99

1) Quantization in Wavelet Image Codingn the typical  [w5(4,7)] = 99 99 99 99 99 99 99 99| ®

wavelet-based image coding systems, uniform threshold quan- 99 99 99 99 99 99 99 99
tization (UTQ) is often used, either explicitly or implicitly. 99 99 99 99 99 99 99 99

In this case, the quantization paramegerefers to the UTQ 199 99 99 99 99 99 99 99 ]

stepsize. LetA be the UTQ dead zone threshold. In genefal,

is propprtiongl tqq. For any transform coefficient, its UTQ 4) MPEG Quantization Schemdn MPEG-2 coding, the

output index is given by JPEG-style perceptual quantization scheme is employed. The

0 it o] < A quantization matrices for intracoded and intercoded MBs,
X 0 .. 1 .o . .
. . = denoted byuw}, (¢, 7) andwy, (¢, 7), respectively, are given as
z—A MA\" M\
Ilz] = UTQ[g, Asa] = %571 iz >+A (1) foliows:

|22 ], ife < -A

r8 16 19 22 26 27 29 347
2) H.263 Quantization Schemé&he quantization scheme 16 16 22 24 27 29 34 37
employed by H.263 video coding is similar to UTQ. To be more 19 22 26 27 29 34 34 38
specific, the quantization index afin the H.263 style quanti- [wo @5)] = 22 22 26 27 29 34 37 40
zation scheme is given by (2), shown at the bottom of the page. "'\ 22 26 27 29 32 35 40 48

Note that the range of the unquantized DC coefficient is 0—-2048, 26 27 29 32 35 40 48 58
which implies the range of its differential value 52048 to 26 27 29 34 38 46 56 69
2048. In H.263 coding, it is quantized by a uniform quantizer L27 29 35 38 46 56 69 83/
with fixed step size 8, as shown in (2). (6)
Round(%), if z is a DC coefficient in an intra-MB
I[z] = ¢ UTQ(2q, 2¢; x), if 2 is an AC coefficient in an intra-MB (2)

UTQ(2q,2.5¢; z), if zis acoefficientin an inter-MB.
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(16 16 16 16 16 16 16 167 rounded to integers [27]. TherefotBy(x) andD; () are actu-
16 16 16 16 16 16 16 16 ally histograms of the DCT coefficients, and (10) actually be-
16 16 16 16 16 16 16 16 comes
1. . 16 16 16 16 16 16 16 16

[os@DI= 116 16 16 16 16 16 16 16| oo L 3 Do(z) + — S D). @y
16 16 16 16 16 16 16 16 M M s
16 16 16 16 16 16 16 16
L16 16 16 16 16 16 16 16l 3) JPEG and MPEG CodingPerceptual quantization is

(7) employed in the JPEG image coding, and in MPEG-2 and
MPEG-4 video coding. Detailed descriptions are given in (4)

Unlike the JPEG quantization, in the same MB, both the land (8). After DCT, we first divide each DCT coefficient by
minance and chrominance component use the same quantitgaassociated perceptual weight, then generate the distribution
tion matrix. In MPEG-2 coding, the quantization index of thef these scaled DCT coefficients. After scaling, the perceptual
DCT coefficientz (¢, j) is given by (8), shown at the bottomquantization becomes uniform, as we can see from (4) and (8).
of the page. In MPEG-4 standard, both the H.263 style and thberefore, (9) and (11) can be also used to compute the value of
MPEG-2 style quantization are adopted. The user needs to cprirom ¢ for JPEG and MPEG coding algorithms, respectively.
figure the encoder to choose the quantization scheme. It can be
seen that all the quantization schemes listed in the above &elmplementation

very close to the uniform threshold quantization. From the distribution of the transform coefficients, for
_ any given quantization parameter we can compute the
B. The Mapping Betweepand p correspondingp. In software implementation, we can store

The one-to-one mapping betweenand p can be directly the one-to-one mapping betweerand p in a look-up table.
computed from the distribution information of the transform cd=or example, in H.263 and MPEG video coding, the possible
efficients. This is because in all typical transform coding sysalues ofq are1,2,...,31. So, the look-up table has at most
tems each transform coefficient is quantized separately. In B entries. Using this look-up table, we can easily map the R-D
following, we describe in detail how to compute the one-to-orfanctions between the-domain and the-domain.
mapping between andp for different coding systems.

1) Wavelet Image CodingThe wavelet-based image coding I1l. PROPOSEDR-D MODELING FRAMEWORK
schemes such as EZW and SR employ the uniform thresholqn Fourier analvsi S - .

o . . . Lo ysis, which is a powerful tool for digital signal
guantization scheme given by (1), either explicitly or implicitly, rocessing, to study the behavior of a functiffx), we first
Let the distribution of the wavelet coefficients B¥ ). After P 9 y '

guantization, the percentage of zeros among the quantized tr reg_resentf(a:) by a Im_ear combination of the ba5|§ functions
form coefficients is given by a{gm(nx), cos(nz)} which have well-known properties as fol-

lows:

1 [t oo
p(q) = I /_A D(z)dz 9) fz)=ao+ Z a,, cos(nx) + by, sin(nz) (12)
n=1
whereM is the image size. _ - .

2) H.263 Coding: The H.263 quantization scheme is give!Nere {ax, b, } are called Fourier coefficients. By studying
by (2). LetDy(x:) and Dy (x) be the distributions of the DCT these Fourier coefficients, we can then analyze the behavior
coefficients in the intracoded and intercoded MBs, respectiveP)I. J(x). This methoq IS r_eferred to amgnal dec_omposmon
Note that, in general, the DC coefficients from the intracodéd!d SPectrum analysin this chapter, we apply this decompo-
MBs will not be quantized to zeros because of their relativeﬁ)t'on sc_heme to analyze and estimate the rate function of an
large values. Therefore, for any quantization parametene Mmage/video encoder.

corresponding percentage of zepazan be obtained as follows: 10 estimater(p) using the decomposition scheme, we first
define two basis function®),,.(p) and Q.(p), called charac-

1 [t 1 ft254 teristic rate curves, to characterize the input source data. Here,

la) = M/ Do(a)dw + M/ Di(z)dz  (10) the source data can be a still image or a video frame. We then
show that, in the-domain,Q,..(p) and@,,(p) have unique be-

where M is the number of coefficients in the current videdhaviors that enable us to estimate them with very low computa-

frame. Note that in the H.263 codec, the DCT coefficients atiwnal complexity. In our decomposition scheme, the actual rate

—2q —2.5q

Round(%), if z is a DC coefficient in an intra-MB
o 16-2(i,5) . - . - _
1[z(i, §)] = Round[—zq.wgl (m’)} , if zis an AC coefficient in an intra-MB (8)

Round[%} . if z is a coefficient in a nonintra MB.
Q'Q'wj\/j(zzl)
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function is represented by a linear combinatiorpf.(p) and

Qn(p)
R(p) = A(p) - Qnz(p) + B(p) - Q-(p) + Clp),  (13)

where A(p), B(p), andC(p) are the rate decomposition coef-
ficients. For a given input imagey,,.(p) and Q.(p) are de-
termined by their definitions. If we use different coding algo-
rithms to encode this image, we should obtain differBp).
According to (13), we know the corresponding decomposition
coefficients should also be different. In other words, different
coding algorithms correspond to different decomposition coef-
ficients. Therefore, we can say thigd(p), B(p), C(p)} model

the coding algorithm, whild Q.,..(p), Q.(p)} characterize the
input source data. As mentioned above, the R-D performance
of a coding system is determined by these two components. We
see that both of these components have been integrated by linear
combination into (13), which serves as the framework for our
p-domain source modeling. In Section IV, we defi@g. (p) and
Q2.(p), analyze their properties, and discuss the rate decompo-
sition scheme in detalil.

IV. CHARACTERISTIC RATE CURVES

In [1], we have defined two characteristic rate cuné@s, (p)
and Q. (p), to describe the input source data for H.263 video
coding. In this work, we generalize their definitions for all typ-
ical image/video transform coding systems. Based on our eXt%['l-
sive simulations, we then show that they have unique statisti
properties, which hold for any of these coding systems. We also
provide a theoretical justification for the unique properties. Wit
these properties, a fast algorithm is proposed to estimate thﬁse
two rate curves.

which is exactly the number of bits for its sign-mag-
nitude representation. Note that, according to the
above definition,S(+1) is 2 instead of 1. For each
continuous string of zeros i, we count their run
length. Let@)’, be the sum of the sizes of all the run
length numbers. For all the nonzero transform coef-
ficients in £, we define

Q.= > S (15)

zCL,x#0

which is the sum of their sizes. Let
Qo= —Qhy Q=0 (16)
nz T M nz? z M z

whereM is the number of coefficients inside the pic-
ture. @,.. and Q. can be respectively regarded as
the pseudo-coding bit rates for the nonzeros and zero
coefficients. Obviously, they are functions g@fLet

p be the percentage of zeros among the quantized
transform coefficients. From Section II, we know
that there is a one-to-one mapping betweeand

p. Therefore, mathematicallg,,. and@.. are also
functions ofp, denoted byQ,,.(p) and Q.(p), re-
spectively. These two functions are called the char-
acteristic rate curves.

We would like to point out one implementation detail about
Is definition. In H.263 video coding, the DC coefficients from

e intracoded MBs are quantized with a fixed quantization pa-
ameter 8 and encoded with a fixed number of bits which is also

. Thisimplies that the coding bit rate of these DC coefficients is
xed and does not depend on the quantization parameter. There-

fore, when we scan the picture to form the 1-D array, the DC

A. Definition

coefficients from the intracoded MBs are all skipped. However,
their coding bit rate will be compensated by our rate decompo-

The characteristic rate curveg,.(p) and Q.(p) are em- sition scheme presented in Section V.

ployed to characterize the transform coefficients to be quan-

tized and coded by the image/video encoder. Their definitioBs Statistical Properties
are based on the binary representation of the nonzero coeffiy, [1], we observed that the two characteristic rate curves

cients and the run length numbers of zeros. This is because nsz(p) and Q.(p) have unique properties for H.263 video

explained in [1], we believe that the binary representation clgging. In this section, we show that these properties hold for

lects the most valuable information about the R-D behavior
the transform coefficients. Based on the binary representation,
we defineq,..(p) andQ.(p) as follows.

g typical image/video transform coding systems.

1) Still Image Coding: For each sample image in Fig. 2, we

Step 1) Conversion to 1-D arrayAfter transform and quan- first decompose it with a 9-7 Debauchies wavelet [26]. Ac-
tization with a quantization parametgrthe trans- cording to their definitions, we generate the rate cues(p)
form coefficients are rearranged into a 1-D ar@y and . (p) and plot them in Fig. 3. Two observations can be
If DWT is used, the subband coefficients are reainade from these plots. First, although the sample images are
ranged intol in a raster scan order. If DCT is usedquite different from each other, their characteristic rate curves
all the DCT coefficients are rearranged infoin @  share the same pattern. The second observation isthats
zig—zag scan order inside each block and a blockpproximately a straight line. Note that wheris 1.0, which

wise raster scan order at the block level.

means all the coefficients are quantized to zeros, by definition

Step 2) Binary Representatiarf-or any nonzero number, (), _is 0, i.e.,Q,..(p) must pass through the poifit.0,0.0].

its sizeS(x) is defined as

S(x) = [logy ||} 42 (14)

Hence, it has the following expression:

an(p) =kK- (1 - p) (17)
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Image—4

image--13

image-15

Image-20

Fig. 2. Sample images selected for our simulations.

image1 Image2 Image3 Image4 Image5 image6

Image?7 Image8 Image9 image10 image11 Imagei2

image13 Image14 Image15 Image16 imagel7 image18

image19

Image21 Image22 Image23 Image24

Fig. 3. Plots of2..-.(p) (solid) and@.(p) (dotted) for the 24 sample images with wavelet transform and uniform threshold quantizationaXiserepresents
the percentage of zergswhile they-axis represents the pseudo coding bit rate. All the plots have the same coordinate system.

where  is a constant. Besides this, for each sample image,2) DCT Video Coding:Next, we show that unique proper-
Q. (p) also has a rather simple behavior. In Fig. 4, we plot thesies of @,..(p) and Q. (p) exist not only for still images, but
two characteristic rate curves in tipedomain. It can be seen also for motion-compensated pictures which are the major type
that in theg-domain, they have large image-dependent variaf source data in video coding. Let us take two QCIF video
tions and highly nonlinear behaviors. The unique behaviors séquences “Carphone” and “News” as examples. First, we run
Q.-(p) and@.(p) exist not only for wavelet coding, but also forthe MPEG-2 and MPEG-4 coders on these two videos at a
the DCT-based image coding. For each sample image in Figfied quantization parameter 8, respectively. For each video,
according to their definitions, we generate, .(p) and@.(p) we output 30 sample motion-compensated difference pictures.
with DCT and JPEG-style quantization, and plot them in Fig. &zach sample picture is taken at every ninth frame. (The first is
The above observations also hold. an | frame without motion compensation; all of the others are
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Image1 Image2 Image3 Image4 Image5 Imageé
ir;\age7 ‘I.r;{a.ges Im'a.geg Image10 lr;;;;e;1 1 Imaget2
Ir;age13 I.;r;é.ge14 image15 image16’ Image17 Image18
;r;:;age1 9 Image20 . ;r'x;age21 Ima§e22 Ima;ezs image24

° 20 90 160

Fig. 4. Plots ofQ...(g¢) (solid) andQ . (q) (dotted) for the 24 sample images with wavelet transform and uniform threshold quantizationakiserepresents
the quantization parameteiwhile they-axis represents the pseudo coding bit rate. All the plots have the same coordinate system.

Image1 Image2 Image3 Image4 imageS Imageé
15
12
1
0.8
0.6
04
0.2 ~. - - . e T~
° . )
04 image7 ! Image8 image9 Image10 tmage11 Image12
Image13 Image14 Imageis Image16 Image17 image18
. T ~. . T —
o ~. -\ ~. ~. T~
tmage19 image20 image21 image22 image23 Image24
-~ ~ -~ -~ Tl -

Fig. 5. Plots of?...(p) (solid) andQ . (p) (dotted) for the 24 sample images with DCT and JPEG quantization: Blxés represents the quantization parameter
q, while they axis represents the pseudo coding bit rate. All the plots have the same coordinate system.

P frames.) We plo€),..(p) andQ).(p) for each sample picture fication for the linearity of@?,..(p). Note that the quantization
from “Carphone” and “News” in Figs. 6 and 7, respectively. Ischemes employed in the typical transform coding systems are
can be seen that the unique propertiespf (p) andQ.(p) all essentially uniform threshold quantizers. Therefore, in the

also exist in MPEG-2 and MPEG-4 video coding. following, we take the uniform threshold quantizer as an ex-
ample to show the linearity @,,. (p). It is well known that the
C. Justification of the Linearity of,,.(p) transform coefficients have a generalized Gaussian distribution

The definition of@,,. () is based on the pseudo coding of th@iven by
nonzero transform coefficients, which is actually the sign-mag-
nitude representation given by (14). From the simulation results
presented in the above, we observe that it has a very interesting

v 0) |l lel) (18)
linear behavior. In the following, we provide a theoretical justi-

pﬂﬂ(x) = 21_‘(%)
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Fig. 6. Plots 0ofQ...(p) (solid line) and® . (p) (dash—dot line) for the 30 sample difference pictures from “Carphone” coded by MPEG-2.a8Xierepresents
the percentage of zergs All the subplots have the same coordinate system as the one at the bottom-left corner.
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Fig. 7. Plots 0fQ...(p) (solid line) and?.(p) (dash—dot line) for the 30 sample difference pictures from “News” coded by MPEG-4: &kis represents the
percentage of zergs All the subplots have the same coordinate system as the one at the bottom-left corner.

where Gaussian and Laplacian distributions, respectively. According
to (15), for any given guantization step sizewe have
r (3) 1/2 N
% S N VY <p <9 2 oo
) =oT I E ] 1srs2 W) o= [ p@ s I@) +2d (20)

Here, s is the standard deviation of the transform coef‘ficientg\,’here

andy is a model parameter which controls the shape of the dis- I = |2 A 21
tribution. For example, when = 2.0 and 1.0p,,(x) becomes (@) = (21)
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Fig. 8. Plots of the theoretically computél. . (p) for the generalized Gaussian distribution with different shape control parametdese, we sef\ = q.

is the quantization index af. The corresponding percentage of-or H.263 video coding, the computation of the slopés
zeros is given by outlined in [1]. In MPEG-2 coding, a perceptual quantization
scheme is employed. Its quantization scheme is given by (8).
| s As mentioned before, the perceptual quantizer is equivalent
olq) = _/ Pyg(w)dz. (22) to a uniform quantizer applied to the DCT coefficients which
M J a are pre-scaled by their corresponding perceptual weights.
Therefore, to compute the slope for the MPEG-2 video
Itis very difficult to derive a closed-form expression f9r..(p) coding, we just generate the distribution information of the
directly from (20) and (22). However, we can evaluate them nDCT coefficients after pre-scaling, and then apply the formula
merically and compute a few points @p..(p). In Fig. 8, we for the H.263 video coding. In MPEG-4 coding, both the
plot them for different values af which is the shape control pa-H.263 style and the MPEG-2 style quantization schemes are
rameter of,, (). It can be seen that these points almost lie onadlopted. Therefore, according to the user’s configuration of the
straight line. This implies that, if we assume that the transforquantizer, the corresponding formula can be used to compute
coefficients have a generalized Gaussian distributign,(p) the value ofk.
must be an approximately linear function.

E. Fast Estimation of). (p
D. Fast Estimation of2,,.(p) )

SinceQy. (o) is modeled as a straight line passing throug In the following, by exploring the correlation betweén(p)

. . . 2and Q,,.(p), we develop a fast estimation scheme (p).
the pomt[l.q, 0.0], we need to computg only one point on I o study the correlation between two curves, we first define
order to estimate the whole rate function. In the following, w;

: L . ; ; feature variables for each curve, then study the correlation be-
discuss the estimation procedure in detail for different transform . .

i tween these feature variables. The feature variablé€for(p)
coding systems.

? . . is,its slopex. The feature variables fap_.(p) are its function
SI;I— ygﬁallgva;/ﬁ;et-rt:_?jrerg 't';raeiig%dmgé;gc(; S,:‘ItSrTirii\s/:‘/c’)?mr\]/ lues atp;. Considering the characteristic rate curves plotted

» émploy the unitorir quantizer. it T Fig. 3, we choose; = 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95.
we scan the subband image and generate the dlStI’IbUtIOhCO

the transform coefficients, denoted (). We then choose 4or11$éd?:[h: ;23%?225::%;?;iczlg\é:l;p;ﬁ?;g;Ig\',vse' E,:,;V?,a(:h
one quantization parametﬁ[,_ and compute the (_:orrespondin Zr;ich_is the ’slope 00...(p), andQ. (p:), which i thé value of
value ofQy.- (go) andp(go) using (20) and (22) witlpy, () re- 0.(p) at pi. Therefore, for each;, we have a total of 24 points
placed by the actual distributioR(z). With the two points of *° ; ! Y

[0 (g0). p(go)] and[1.0, 0.0], we can construct the whole rateOf {[x, Q.(p:)]} which are depicted in Fig. 9. It can be seen that

. there is very strong correlation betweemnd@. (p;)
curve@n.(p) with (17) where Fig. 10 illustrates the correlation betweerand . (p;) for

the characteristic rate curves in Fig. 5. We can see that the strong
correlation also holds for JPEG coding. In our extensive simu-
lations with a wide range of images, this strong correlation has

_ an(QO)
"TI- p(q0) (23)
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Fig. 9. Linear correlation betweenand the value§). (p:) at 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95 with wavelet transform.
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Fig. 10. Linear correlation betweenand the value§).(p;) at 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95 with DCT.

been found to existin all cases. Therefore, we have the following V. RATE CURVE DECOMPOSITION
linear correlation model:

Q-(p;) = Ak + B; (24) In Section IV, we have defined two rate curv@s.(p) and
Q).(p) to characterize the input source data, and proposed a

which can be employed to estimatg.(p;). The coefficients fast algorithm to estimate them. According to our decompo-
A; and B; are obtained by statistical regression and the corrgition and analysis scheme, the actual rate curve irpttle-
sponding linear model is also plotted in Figs. 9 and 10. BasathinR(p) is represented by a linear combinatiorthf. (p) and
on (24), we can estimate six points 6h.(p). If necessary, Q.(p), as shown in (13), where the coding algorithm is mod-
the whole rate curve can be constructed by linear interpolati@ied by the decomposition coefficiertd(p), B(p), C(p)}. In
In [1], a cubic correlation model is employed for H.263 videthe following, we take the JPEG coding algorithm as an ex-
coding. The correlation models for MPEG-2 and MPEG-4 videmmple to explain how to determine the decomposition coeffi-
coding can also be obtained in the same way. cients{ A(p), B(p), C(p)} for a specific coding algorithm.
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A. Decomposition Coefficients

TABLE |

DECOMPOSITIONCOEFFICIENTSA(p), B(p), AND C(p) AT p; FOR THE

For the 24 sample images shown in Fig. 2, with the fast algo-
rithms developed in Section IV, we can estimate the values of
Qn=(p;) andQ.(p;) wherep, = 0.65+1¢-0.05,1 < ¢ < 6. By
running the JPEG coding algorithm at different quantization pa-
rameters, we can generate some points on its actual rate curve
R(p). With interpolation, we can obtaifiR(p;)|1 < i < 6}.
According to (13), we should have

R(p;) = A(pi) - Qn=(pi) + B(pi) - Q= (pi) + C(pi). (25)

The values of A(p;), B(p;), C(p;)} are obtained by linear re-

JPEG ODING ALGORITHM

pi | Alpi) | Blps) | Clpi)
0.70 || 1.2151 | -0.4438 | 0.9005
0.75 |} 0.8089 [ -0.5030 | 0.9201
0.80 |l 0.6480 | -0.3831 | 0.8449
0.85 || 0.5763 | -0.3449 | 0.7856
0.90 || 0.5531 | -0.2241 | 0.6808
0.95 || 0.4043 | -0.1489 | 0.5845

gression over the sample dd#@,..(p;), @.(p:), R(p;)} forthe error, this is often not the case.) Therefore, We can utilize this
24 sample images. The decomposition coefficients for the JPEfear constraint to remove the source modeling error signifi-
coding algorithm are listed in Table I. Following the same praantly. This procedure is calldihear rate regulation

cedure, we can also obtain the decomposition coefficients forThe linear rate regulation operates as follows. From
other coding algorithms, such as EZW, SPIHT, SR, MPEG-2R(p;)|1 < ¢ < 6}, we first estimate the slopé and then
and MPEG-4. Once they are obtained, they are fixed during teenstructR(p) using the linear rate model in (26). According
actual rate curve estimation process. In practice, to improve tloethe linear regression theorem, the optimum estimatiof of
modeling accuracy, we can also update the decomposition casfgiven by

ficients after a certain number of frames are coded.

VI. LINEAR RATE REGULATION

Using the characteristic rate curves and the rate curve decom-
position scheme introduced in Sections IV and V, we can esti-

o= im0 Rlp) —630, piRlp)

6 2 6 2
6> 10— (Zi:l pi)

mate six points on the rate curi& ). The whole rate curve can According to the linear rate model, the estimated rate curve
be then obtained by linear interpolation. To further improve tH&(») after linear regulation is then given by

estimation accuracy and robustness, we propose the following
linear rate regulation scheme.

In our previous work [22], based on extensive experimental
results, we have shown that in any typical image/video trans-
form coding system, the actual coding rate function ingdo-
main R(p) is approximately a linear function. In other words,
we have the following linear rate model

1=1

R(P)I%ZR(M)‘FQ' <P—é2pi> . (28)

U NIFIED R-D CURVE ESTIMATION ALGORITHM

Based on the fast estimation 6%,.(p) and@.(p), the rate

R(p)=0-(1—p)

(26) curve decomposition, and the linear rate regulation, a unified

R-D curve estimation algorithm for all typical transform-coding

This rate model is very accurate because it is derived from tB¥stems is proposed as follows.
actual coding results. The only parameter of the rate model is theStep 1) Generation of the DistributianAfter applying ei-

sloped. Within the context of video coding, we can estimate the
value of# from the coding statistics of previous video frame or
MBs. However, in still image coding, we only have one image.
In other words, there is no previous image with similar statistics
available. Furthermore, typical still image coding algorithms,
such as EZW, SPIHT, SR, and JPEG image coding, do not use
adaptive quantization. In other words, the quantization of each
transform coefficient is nonadaptive and does not depend on the
quantization of its preceding coefficients. The quantization of
all transform coefficients is controlled only by the picture quan-
tization step size. The lack of the coding statistics of previous
data and the nonadaptive quantization scheme make it very diffi-
cult to estimate the value 6f Therefore, the linear rate model in
(26) can not be directly used to estimate the rate function before
quantization and coding. However, (26) indicates that the rate
curve estimated by Sections IV and V should be a linear func-
tion. In other words, the estimated six poiff3(p;)|1 < ¢ < 6}
should lie on a straight line. (Because of the source modeling

ther the DWT or the DCT transform, generate the
distribution of the transform coefficients. Note that
the transform coefficients are real numbers. We can
approximate their distribution by the histogram of
their integer parts. In the implementation of standard
video coding such as MPEG and H.263, the DCT co-
efficients automatically have integer values. In this
case, no approximation is needed. Depending on the
specific quantization scheme, the distribution gen-
eration process varies. For example, in H.263, the
distributions of the intracoded and intercoded MBs
need to be stored separately. In JPEG and MPEG
coding, we need to generate the distribution after
pre-scaling of the DCT coefficients, as described in
Section IV. Based on the distributions of the trans-
form coefficients, the one-to-one mapping lookup
table betweery andp is obtained as discussed in
Section Il.
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Test image1 Test image2 Test image3

Test image4 Test image6

Fig. 11. Six test images for the evaluation of the proposed R-D estimation algorithm when applied to the SPIHT and SR encoders.

Step 2) Estimate),,.(p) and Q.(p): Choose one quantiza-we can then control the output bit rate or picture quality of the
tion parametery, and compute the correspondingencoder.
Qn-(q0) and p(qo) as discussed in Section IV-D.
The slope 0ofQ,..(p) is obtained by (23). The value A. Application in Still Image Coding

of Qnz(p) atp; is given by The proposed estimation algorithm has been applied to the
SPIHT and the SR encoders. We arbitrarily choose six test im-
Qn:(pi) = k(1 — p;). (29) ages as shown in Fig. 11. The estimated R-D curves and the ac-

tual ones for SR and SPIHT coding are shown in Figs. 12 and 13,
With the linear correlation model in (24), the valugespectively. It can be seen that the estimated R-D curves are
of Q.(p;) is determined. very close to the actual ones curves.

The R-D estimation algorithm is also applied to JPEG coding
of still images. The six test images with a wide range of R-D
is given by (28). With the-p mapping lookup table, ghargcteristic; are showp in Fig. 14. We apply the propqsed es-

R(p) is mapped into the-domain to obtairk(q). timation algorithm to estimate their rate curves. The estimated
) ] . . ; rate curves and the actual curves are plotted in Fig. 15. The rel-
Step 4) Compute Distortion Curveln typical image/video .4 e estimation errors of the rate curiiéq) atg; = 0.5, 0.8,
transform coding, each coefficientis quantizedinder , 5 o 2 g 3.2, 4.5, and 5.5 for each test image are listed in
pendently, the overall distortion is exactly the SUMrape |1 The estimation errors are very small, mostly less than
mation of the distortion at each coefficient. There)o, iy their absolute values. Table 11l shows the relative esti-
fore, the D-Q curveD(g) can be directly computed yation errors without linear rate regulation. Clearly, we can see
from the distribution information. that linear rate regulation significantly improves the estimation

We can see that, in the proposed algorithm, the major COBkcuracy and robustness.
putation is to generate the distribution of the transform coeffi-
cients. The remaining computation involves only a few additioB. Application in DCT Video Coding
and multiplication operations that are carried out on the distribu-We next show that the proposed R-D estimation algorithm
tion. Compared to the complexity of the whole coding PrOCe3%s0 works very well for DCT-based video coding. Based on the
the overall complexity of the proposed estimation_ algorithm Estimated R-D functions of each video frame, Wé can then con-
very low. We can see that the R-D curves are estimated bef?rr(()el the output bit rate of the video encoder. We first show that,

Step 3) Rate Curve EstimatiorWith (25), computeR(p; ).
After linear regulation, the estimated rate cuR(g)

quantization and coding. for a given MC difference video frame, the proposed algorithm
VI E R can accurately estimate its R-D function. To this end, we run
- EXPERIMENTAL RESULTS the MPEG-4 codec on the “Carphone” QCIF video sequence at

In this section, we apply the algorithm presented in Se@F = 12 and output the 10-th and 70-th MC difference frames.
tion VII to estimate the R-D curves for transform coding ofJsing the algorithm presented in Section VII, we estimate their
stillimages and videos. Based on the estimated R-D functio®sD curves and compare them with the actual ones generated
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Fig. 12. R-D curve-estimation results for the SR coding system.
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Fig. 13. R-D curve-estimation results for the SPIHT coding system.

by the MPEG-4 codec in Fig. 16. It can be seen that the RiD achieve the target bit rafe;. Obviously,Q F, satisfiesir =

estimation is very accurate. R(QF,), whereR(-) is the estimated R-Q function. We see that
] this rate control algorithm operates at the frame level.
C. Frame-Level Rate Control Algorithm It should be noted that, in standard video encoders, the quan-

Withthe estimated R-D functions, we canthendevelop aframi&ation parameter should have an integer value between 1 and
level rate control algorithm for DCT video coding. The rate cor81 [4]-[6]. However, the frame quantization param&pét, ob-
trol process consists of the following major steps. In the first stefajned in the frame-level rate control algorithm is a real number.
the target bit raté;- of the current video frame is determined acFor example? F, could be 5.30. If we roun@ F, to its nearest
cording to the channel bandwidth and buffer status, as explairietkger 5 and use it for the quantization parameter for each MB
in[1], [14]. In the second step, based on estimated the rate cuméhe current frame, the actual coding Btwill be quite dif-
R(q), the frame quantization parametgP, can be determined ferent from the target bit ratBr, which is actually achieved by
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image2 image3

image4 Images Image6

Fig. 14. The six images for testing the performance of the proposed algorithm.
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Fig. 15. The estimated rate curves and the real JPEG rate curves of the six test imageaxiBrepresents the quantization parameter

QF, = 5.30. In the following, we propose a very simple apis very close ta)F,. As a result, the actual coding bit rate will

proach to solve this problem. Let be very close to the target bit rate,. Let S, and.S_ be the
groups of MBs which us&)FP, and QF_, respectively. The
QP = [QF], QP_=|QF] (30) overall activity of Sy is almost the same as that8f because

the MBs from each set are chosen by a uniform random variable.
which are the two closest integersdd,. Lety = QFP,—QP_. This is another advantage of this approach.
Let ¢ be a random variable with a uniform distribution [en1]. We implement the above rate control algorithm in MPEG-2
Each time when we determine the quantization paran@fér and MPEG-4 video coding. (The rate control algorithm for
for a MB, we produce a sample value forlf its sample valueis H.263 and the corresponding simulation results have been
less thary, we setQ P = QF, . Otherwise, we sep P = QFP_. presented in[1].) Fig. 17 depicts the relative rate control errors
Thus, approximately - 100 percent of MBs in the current videofor “Foreman” and “Coastguard” coded with MPEG-2 when
frame use the quantization paramefg?r, while all the rest use the proposed algorithm and the TM5 rate control algorithm are
QP_. Consequently, the average frame quantization parameteplied. Fig. 18 shows the output coding bits of each frame in
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Fig. 17. The relative rate control error (in percentage) of each frame of
“Foreman” and “Coastguard” coded with MPEG-2 when the proposed rate

FIG. 14—WTHOUT LINEAR RATE REGULATION ! C 4
control algorithm and the TM5 algorithm are applied.
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Fig. 18. The output coding bits of each frame in “News” coded with MPEG-4
when the proposed rate control algorithm and the VM8 algorithm are applied.

following advantages. First, our algorithm operates at the frame
level, which implies the rate control procedure only needs to
perform once per frame. However, in the MB-level TM5 and

TMNS rate control algorithms, after each MB is coded, the al-
gorithm has to update its model parameters, which inherently in-

2000

4000

6000

8000

Bit rate

creases the computational complexity. Second, based on the es-
timated R-D functions, the proposed algorithm select the mean

quantization parameter for the current frame. In this way, the
Fig. 16. R-D estimation results for Frames 10 and 70 in “Carphone” QCWhole frame is almost uniformly quantized. However, in the
video coded by MPEG-4. TM5 and TMNS rate control algorithms, the quantization pa-
rameter for each MB is adaptively selected based on the current
“News” QCIF video sequence coded by MPEG-4. (It shouldoding statistics. In this way, inside one frame, the quantiza-
be noted that in this experiment, the whole scene is codedtas settings of each MB is different (sometimes, quite different)
one object.) It can be seen that with the proposed rate contir@m others. As a result, this often degrades the overall visual
algorithm, the actual output bit rate is more accurately matchgdality, as explained in [1]. Finally, unlike other rate control al-
to the bit’s target. gorithms, the proposed algorithm performs the rate estimation
Compared to other rate control algorithms, such as the TMénd control for each frame independently. Therefore, it does not
TMNS8, and VM8 algorithms, the proposed algorithm has th&uffer from performance degradation at scene changes at all.
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IX. CONCLUDING REMARKS [21] Video Group, “Text of ISO/IEC 14 496-2 MPEG4 video VM—Version
8.0,” ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and As-

By introducing the concepts of characteristic rate curve and  sociated Audio MPEG 97/W1796, Stockholm, Sweden, 1997.
rate curve decomposition, a generic framework for source mod22] Z. He, Y. Kim, and S. K. Mitra, “A novel linear source model and a

eling has been developed for all typical transform coding sys-

unified rate control algorithm for H.263/MPEG-2/MPEG-4,” Rroc.
Int. Conf. Acoustics, Speech, and Signal Proces$Satf Lake City, UT,

tems. We have provided a theoretical justification for the unique  may 2001.
property of the characteristic rate curves. A linear rate regulatiof?3] L-J. Lin and A. Ortega, "Bit-rate control using piecewise approxi-

scheme has also been proposed to improve the modeling accu-

mated rate-distortion characteristic$#EE Trans. Circuits Syst.Video
Technol, vol. 38, pp. 82-93, Jan. 1990.

racy and robustness. Based on this source modeling frameworni4] E. D. Frimout, J. Biemond, and R. L. Lagendik, “Forward rate control
a unified R-D estimation and control algorithm is proposed for ~ for MPEG recording,”irProc. SPIE Visual Commun. Image Processing

image and video coding. There are two major contributions o 5)

Cambridge, MA, Nov. 1993, pp. 184-194.
A.Y.K.Yanand M. L. Liou, “Adaptive predictive rate control algorithm

this work. First, we present a novel methodology for R-D anal- ~ for MPEG videos by rate quantization method, Firoc. Picture Coding
ysis. Compared to the conventional analytic R-D formulation, it SymposiumBerlin, Germany, Sept. 1997, pp. 619-624.

is much more accurate. Compared to the operational R-D conf2

26] M. Antonini, M. Barlaud, P. Mathieu, and |. Daubechies, “Image coding
using wavelet transform,/JEEE Trans. Image Processingol. 1, pp.

putation method, it has much lower complexity. The second con-  205-220, Apr. 1992.
tribution of this work is the unified R-D estimation and control [27] Telenor codec, “ITU-T/SG-15, video codec test model, TMN5,” Telenor

algorithm, which outperforms other rate control algorithms in[28]

Research, 1995.
E.Y.Lam and J. W. Goodman, “A mathematical analysis of the DCT co-

terms of control accuracy and robustness. efficient distributions for images [EEE Trans. Image Processingol.
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