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Abstract—Digital data hiding is a technology being developed
for multimedia services, where significant amounts of secure data
is invisibly hidden inside a host data source by the owner, for re-
trieval only by those authorized. The hidden data should be re-
coverable even after the host has undergone standard transforma-
tions, such as compression. In this paper, we present a source and
channel coding framework for data hiding, allowing any tradeoff
between the visibility of distortions introduced, the amount of data
embedded, and the degree of robustness to noise. The secure data
is source coded by vector quantization, and the indices obtained in
the process are embedded in the host video using orthogonal trans-
form domain vector perturbations. Transform coefficients of the
host are grouped into vectors and perturbed using noise-resilient
channel codes derived from multidimensional lattices. The pertur-
bations are constrained by a maximum allowable mean-squared
error that can be introduced in the host. Channel-optimized
can be used for increased robustness to noise. The generic approach
is readily adapted to make retrieval possible for applications where
the original host is not available to the retriever. The secure data
in our implementations are low spatial and temporal resolution
video, and sampled speech, while the host data is QCIF video. The
host video with the embedded data is H.263 compressed, before
attempting retrieval of the hidden video and speech from the re-
constructed video. The quality of the extracted video and speech is
shown for varying compression ratios of the host video.

Index Terms—Channel coding, data hiding, lattice VQ, source
coding, watermarking, wavelet transform.

I. INTRODUCTION

W ITH THE RAPID growth in the mass of multimedia data
freely available through the Internet, and the associated

investment in standardization of hardware and software for open
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transmission of such data, a mechanism for hidden data trans-
mission over the established infrastructure will provide an eco-
nomical alternative to expensive dedicated secure channels and
specialized terminals. The emerging technology ofdata hiding
[1]–[4] therefore presents an overwhelming urge in the world
today. Digital watermarking [5]–[12] is a closely related tech-
nology for copyright protection that is receiving much atten-
tion lately. Here, a small amount of a specific signature in-
formation, called the watermark, is invisibly hidden inside a
host data source, typically an image or a video sequence, by
the owner before distributing freely. The challenge is to enable
the owner to retrieve his original signature from the distributed
image or video to check authenticity, even after it has under-
gone significant transformations such as compression. While
most of the early work in this area assumes availability of the
original host to the retriever, the current trend is toward devel-
oping algorithms that allow retrieval even without knowledge
of the original host. Indata hiding, the focus is on hiding larger
amounts of data in a host, for a wider range of applications
than just copyright protection. Only those authorized with the
knowledge of “how to” can retrieve the hidden data, even after
standard transformations like compression as required by the
transmission system, or media transformations as required by
the storage and distribution system, have been applied to the
host. Although it is possible for some applications to have the
original host data available during retrieval, the real strength
of a data-hiding scheme is the ability to make authorized re-
trieval possible even without the availability of the original host.
Data hiding has several defense-type applications, such as in-
conspicuous transmission of secret information over an insecure
but readily available medium such as the Internet. It can also
be used for transmitting various kinds of information securely
over the existing infrastructure dedicated for transmitting some-
thing else, such as transmitting hidden nonstandard format video
or hidden speech, using terminals specialized for transmitting
H.263 coded video, as in this work. Since a substantial amount
has already been invested in the development of the infrastruc-
ture for standard-based data transmission, it makes monetary
sense to try to use the same infrastructure for transmission of
nonstandard data. Another application is in secure transmission
of control information along with data in a commercial delivery
system. In general, data hiding makes possible invisible mixing
of different kinds of secure data along with standardized and
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open forms of data transmission, allowing only those authorized
to retrieve the additional hidden information.

Fig. 1 introduces a quantitative framework for the generic
data hiding problem by means of a schematic diagram. The
original host is modified using the secure data in a deterministic
fashion, by the process ofembedding, to yield a host with em-
bedded data. As a result of embedding, a mean-squared-error

is introduced between the host with embedded data
and the original host. To ensure transparency of embedding,
the value of should be below a desired level depending
on the nature of the application. On distribution, the host with
embedded data typically undergoes compression and other
standard transformations. Theextractionprocess estimates the
hidden data from the “noisy” host with embedded data, that
is received. It is then required that the mean-squared-error

between the original secure data and the extracted
secure data be as low as possible. Depending on the specific
nature of application, the extraction process may or may not
assume availability of the original host.

Note that the watermarking problem is a special case of the
generic problem described above. In watermarking applications,
the allowable is very small, and the requirement of ro-
bustness against “attacks” is very stringent. As a consequence,
the amount of data that can be reliably hidden is very small.
In this work, the focus is on the more generic problem where
any amount of data may be hidden, but in a manner such that
for a given allowable the robustness against data trans-
formations, compression, or “attacks,” is maximized. Further,
since for most useful applications of data hiding, the original
host cannot be assumed to be available during extraction, we
treat this case separately. In watermarking terminology, the se-
cure data is typically referred to as thewatermark, while the host
with embedded data is referred to as thewatermarked host. In
the rest of the paper we will use interchangeably the set of terms
“secure data,” “hidden data,” and “watermark,” and also the set
of terms “host with embedded data” and “watermarked host.”

We show that the above problem of data hiding readily maps
to the source and channel coding problem in digital communi-
cations [13]. As such, established concepts from digital com-
munications can be used to solve it. A quantitative treatment
allows precise tradeoff between the transparency of embedding
(reflected by ), the amount of data embedded, and the
robustness of the data hiding scheme to data transformations (re-
flected by ). The secure data is hidden inside the raw host
data, which makes it possible to retrieve the hidden information
from the host, irrespective of the compression scheme used, or
transformations applied during its transmission and distribution.
In this work, although we develop the approach under the as-
sumption that the original host is available during retrieval, we
later relax the restrictive constraint to obtain a more useful data
hiding scheme. In Section II, we discuss in detail our data-hiding
approach, where vectors of orthogonal transform coefficients
of the host are perturbed using lattice channel codes to repre-
sent source coded symbols. The discussion here is completely
general, and applies to hiding any kind of secure data in any
kind of host. In Section III, we present specifically the method-
ology used for hiding data inside a video host in the wavelet
transform domain. In Section IV, we present two example ap-

Fig. 1. The data-hiding problem

plications where two different kinds of data are hidden inside
30 frames/s QCIF video. In the first case, the hidden data is low
spatial and temporal resolution video, while in the second case,
the hidden data is sampled speech. In Section V, we conclude
with some notes on future directions.

II. DATA HIDING USING VECTORPERTURBATIONS

The host data is first orthogonally transformed, and the trans-
form coefficients are then perturbed in a definite fashion to rep-
resent hidden information. Note that the use of a transform is
not essential to this approach because a raw image or a video
frame is by itself an expansion on the standard bases. However,
orthogonal transformations may yield a subset of coefficients
which when perturbed, either result in lower probability of er-
roneous detection after a particular kind of transformation, or
yields less perceptually significant distortions, or strikes a com-
promise of both.

A. Transparency Constraint

Let us consider a host data sequence given by
, which is transformed orthogo-

nally to a set of coefficients . The
transform-domain embedding process perturbs the coefficients
into a new set of coefficients given by .
The inverse transformation then yields the watermarked host

. Since the transformation is orthogonal,
the mean-squared-error introduced in the coefficients is exactly
equal to the mean-squared error introduced in the host data;
that is

(1)

Now, a transparency constraintis imposed on the value
of . This specifies a maximum value which upper
bounds for a given application

(2)

The smaller the value of , the less visible the embedding is,
and vice versa.
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Fig. 2. The Embedding Principle

Since is typically very large for images and video, it makes
sense to simplify the transparency constraint by grouping the
coefficients into -dimensional vectors with , and satis-
fying the constraint in each of the vectors individually. Further,
it may be convenient to perturb only a limited number of
the coefficients, say the coefficients in only one particular
band of a subband or wavelet decomposition. That is, if the
coefficients to be perturbed are grouped into vectors of
dimension , denoted as , and the corre-
sponding perturbed vectors are denoted as, then for each of
the vectors, the following must be satisfied to satisfy the con-
straint in (2):

(3)

represents the maximum allowable per dimension squared
perturbation of the vectors, required to satisfy the transparency
constraint, and is analogous to a channel power constraint.

B. Embedding Principle

We can now explain the generic embedding principle
by means of the diagram in Fig. 2. The secure data is first
source-coded, either losslessly or lossily depending on the
nature of the data, to generate a sequence of symbols from
a -ary alphabet . The embedding process
injects one symbol in each coefficient vectorby perturbing
it in one of possible ways in -dimensional space to obtain
the perturbed vector . Note that the possible values of
all lie within a shell of radius from to satisfy the
transparency constraint. The possible perturbations constitute
what is in general known as thechannel codebook, and is of
size and dimension . The channel codebook is usually
obtained from a noise-resilient channel code by scaling it by
a parameter which determines the transparency constraint.
That is, the perturbed vectors are obtained as

(4)

where the set of vectors , constitute a
channel shape codebook of size. The perturbed coefficients
are inverse transformed back to the host before transmission or
distribution.

Fig. 3. The Extraction Principle

C. Extraction Principle

The extraction principle is outlined in Fig. 3. Let us say that
the th perturbed vector , corresponding to a hidden symbol

, has been received as as a result of additive noise due
to compression and other transformations

(5)

The process of extraction is then formulated as a statistical esti-
mation problem that estimates the transmitted symbol from the
noisy version received. The solution to the estimation problem
yields decision boundaries around the-dimensional channel
codes that depend on the statistical model chosen for the noise.
The extraction process uses its knowledge of the original host to
decode, from each received vector, the symbol within whose de-
cision boundaries the received perturbation lies. In other words,
a nearest-neighbor search with an appropriate distance measure
is used. Therefore, if the perturbation corresponding to a symbol

is embedded into a vector, and the unperturbed original vector
is known during extraction, as long as the received perturba-
tion does not go beyond the decision boundaries around the
channel code for symbol in -dim space, the correct trans-
mitted symbol will still be extracted. The sequence of ex-
tracted symbols are then source-decoded to obtain the extracted
watermark.

D. Parallels with Data Communication

In this section, we present explicitly the strong parallel that
exists between the data hiding problem as described above and
that of digital data communication over a power-constrained
discrete-input continuous-output channel. Consider a typical
passband data communication system where a sequence of
symbols from a -ary alphabet are to be transmitted over a
channel of bandwidth Hz. Each symbol is transmitted as a
particular waveform over a time duration ofseconds. Since
the waveform is bandlimited to Hz and is of duration
seconds, in accordance with the Nyquist sampling theory, it
will be completely described by only samples. It
follows, therefore, that the signal can be represented as a point
in -dimensional space with respect to any set oflinearly
independent basis signals that are each bandlimited toHz
and over a duration of seconds. Typically, the basis signal
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set chosen is also orthogonal, and therefore, each waveform
transmitted over the channel in seconds can be represented
as a point in -dimensional Euclidean space, with its squared
distance from the origin representing the signal energy over
time . Each of the -symbols in the alphabet represent one
point in a -dimensional orthogonal signal constellation. The
signal points are often referred to as channel codes of the
corresponding symbols. Since the transmitter is usually limited
in power to transmit no more than energy in time (power

), the expected squared distance of the signal point
from the origin, is constrained to be less than.

The waveforms as defined above are next transmitted over
a noisy channel. While there are various noise models avail-
able for various kinds of channels, we will continue this dis-
cussion on the basis of an Additive White Gaussian Noise
(AWGN) channel of power-spectral-density . This par-
ticular noise model approximates many real channels and
also makes analysis simpler. The task of the receiver is then
to estimate the symbols transmitted from the noisy wave-
form that is received. In a correlation receiver, the noisy
signal is correlated with all the orthogonal basis signals,
to obtain a set of sufficient statistics that also represent a
point in the same -dimensional orthogonal signal space. In
a noise-free channel, the received signal point is exactly the
same point as the one transmitted. However, as a result of
noise, the received vector is different from the one trans-
mitted, and in fact, for the AWGN channel, it can be shown
that the components of the noise vector in the signal space
are i.i.d. Gaussian random variables with variance .
Using a maximum-likelihood decoder yields symmetric hy-
perplane decision boundaries, where each waveform is de-
coded as the symbol to whose signal point representation the
received sufficient statistics is closest in Euclidean distance.

We are now ready to see the equivalence between the
data hiding problem and the data communication problem.
In data hiding, the transparency constraint is similar to the
power constraint for channel coding. The host data is or-
thogonally transformed, and the coefficients are then grouped
to form -dimensional vectors. Each coefficient vector is a
point in -dimensional Euclidean space, which is perturbed
using channel codes to represent a hidden symbol. The per-
turbed coefficients are then inverse transformed to obtain
the raw watermarked host. The watermarked host undergoes
compression and other transformations in being transmitted
to a receiver. Before extracting the hidden data, the receiver
orthogonally transforms the received data using the same
transform that was used during embedding, grouping the co-
efficients to form -dimensional vectors in the same way
as before. Let us assume that the element-by-element noise
added by compression and other various transformations to
the watermarked host is i.i.d. Gaussian with variance. It
follows, therefore, that the noise added to the coefficients in
the orthogonal transform domain, is also i.i.d. Gaussian, with
precisely the same variance . Using a maximum likeli-
hood decoder in the transform domain then yields a decoding
rule, which for every vector received, chooses the symbol
to whose channel code it is closest in Euclidean distance.

E. Channel Coding: Lattice Codes

Before discussing the channel coding issues in data hiding, let
us define a rate for data injection for the perturbed vectors, in
bits/dimension as follows:

(6)

where is the size of the alphabet embedded in each-dimen-
sional host vector.

For a given channel, noise model, and decoding rule, it is
possible to write down expressions for the probability of erro-
neous detection , assuming all source symbols are equally
probable. The channel-coding problem is simply stated as that
of choosing the channel codes optimally so that for a given
power constraint and rate, the probability of error is mini-
mized. For data hiding applications, the value ofis a good
measure of robustness of a given scheme to transformations of
the watermarked host. For a given source coder, the probability
of channel-coding error has a direct influence on the value
of that measures the quality of the extracted data (see
Fig. 1). In general, with increase in the dimensionality, it be-
comes possible to design more efficient channel codes yielding
lower . Further, in accordance with Shanon’s channel-coding
theorem, for every channel, it is possible to define a channel ca-
pacity as the maximum of the mutual information between
the input and the output, such that as long as the rate is ,
virtually error-free transmission can be achieved by choosing a
sufficiently large dimension. As an example, the capacity of a
continuous-input continuous-output AWGN channel with noise
variance and power constraint is given by

bits/dimension (7)

Capacity is the fundamental limit of what rate is achievable for
a given channel. From a data hiding perspective, the capacity
presents a limit on the quantity of secure data relative to the
quantity of host data, that can be embedded inside the host and
retrieved error free.

Although capacity is an asymptotic notion that is not really
achievable in practice, decreases with increase in dimension-
ality and justifies our motivation for using higher dimensional
channel codes. This is particularly true when the noise variance
is small as compared to the power constraint. In higher dimen-
sions, it is customary to use lattice-based channel codes, where
codepoints are chosen as subsets of lattices or lattice-cosets
satisfying the power-constraint. Conway and Sloane [14]–[18]
have shown that the lattices , , , , , etc. produce
very good lattice codes in their respective dimensions, and have
also presented tables and graphs [16] with theirand nominal
coding gain results. Further, lattice channel codes enjoy the ad-
vantage of having fast encoding and decoding algorithms. For
the case of additive white Gaussian noise with small variance
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, Conway and Sloane computed the value offor a -di-
mensional lattice-based channel code with power constraint
to be approximately given by

erfc (8)

where is the normalized signal-to-noise ratio
(SNR) and and are the packing density and the kissing
number of the lattice, respectively. It follows from ( 8) that the
denser a lattice is in-dimensional space, the lower its proba-
bility of error would be if used for channel coding. Intuitively
speaking, in any -dimensional space, for the same power con-
straint and rate, points placed on a scaled denser lattice would be
further separated from each other than those placed on a scaled
thinner lattice. Additionally, even when the dimensionalityin-
creases, it is always possible to find lattices dense enough such
that is bounded below for any, however large. Thus, if
dense enough lattices are chosen, the occurrence ofin the ar-
gument of the erfc function in (8) ensures that the estimate of

decays fairly rapidly with increase in. Intuitively speaking,
with increase in dimensionality of the space, it becomes possible
to arrange points on a dense enough lattice with larger per di-
mension squared distances separating them for a given rate and
power constraint.

Most of our data hiding implementations are based on effi-
cient lattice channel codes that yield low values of. Spherical
or constant energy codes, derived from the first shell of various
multidimensional lattices, are used in many of our implementa-
tions. Since all the points in such codes are equidistant from the
origin, the introduced as a result of embedding is ex-
actly equal to the transparency constraint. In practice, however,
for image and video hosts, the effect of rounding the pixels of
the watermarked host to integers and limiting them to lie in the
range 0–255 may cause minor deviations from the theoretical
value.

It is to be noted that more advanced channel coding schemes,
such as those based on trellis-coded modulation, can be used
to avoid the problems associated with very large dimensional
vectors.

F. Source Coding: VQ and COVQ

For most data-hiding applications we envisage, it would be
necessary to embed secure data at a rate higher than the channel
capacity. Therefore, it makes sense to compress the secure data
losslessly or lossily before embedding. If the secure data is com-
pressible, lossy compression schemes can be used for achieving
lower rates over the channel. A scheme that works well for cor-
related sources is vector quantization (VQ) [19]. One advan-
tage of using memoryless VQ, as opposed to other more so-
phisticated schemes for compression, is that it is inherently very
robust to noise because there are no drift effects. The indices
obtained by vector quantization form the alphabet that is em-
bedded into the host transform coefficients by vector perturba-
tions derived from noise-resilient channel codes.

Even with compression of the secure data, the rate through
the channel may be too high to support error-free communica-

(a)

(b)

Fig. 4. Schematic diagram of a data-hiding system. (a) Embedding. (b)
Extraction.

tion. For example, the watermarked host may be compressed
too severely for a given transparency constraint to allow reliable
recovery of the hidden data. In such cases, it is advantageous
to combine source and channel coding by using channel-op-
timized VQ (COVQ) [20], [21] for better noise performance.
While standard Euclidean vector quantization obtains the best
encoding index from a size source codebook with code-
vectors , for a given input source vector
, as

(9)

Euclidean channel-optimized vector quantization obtains the
best encoding index as

(10)

where the are the transition probabilities of receiving
index , given index is transmitted. COVQ strives to minimize
the overall end-to-end distortion in a source, transmitted over a
given noisy channel. For example, if two channel symbols are
close in the channel-signal space, one can often be mistaken
for the other, due to noise. However, if the source codes they
represent are also close, the distortion introduced by this error
will be small. The VQ design algorithm for COVQ [21] is
likewise modified to minimize the new distortion metric. Our
implementation of hiding video in video uses channel-opti-
mized vector quantization for improved noise resilience.
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G. Generic Data Hiding Schematic

Based on the ongoing discussion in this section, we now
present in Fig. 4 the schematic diagram of a generic data hiding
system for the case when the original host is available during
retrieval.

During embedding, the host data is first orthogonally trans-
formed. An encryption key is then used to pseudo-randomly
shuffle the coefficients in the transform domain and form-di-
mensional vectors. In other words, each vector is formed by
taking coefficients from arbitrary positions in the transform do-
main determined by the encryption key. The selection of the co-
efficients used for data embedding may also be made adaptively
based on certain stable features of the host data. The number
of vectors formed depends on the number of symbols to be
embedded. The hidden compressible data is next appropriately
vector quantized (VQ or COVQ), and the indices obtained in
the process are embedded into the-dimensional host trans-
form vectors by vector perturbations, in accordance with effi-
cient channel codes scaled by a factor. After embedding, the
coefficients are inverse transformed to obtain the watermarked
host.

During extraction the original host is assumed to be known.
First, the received noisy host and the original host are orthog-
onally transformed. Given the same encryption key that was
used during embedding, the vectors are shuffled and grouped in
the same fashion as before to form-dimensional vectors. The
difference between the vectors is scaled, and passed through a
channel decoder and then a source decoder to obtain a recon-
struction of the hidden data.

The above scheme has three layers of security. The variability
in the source and channel codebooks used makes unauthorized
retrieval virtually impossible. The knowledge of the algorithm
alone is not sufficient to extract the hidden information. The
exact source and channel codebooks used for any application
instance must be known. The encryption key-based coefficient
grouping introduces an additional third layer of security. Even
if an attacker knows the exact coefficients used for data em-
bedding, he cannot retrieve it without knowledge of either the
source codebook or the channel codebook or the encryption key
(that determines the way these coefficients are grouped). De-
pending on how a specific system is implemented, an attacker
may be able to destroy the hidden information; but if imple-
mented appropriately, he cannot do it without significantly de-
grading the watermarked host.

Another advantage of pseudo-random grouping of coef-
ficients to form vectors is as follows. Typically, the noise
introduced as a result of transformations such as compression
occur in “bursts.” That is, a highly corrupted coefficient is
likely to have its neighboring coefficients also heavily cor-
rupted. Therefore, the noise in the components of a vector,
if formed by grouping neighboring coefficients, remain too
correlated to fit our assumed model of being independent and
identically distributed. Pseudo-random shuffling implies that
the components of a vector now come from different random
locations in the transform domain, and therefore, the noise
introduced in the coefficients come closer to being i.i.d. This,

in turn, validates the use of the Euclidean distance measure for
channel decoding.

The encryption key may also be used to pseudo-randomly
change the source and/or channel codebooks, during em-
bedding. For example, the channel vector directions may be
changed in the channel codebook, while the indexing in both
the source and channel codebooks may be changed. In fact,
the family of watermarking techniques using spread spectrum
communications, essentially uses pseudo-randomly oriented
channel codes in very high dimensions.

H. Hidden Data Extraction without Original Host

We now present a methodology based on the above frame-
work for designing a data hiding system that allows retrieval
without knowledge of the original host. This functionality opens
up possibilities for numerous other applications besides copy-
right protection. A previous successful approach to achieving
this functionality comprises quantizing the host data elements
first and then perturbing them around the quantized values to
represent hidden data [1]. The perturbations must be “small”
relative to the quantization step-size. While this can be readily
combined with the source and channel coding framework de-
scribed in this paper, and has in fact been used for our implemen-
tations, for the sake of completeness, we present an alternative
approach based on prediction and estimation in the transform
domain, that when used appropriately, can yield results supe-
rior to the quantization approach.

During embedding, given the full set of transform coefficients
, a smaller set of coefficients is chosen

ascarriers for embedding the channel code perturbations. The
selection of the carrier coefficients may be made independent of
the actual host data (pre-determined, or determined pseudo-ran-
domly by the encryption key), or it may be chosen adaptively
based on stable features of the host data that are not likely to
change significantly by data transformations. Let us call the
set of carrier coefficients and the re-
maining set of coefficients , where
each , . Next, for each coefficient in set ,
a value is computed sufficiently close to , which acts as
the base value for the channel code perturbations to be intro-
duced subsequently to represent hidden data. Note thatmust
be computed in a manner such that it can be recovered reliably
at the receiving end. While the quantization method coarsely
quantizes to obtain , in this approach, each is predicted
deterministically from the remaining - coefficients in set
to obtain . That is

(11)

where is the predictor function predicting coefficientfrom
the coefficients in set . The predicted coefficients in setform
the base values over which data is embedded. These coefficients
are grouped into vectors of appropriate dimensions to form base
vectors, which are then perturbed to represent hidden channel
codes. The perturbed coefficients replace the original ones in
the watermarked host.

When the receiver receives the noisy transform coefficients,
it first partitions them into sets and in the same manner
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Fig. 5. Illustration of data hiding allowing extraction without knowledge of
the original host

as during embedding. Based on the noise model for the coef-
ficients in set , the receiver then estimates the predicted base
values of the coefficients in from the noisy coefficients
in received. Using a minimum mean-squared error estimator
amounts to obtaining the estimated base valuesas

(12)

where represents the received noisy coefficients in set
that are used to estimate the value of . As long as this
estimation process is accurate, the estimated base valuesof
the coefficients in would be close to the true base values
that were actually used for embedding. These valuescan then
be used to decode the hidden channel codes in lieu of the true

values.
Fig. 5 shows the methodology diagrammatically in terms of

the -dimensional vectors used for embedding channel codes,
after grouping the coefficients in set. Here, is a vector
representing a group of original set coefficients, which is
predicted as . As long as the prediction process is accurate,
the prediction error will be small. It is this vector that
is used as the base over which a channel code is embedded in
the host. For example, if symbol is to be transmitted using
this carrier vector, the vector will be perturbed intoas shown
in the diagram, where the channel code is given by . The
vector is the one that actually appears in the watermarked
host, so that the overall perturbation of the original vectoris
given by . In order to decode, the receiver estimates, the
base unperturbed vector, from the noisy coefficients received in
set , to obtain the estimated vector. It is this estimate that
is assumed to be the base for embedding. Hence, the decision
boundaries for decoding are assumed to be centered around.
As an example in the diagram, if the perturbed vectorin the
watermarked host representing symbolis received as due
to noise, the decoding result will be still correct as long as
does not go beyond the decision boundaries for symbol.

Let us assume the variance of the error in prediction (in the
prediction-estimation approach) or quantization (in the quanti-
zation approach) before embedding to be. Also, assume the
expected per dimension squared distance (power) of the channel
codes embedded on the predicted vectors to be. Since the
channel codes representing the hidden information are inde-
pendent of the prediction error, and assuming both the channel
codes and the prediction error to be zero-mean, the expected

Fig. 6. Example pixel-domain data hiding scheme for image hosts.

per-dimension-squared overall perturbation is given by
. To ensure the transparency constraint, this quantity

should be less than as defined in (3). In other words, the avail-
able power or transparency constraint is divided into two parts:
1) the part which actually determines the robustness of the code,

and 2) the part that allows for inaccurate prediction,.
Let us next assume the variance of the error in base estima-

tion before decoding to be . Since decoding is based on the
estimate rather than on the true base vector, we can as-
sume the estimation error to act as an additional noise
component in the received vector . That is

(13)

Assuming the noise in the set coefficients that determine the
estimation error to be independent of the noise in the setco-
efficients, the noise variance of the effective channel will be

, where is the variance of the channel noise appearing
in all the coefficients. Thus, in assuming the base vector for em-
bedding to be , the receiver effectively decodes symbols from
a channel at a higher noise level.

It is now apparent why the prediction-estimation scheme
is more advantageous than the quantization scheme, if good
predictors and estimators can be obtained. For the quantization
scheme, the requirement that the quantized values be suffi-
ciently separated, ensures that be a large fraction of the
power constraint . Therefore, , the power of the channel
codes that can be used, will be small. On the other hand, in
the prediction-estimation approach, if the predictor is good,

will be small, thereby allowing a larger power for the
channel codes. Of course, decoding is more difficult in the
prediction-estimation approach due to a nonzero( is
zero in the quantization approach, if the quantized base value
is always correctly recovered). However, if estimator is good
enough, the degradation in robustness will be small. In the
long run, for good predictors and estimators, the prediction-es-
timation approach will yield more robust embedding than the
quantization approach.

We now present as an example a pixel-domain data-hiding
scheme for image hosts using the above methodology. Fig. 6
shows a portion of an image to act as a host for hidden data.
In the diagram, the shaded pixels comprise Set, while the
remaining pixels comprise Set. The prediction operation is
similar to mean-filtering in 3 3 windows around the Set
coefficients, where the set pixel at the center is not included
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in the computation of the mean. Each Setpixel is thus
replaced by given by

(14)

The replaced Set pixels are then grouped into-dimensional
vectors and perturbed to represent channel codes. At the re-
ceiving end, assuming an i.i.d Gaussian model for the noise in
the pixels of the received image, the estimateof will be
given by

(15)

which is the same as (14), except that the’s are now the noisy
pixels received rather than the true ones. If the noise variance
is , the variance of the estimation error will be . The
receiver can then decode the channel codes withas the base
value rather than , and with the noise variance of the effective
channel being .

Note that the prediction and estimation functions should be
known a priori without knowledge of the actual host used for
embedding. In practice, predictors and estimators in the trans-
form domain that work well for all instances of hosts of a par-
ticular class may be difficult to obtain. Classification based on
stable features of the host data can be used for better selection of
the set coefficients, and designing improved predictors spe-
cialized for each class. In our implementations, however, we
adopt a very simple nonadaptive approach for image or video
hosts, that can be regarded as a special case of both the quanti-
zation approach and the prediction-estimation approach.

III. D ATA HIDING IN HOST VIDEO

While the discussion so far has been considerably generic and
applies to hiding most kinds of secure data in most kinds of host,
in this section we specialize the scheme to video hosts.

The general principle of data hiding in video is as follows.
Each frame of a video sequence is orthogonal wavelet trans-
formed, and the transform coefficients are grouped into vec-
tors based on an encryption key. The signature data is vector
quantized, and the indices are embedded into the coefficient
vectors in one or more subbands using efficient channel codes.
The same hidden data may be repeated in a few successive
frames to introduce robustness to low frame-rate compression
of video. Note that the frame by frame approach suits well the
frame-based compression technology currently in vogue.

We now focus on the issue of choice of subbands for embed-
ding hidden data. In general, hiding data in the lower subbands
has several distinct advantages. The nature of current compres-
sion algorithms ensures better preservation of the lower fre-
quency data. Furthermore, embedding data in the lower frequen-
cies is not likely to hamper the compression efficiency signif-
icantly. Most compression schemes quantize the lower bands
finely, and in some way utilize to their advantage the fact that
the higher bands have very little energy. Injecting information
in the lower bands, therefore, leads to neither easy destruction

Fig. 7. Subband chosen for zeroing and subsequent data embedding

of the hidden information, nor to any significant change in the
coding efficiency. Injecting data in the higher bands, on the other
hand, leads to significant deterioration in the compression effi-
ciency by most algorithms. However, a disadvantage is that the
distortions introduced by embedding in the lower bands may
be perceptually more severe. Weighing the pros and the cons,
however, hiding data in the lower subbands is still found to be
better if the kind of transformation we are most concerned with
is compression.

If, however, extraction is to be made possible without knowl-
edge of the original host using the techniques in Section II-H,
hiding data in the lower bands is not found to be appropriate.
While on one hand, coefficient prediction (see Section II-H)
in the wavelet domain is not an easy problem by any means,
on the other hand, because the lower subbands have more en-
ergy than the higher subbands, any reasonable predictor or quan-
tizer would yield larger errors in the lower subbands than in the
higher bands. As such, the lower subbands do not form a suit-
able channel for data hiding. Noting that natural images typ-
ically have very low energy in the higher bands, we find that
for most images, zeroing out some or all of the coefficients
in one or more of the higher subbands introduces a very low
mean-squared error and affects image detail only inconspicu-
ously in the perceptual sense. Therefore, if the prediction (or
quantization) used is simplyzero, and the hidden data is em-
bedded on the zeroed coefficients, the extraction process only
needs to use the zero-vector as its estimated base for decoding
the noisy vectors it receives. Both the prediction and the esti-
mation problems become nontrivial in this approach. Further-
more, the estimation error is guaranteed to be zero. In prac-
tice, the exact coefficients that are zeroed out and subsequently
used for embedding, are either pre-determined, or selected in
a pseudo-random manner using the encryption key, or selected
image-adaptively based on stable features of the host frame.

Note that the above methodology contradicts the reasons pro-
vided earlier on why it may better to embed data in the lower
subbands. Therefore, to strike a compromise, only the coef-
ficients in the middle subbands are targeted for data hiding.
The scheme used in our implementations is shown in Fig. 7.
A two-stage wavelet decomposition of each frame is made, and
the hidden data is embedded in the coefficients of the shaded
LL-HH subband, after zeroing. Note that embedding data in
a single subband is not very appropriate for copyright protec-
tion applications because if the subband used for embedding
is known, an attacker can easily destroy the hidden informa-
tion by bandstop filtering. However, in applications involving a
broadcast scenario where the same watermarked video is freely
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(a)

(b)

Fig. 8. Embedding and extraction schematic for data hiding in video using zeroed LL-HH subband. (a) Encoder. (b) Decoder.

Fig. 9. Average PSNR of extracted quarter QCIFHall_Monitorr sequence
versus bit rate for H.263 compressed hostMother_Daughterbit stream at 30
frames/s for standard VQ and COVQ, both of size 256. The 256-symbol channel
consists of a Voronoi code derived fromD lattice.

broadcast or made available to everybody, but only those au-
thorized retrieve the hidden data, protection against watermark
destruction is of secondary importance to the protection against
unauthorized retrieval. If protection against destructive attacks

is desired, the carrier coefficients should be spread over several
subbands, including the LL band after quantization, so that an
attacker cannot destroy the hidden data without substantially de-
grading the host video also.

It is appropriate to make a comment on the zeroing-out
approach above. While zeroing-out coefficients from one or
more subbands before embedding may result in significant
distortions or loss of detail for some host videos, in the
absence of suitable wavelet domain coefficient predictors,
the zeroing-out approach appears to be the only reasonable
solution. Also note that this approach is a special case of
both the quantization approach and the prediction-estimation
approach described in Section II-H.

Fig. 8 shows a schematic diagram for the embedding and
extraction mechanism outlined above. The host video is first
wavelet transformed frame by frame. An encryption key is used
to pseudo-randomly pick coefficients to use as carriers from
one or more of the middle subbands chosen for embedding, and
also to group them into-dimensional vectors. The carrier vec-
tors thus formed are each zeroed out. The total number of co-
efficients picked depends on the amount of hidden data to be
embedded in each frame. The hidden compressible data is then
appropriately vector quantized, and the indices obtained in the
process are embedded into the-dimensional carrier vectors by
assigning them to be the corresponding channel codes scaled by
a factor .
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 10. Visual quality results for hiding quarter QCIFHall_Monitor in QCIF Mother_Daughterusing COVQ. Frame 20 of the host video and Frame 36 of the
hidden video are shown as examples.

IV. I MPLEMENTATION DETAILS AND RESULTS

A. General Comments

In this section, we present the implementation details of
two example applications: hiding video in video and hiding
speech in video [4], both of which allow extraction of hidden
data without knowledge of the original host. Though these
applications strongly parallel the applications presented by
Swansonet al. in [1], the current work presents a more uni-
versal framework, of which the embedding scheme in [1] is in
many ways a special case. While [1] presents a binary source
embedding scheme, the current work is more generic in that
symbols from a -ary source can be embedded in the host
data. In terms of channel coding, the scheme in [1] essentially
uses a binary channel code in high dimensional space, where
the code directions are varied in a pseudo-random manner. One
difference however, is that the power of the channel codes in
[1] is also varied based on perceptual considerations. While
this is good for the sake of invisibility, not all hidden bits are
equally protected.

Furthermore, the amount of data embedded in [1] is much
smaller than that attempted in this work. In the current work,

the use of channel coding principles allows maximizing
the amount of data hidden for a given tolerable distortion
introduced in the host data, and a desired level of robustness
to noise. While the methodology can be effectively used for
achieving any tradeoff, the results presented here correspond
primarily to the case where the amount of data hidden is large.
Although the distortion introduced in the watermarked video is
significant, we choose to present these results because similar
high data rate embedding results are relatively uncommon in
the literature. We also test our scheme by actually compressing
the watermarked video by standard algorithms (H.263) and
then recovering the hidden data (video or speech) from the
reconstructed video. In contrast, [1] presents only the BER
results, which is not sufficient to describe the quality of the
extracted video when sophisticated source coding schemes like
MPEG are used in a noisy environment.

All the concepts outlined in the previous sections are covered
in the implementations and results presented below. The wavelet
filters used in all cases are the orthogonal Daubechies filters [22]
of length 6. Other applications of the methodology in this work
will be found in [2], [3], where gray and color images are hidden
in larger host images.
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B. Hiding Video in Video

In this application, nonstandard Quarter QCIF video at spa-
tial resolution 88 72, and temporal resolution 7.5 frames/s is
hidden inside standard 176 144 QCIF video at 30 frames/s.
Both the videos are in4 : 2 : 0 format, where the chrominance
components Cb and Cr are downsampled by a factor of two in
both vertical and horizontal directions. The host and the hidden
video are synchronized in time. For the hidden video, four lu-
minance pixels, one Cb pixel, and one Cr pixel, in each 22
window, are grouped together to form vectors of dimension 6.
Each frame of a quarter QCIF video thus yields
vectors. Using such data taken from a number of quarter QCIF
videos, standard VQ’s as well as channel optimized VQ’s are
designed for different channels. The indices obtained by vector
quantization or channel-optimized vector quantization, are em-
bedded into the LL-HH subband obtained by a two-stage or-
thogonal wavelet decomposition of each frame of the host QCIF
video. The watermarked video is piped through a H.263 en-
coder, and the reconstructed video is used to extract the hidden
video segment.

It is assumed that the noise introduced in the pixels of the wa-
termarked host as a result of various transformations is additive,
and i.i.d. Gaussian with variance . It follows, therefore, that
the additive noise introduced in the orthogonal wavelet coeffi-
cients are also Gaussian distributed with precisely the same vari-
ance. Assuming reasonable values for, the transition proba-
bilities for a given channel are estimated by computer simula-
tions, and are subsequently used in the design of the channel-op-
timized VQ. The initial codebook for COVQ design [21] is
obtained by standard Lloyd’s algorithm-based VQ design, fol-
lowed by an appropriate indexing scheme.

We present the results for two different channel implementa-
tions. In the first case, the data is hidden only in the luminance
coefficients. The chrominance coefficients are left unperturbed
to prevent occurrence of false colors. Note that the LL-HH sub-
band of a luminance QCIF frame contains
coefficients. Dividing the coefficients from this subband into
groups of four wavelet coefficients yields vectors
of dimension four. The 4-D channel codebook chosen is of size
256, and comprises the Voronoi code derived from thelattice
by centering the lattice at (0, 3/16, 11/32, 17/32). Conway and
Sloane [18] have shown such codes to be very efficient, while
having fast encoding and decoding algorithms. The source code-
book is also of size 256, with each index mapping to a particular
channel symbol in the channel code. Note that each frame of the
hidden quarter QCIF video has 1584 source vectors, of which
only a quarter (396) can be encoded in each QCIF frame. Thus,
four host QCIF frames are required to complete the embedding
of each hidden frame if the entire LL-HH subband is used as
carriers. This constrains the maximum frame rate for the hidden
video to be 1/4 the frame rate of the host QCIF video. The frame
rate for the hidden video will be still less if the same data is re-
peated in a few successive host frames to introduce robustness
to frame drops during compression.

The quarter QCIFHall_Monitorsequence at 7.5 frames/s was
hidden inside the 30 frames/s QCIFMother_Daughtersequence
using the above approach. The host video was subsequently

Fig. 11. Average PSNR of extracted quarter QCIFCoastguardsequence
versus bit rate for H.263 compressed hostAkiyo bit stream at 30 frames/s
for standard VQ and COVQ, both of size 72. The channel code is of size 72,
consisting of the first shell of theE lattice.

compressed using H.263 at 30 frames/s. A standard VQ as well
as three different channel-optimized VQ’s with varying noise
levels are designed for the 256-ary channel described above. The
standard deviation of the assumed Gaussian noise expressed
as a percentage of the packing radius (see [16]) of thelat-
tice-based channel code are 28%, 32%, and 35%, respectively,
for the three COVQ designs. The PSNR for the extracted video
against the video bit rate after H.263 compression of the host
at 30 frames/s is plotted in Fig. 9 for all the four cases with
the same transparency constraint. As expected, at low bit rates
of the watermarked host video, the channel-optimized VQ re-
trieval PSNR results are higher than that of standard VQ, while
at higher bit rates the retrieval PSNR results for standard VQ is
superior. This is because in the noise-free case, the COVQ code-
vectors are not optimal because they have been designed for a
noisy channel. However, in the presence of noise, the attempt to
minimize the overall end-to-end distortion in COVQ bears fruit.
Fig. 10 compares for the 32% COVQ implementation, the
visual quality of the watermarked and compressed frame 20 of
theMother_Daughtersequence with the original, and also the
extracted Frame 36 of the hidden quarter QCIFHall_Monitor
sequence for two different bit rates with the original. The re-
trieval result in Fig. 10(g) is of barely acceptable quality. The
spurious 2 2 impulses correspond to erroneous extraction of
the VQ indices. The retrieval quality degrades very fast at bit
rates lower than this.

In the second implementation, data is hidden in both the lu-
minance and chrominance coefficients. The LL-HH subband of
a luminance QCIF frame contains 1584 coefficients, while the
same subband for the chrominance components contains 396
coefficients. Grouping four luminance wavelet coefficients from
the LL-HH subband, and one wavelet coefficient from each of
the Cb and Cr LL-HH subbands, yields 396 carrier vectors of
dimension 6. The 6-D channel codebook is of size 72, and com-
prises the first shell of the lattice. The source codebook is
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 12. Visual quality results for hiding quarter QCIFCoastguardin QCIF Akiyo, using COVQ. Frame 20 of the host video and Frame 36 of the hidden video
are shown as examples.

correspondingly of size 72. As before, four QCIF frames are re-
quired to host one frame of the source quarter QCIF video.

The quarter QCIFCoastguardsequence at 7.5 frames/s
was hidden inside the 30 frames/s QCIFAkiyo sequence
using the above approach. The host video was subsequently
compressed using H.263 at 30 frames/s. A standard VQ, as
well as a channel-optimized VQ designed for i.i.d. Gaussian
noise with standard deviation 37% of the packing radius of the

lattice-based channel code, are designed. The PSNR for the
extracted video against the video bit rate after H.263 compres-
sion of the host at 30 frames/s, is plotted in Fig. 11 for both
standard VQ as well as channel-optimized VQ with the same
transparency constraint. As expected, the channel-optimized
VQ retrieval PSNR is lower than that obtained by standard
VQ at high quality compression of the host (low noise), but
overtakes the standard VQ results as the compression becomes
more severe (higher noise). Fig. 12 compares for the COVQ
implementation, the visual quality of the watermarked and
compressed frame 20 of theAkiyosequence with the original,
and also the extracted frame 36 of the hidden quarter QCIF
Coastguardsequence for two different bit rates, with the
original. Note that the retrieval results in Fig. 12(f) shows
considerable blockiness. This is due to the fact that a small
source codebook of size 72 was used. Note further that the

Fig. 13. SNR of extracted hidden male speech versus bit rate for
H.263 compressedNews bit stream at 15 frames/s forD , E , and L
implementations.

retrieval result in Fig. 12(g) is barely acceptable at host bit rates
down to 422 kb/s.
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Fig. 14. Visual quality of Frame 40 of theNewssequence, before and afterL embedding and compression, together with the original and retrieved speech
waveforms.

C. Hiding Speech in Video

We implemented a system for hiding 8-kHz sampled speech
at 16 bits/sample in a 30 frames/s QCIF video, similar to the one
reported in [3]. Successive samples of speech are vector quan-
tized, and the indices are embedded into the LL-HH subband
coefficients. Temporal redundancy is incorporated by embed-
ding the same information in several successive frames, so that
the embedding becomes robust to lower frame rate compression.
The watermarked video is piped through a H.263 encoder as be-
fore, and the reconstructed video is used to extract the hidden
speech segment.

First, we attempted embedding the secure speech in only the
luminance LL-HH subband. We present the details of three dif-
ferent implementations with increasing dimensions of channel
codes.

1) The speech is vector quantized with a codebook of size
576 and dimension 4. The index obtained is decomposed
into two 24-ary symbols, each of which is embedded into
a vector of dimension 4 obtained by grouping four lumi-
nance LL-HH coefficients of a two-stage wavelet decom-
position. The embedding is done by perturbing the vectors
in accordance with a spherical channel code consisting of
the first shell of the lattice (which has 24 points).

2) The speech codebook is of size 240 and dimension 4. The
index for each speech vector is used to perturb a group
of 8 luminance LL-HH coefficients in accordance with a

Fig. 15. SNR of extracted hidden female speech versus bit rate for H.263
compressed Grandmother bit stream at 7.5 frames/s forE , K , andG
implementations.

spherical channel code comprising the 240 points on the
first shell of the lattice.

3) The speech codebook is of size 4320 and dimension 8.
The index is embedded into a vector of size 16 obtained by
grouping 16 luminance LL-HH coefficients. The channel
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Fig. 16. Visual quality of Frame 40 of the Grandmother sequence before and afterG embedding and compression, together with the original and retrieved
speech waveforms.

code comprises the 4320 points on the first shell of the
Barnes–Wall Lattice .

For all the above implementations, the same information is
repeated in two successive frames to introduce robustness to
low frame-rate compression. TheNewsQCIF video is used
as the host for hiding a segment of male speech. The SNR
for the extracted speech segment against the video bit rate
after H.263 compression of the host at 15 frames/s (frameskip

) is plotted in Fig. 13. The transparency constraint is
the same for all these results. Note that the distortion in the
noise-free case in the implementation is higher than that
in the implementation because a smaller codebook of the
same dimension 4 is used. But in presence of noise, a robust

-based codebook contributes to superior retrieval PSNR.
The 8-D source codebook with 4320 codevectors in the
implementation is superior to both in the noise-free case be-
cause it can exploit correlations better, and has a larger number
of codevectors. In the presence of noise also, as expected, the

-based channel code yields maximum robustness to noise.
Fig. 14 compares the visual quality of the -embedded and
compressed frame 40 of theNewssequence with the original,
and also the extracted speech waveform with the original one
hidden at 399 kb/s encoding. Note the spurious spikes in the
retrieved speech waveform resulting of erroneous detection.

We next present results for three implementations where both
the luminance and the chrominance coefficients are perturbed.

1) The speech codebook is of size 5184 and dimension
8. Each index is decomposed into two 72-ary symbols,
which are embedded into two coefficient vectors of
dimension 6. Each 6-D coefficient vector is obtained by
grouping four luminance LL-HH coefficients and one
LL-HH coefficient from each chrominance component.
A spherical channel code derived from the first shell of
the lattice (which also has 72 points) is used for each
symbol.

2) The speech is vector quantized with a codebook of size
756 and dimension 8. A 12-D coefficient vector is ob-
tained by grouping eight luminance LL-HH coefficients
and two LL-HH coefficients from each chrominance
component. A spherical channel code consisting of the
756 points on the first shell of the Coxeter–Todd lattice

is used.
3) The speech is vector quantized with a codebook of size

4096 and dimension 16. A 24-D coefficient vector is ob-
tained by grouping 16 luminance LL-HH coefficients and
4 LL-HH coefficients from each chrominance compo-
nent. A spherical channel code , consisting of 4096
points, is used. It is obtained from the (24, 12) extended
Golay code by converting zeroes to ones, and ones to neg-
ative ones.

For all the above implementations, the same information is re-
peated in four successive frames. Fig. 15 presents the retrieval
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SNR versus bit rate results for the above methods when a
segment of female speech is hidden in the Grandmother QCIF
video, which is then coded by H.263 at 7.5 frames/s (frameskip

). The transparency constraint is the same for all these
results. Note that the distortion in the noise-free case in the
implementation is higher than that in the implementation
because a smaller codebook of the same dimension 8 is used.
But, in presence of noise, a robust -based codebook con-
tributes to superior retrieval PSNR. The 16-D source codebook
with 4096 codevectors in the implementation yields a
very efficient source VQ in the noise-free case because longer
source vectors exploit correlations better. In the presence of
noise, as expected, the highest dimensional channel code
is found to be vastly superior to both. Fig. 16 compares the
visual quality of the -embedded and compressed frame 40
of the Grandmothersequence with the original, and also the
extracted speech waveform with the original speech hidden in
217 kb/s video.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

We have presented a considerably generic framework for data
hiding with special emphasis on hiding compressible secure
data, such as video and speech, in host video. Our quantitative
treatment of the problem is motivated by the identification of
its similarity with the source and channel coding problem in
digital communications, and allows achieving a desired tradeoff
between the visibility of data hiding, amount of secure data
hidden, and robustness to host data transformations such as
compression. The compressible hidden data is vector quantized,
and the indices obtained are then embedded into the host by
transform domain vector perturbations using noise-resilient
channel codes. Channel-optimized VQ’s can be designed for
added robustness to noise. An encryption-key-based shuffling
and grouping of coefficients, together with uncertainties in
source and channel codebooks, make unauthorized retrieval
next to impossible, even with the knowledge of the basic al-
gorithm. While the generic approach can be used with success
for the case when the original host is available to the retriever,
the true potential of data hiding lies in being able to extract
the hidden data without using the original host. This makes
possible invisible mixing of different kinds of hidden data
with standard forms of open data transmission, allowing only
those authorized to retrieve the additional hidden information.
We showed how the generic scheme can be readily adapted
to allow retrieval without knowledge of the original host. We
applied the scheme to hiding large amounts of secure video and
speech in host QCIF video. The watermarked video is piped
through a H.263 coder. The speech and video extracted from the
compressed video are found to be intelligible and of acceptable
visual quality, respectively, for high enough compression ratios.

Once the equivalence between the data communication
problem and the data hiding problem has been established,
there are a host of enhancements that could be made to improve
on the basic source and channel-coding schemes described in
this paper. More sophisticated source-coding schemes rather
than simple VQ for the hidden data can be used within this
framework. Typically, different parts of a compressed bit

stream obtained by a sophisticated compression scheme have
different levels of influence on the quality of reconstruction.
While a single error in some parts of the symbol stream may
have a catastrophic effect on reconstruction, errors in other
parts may only be of limited significance. Naturally, the more
important parts need to be more heavily protected. Different
source and channel codebook combinations with unequal levels
of quantization and protection should then be used for different
parts of the compressed hidden data. That is, the more critical
information symbols need to be embedded at a lower rate for
increased robustness to noise, and vice versa. In general, it may
not be advisable to use a variable rate compression scheme,
which are inherently less resilient to noise than fixed bit rate
schemes. From purely a channel-coding perspective, while
increase in the dimensionality of a channel increases robustness
to noise, it also introduces difficulties in implementation.
Established trellis-coded modulation schemes can be used to
obtain very high dimensional effective channels, while avoiding
the problems associated with too large dimensions.

Finally, we make some honest admissions about the draw-
backs of the current scheme. First, to make data hiding more
transparent visually, embedding of secure data must be made in
perceptually insignificant areas of the host data. In this work,
our treatment is based solely on the mean-squared error, which
is not always the best measure in the perceptual sense. Investiga-
tions on the perceptual aspects must be made within the current
framework for greater invisibility. Stable perceptual features of
an image, such as activity in a particular region, edginess, or
contrast may be used as cues to select the coefficients to use as
carriers. Unfortunately, such image-adaptive decision schemes
cannot be implemented without sacrificing the amount of secure
data hidden. Second, the current work is not robust to transfor-
mations such as rotation and clipping. Transforms or features
of an image that are invariant to such transformations should be
investigated to rectify this drawback.
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