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ABSTRACT

The signal-dependent rank order mean (SD-ROM) £lter is
effective at removing high levels of impulse noise from 2-
D scalar-valued signals. Excellent results have been pre-
sented for both a two-state and a multi-state version of the
£lter. However, implementation of the two-state SD-ROM
£lter requires the selection of a set of threshold values. In
this paper, we propose a method for choosing the thresholds
based on a statistical characterization of an input image.
The method approximates the histogram of an image with a
weighted sum of Gaussian distributions. Using the statisti-
cal model and the input distributions, the likelihood of cor-
rectly identifying impulses is estimated as a function of the
thresholds. By maximizing the likelihood of correct detec-
tion, optimal thresholds are predicted. The performance of
the algorithm using the predicted thresholds is compared to
the optimal performance found using a brute-force search.

1. INTRODUCTION

One of the most common image processing tasks involves
the removal of noise from images. Noise can be introduced
during image capture, during transmission, or during stor-
age. For design purposes, noise sources are frequently ap-
proximated by random variables with a known probability
distribution. As a result, many different types of £lters have
been developed to handle different kinds of noise sources
[1, 2]. One common noise model corrupts a signal by intro-
ducing impulses. In this case, most of the original samples
are unaltered, but the few corrupted samples may vary dras-
tically. One group of £lters, called decision-based £lters
[2, 3] or state-conditioned £lters [4], estimates the state of
the sample in question. If the sample is determined to be
uncorrupted, it is passed through the £lter unchanged. If
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the sample is corrupted, an appropriate estimate is chosen
to replace it.

The signal dependent rank order mean (SD-ROM) £lter
has been shown to be effective at removing impulses from
2-D scalar-valued signals [4]. Excellent results were shown
for both a two-state and a multi-state version of the £lter.
Although a speci£c design method was developed for the
multi-state SD-ROM, no method was proposed in [4] for
£nding the thresholds required by the simpler two-state al-
gorithm.

In this paper, we present a probabilistic model for pre-
dicting the detection performance of the SD-ROM £lter as
a function of the thresholds, image distribution, and noise
model. The image distribution is modeled using a Gaussian
decomposition of its histogram. A uniformly distributed
noise model is assumed for the impulse noise. By maxi-
mizing the detection performance with respect to the thresh-
olds, we predict a set of optimal thresholds for an image and
level of corruption. To test the predictions, the thresholds
are compared to thresholds found by a brute-force search
on simulated corrupted images.

2. BACKGROUND

2.1. SD-ROM Filter

The SD-ROM algorithm works in two steps, detection and
estimation. First, a small neighborhood around a sample is
used to determine if the central sample is corrupted. If the
detection step decides the central sample is corrupted, a new
value is estimated for the central sample using the samples
in the surrounding window. If the detection step decides
the central sample is uncorrupted, the sample is passed un-
changed.

Although the surrounding window can be of arbitrary
size and shape, in practice a three by three window is used
in most applications. The center pixel within the window is
designated x(n). The surrounding eight values are labeled
x1(n) . . . x8(n) where x1(n) is the upper left value in the



window and x8(n) is the lower right value. The remaining
values are labeled by scanning across rows in the window,
skipping the center value. The algorithm can then be sum-
marized as follows:

1. Sort pixel values in the surrounding window from small-
est to biggest:

x1(n), . . . , x8(n) → r1(n) ≤ . . . ≤ r8(n) (1)

2. Compute the rank-order differences, i = 1, . . . , 8:

di(n) =
{

ri(n) − x(n), i = 1, . . . , 4
x(n) − ri(n), i = 5, . . . , 8,

(2)

3. Threshold and replace, if necessary, j = 1, . . . , 4:

y(n) ≡



m(n), dj(n) > Tj ,
m(n), d9−j(n) > Tj ,
x(n), otherwise.

(3)

The ordered window values are r1(n), . . . , r8(n). The
rank ordered differences are d1(n), . . . , d8(n). m(n) is the
rank order mean and is the average of r4(n) and r5(n).
This value replaces the center pixel if any of the thresholds
T1, . . . , T4 are exceeded. Because the difference calcula-
tion results in a signed difference and not an absolute dif-
ference, the thresholds are restricted to values greater than
or equal to zero. The signed difference also gives the £lter
a step response similar to the median £lter.

2.2. Noise Model

Although the SD-ROM £lter can effectively remove many
types of corruption, in this paper we only consider a partic-
ular kind of impulse noise. Impulse noise is de£ned as

x(n) =
{

v(n), with probability 1 − p
η(n), with probability p,

(4)

where v(n) is the original image value, η(n) is a sample
of an identically distributed, independent random process
with a uniform probability density function, and p is the
probability of corruption.

3. THRESHOLD OPTIMIZATION

3.1. Statistical Characterization

To create a statistical characterization of the SD-ROM al-
gorithm, we assume that each sample window contains nine
random variables. Each sample is an instance of either the
background (original image) distribution or the impulse noise
distribution. We also assume that the proportion of each dis-
tribution (percent corruption) is also known.

Given these assumptions, we derive the probabilities that
an impulse will be detected given that the center is corrupted
(desired) and that an impulse will be detected given that the
center is uncorrupted (undesired).

Preliminary work in this direction was presented in [5].
The up-to-date equations, which are rather lengthy, are in-
cluded in Table 1. The derivation was done in the following
stages:

1. The probability density function (pdf) for the sorted
values in the surrounding window is derived, given
the rank n, the number of impulses in the window
Nc, the background distribution, and the noise distri-
bution.

2. The probability mass functions (pmf) for the differ-
ence between each sorted window value and the cen-
ter value is then found, given the rank, the number of
impulses, and whether or not the center value is an
impulse.

3. For each threshold, the probability that the difference
will not exceed the threshold is found, given the state
of the center pixel (corrupted or uncorrupted). This
step requires a summation over all possible values of
Nc and two different ranks n for each threshold.

4. The probabilities of passing the center with the indi-
vidual thresholds are combined into the probability of
passing the center value for a set of thresholds, given
the state of the center value.

5. The results from each center value state are weighted
by the probability of each state and combined. The
detection performance is a sum of the probabilities
that an impulses will be found and that non-impulses
will not be found.

Using the statistical model, the uniform impulse noise
model, and an assumed image model, we arrive at the thresh-
olds with the greatest probability of correct detection by nu-
merically maximizing with respect to the thresholds.

3.2. Background Distribution

At £rst glance, using a statistical model for a spatial £lter
may not seem like a good idea. The assumption that each
pixel value represents an independent random value with a
background distribution ignores the fact that image values
are normally spatially correlated. However, the SD-ROM
algorithm sorts the values in its window. Therefore, all spa-
tial information within each window is lost.

One approach to estimating the background distribution
required by the statistical model would be to use the image
histogram. This method does not work very well. The his-
tograms tend to have wide distributions, which lead to large
thresholds. Using the histogram ignores the fact that the
window sweeps across the image, moving from region to



region, where each region has a different background distri-
bution. The background distribution may be narrow within
each region, but vary signi£cantly between regions, giving
the overall wide distribution of the histogram. Narrower dis-
tributions lead to smaller thresholds. Therefore, a weighted
combination of narrow distributions should result in a better
background distribution.

The best approach would be to segment the image into
regions, £nd the background distributions for each region,
and estimate the proportion of the image with each distri-
bution. Then the detection probability curves for each re-
gion could be calculated, weighted by its proportion, and
combined into an overall detection probability curve. Max-
imization of this curve would provide a better estimate of
the optimal thresholds.

As a £rst step towards this goal, we implemented the
histogram decomposition technique described in [6], with
some minor modi£cations. In this method, each image is
assumed to be composed of regions with roughly Gaussian
distributions of different means and variances. The image
histogram is £tted with a set of Gaussian curves. An exam-
ple for the Lena image is shown in Figure 1. This method
still does not use any actual spatial or regional information
from the image. It does not work well for regions with bi-
modal distributions.

4. EXPERIMENTAL RESULTS

We used the set of Gaussian curves estimated from the Lena
image histogram as inputs to the statistical model. The re-
sulting distributions were weighted, added, and maximized
to £nd the thresholds with the best detection performance.
The procedure was applied for corruption percentages of 5,
10, 15, 20, 25, 30, 40, and 50 percent. To see if the pro-
cess actually represents an improvement over using the his-
togram, the optimum thresholds were also found using the
histogram as the background distribution.

Several versions of the Lena image with impulse noise
at the various corruption percentages were also created. The
simulated images were used to £nd the optimum thresholds
by brute-force and to measure the actual performance of the
thresholds predicted using the statistical model.

Figure 2 contains plots of the results. Part (a) contains
plots of all four thresholds versus the corruption percentages
for each of the three approaches. Although the Gaussian
approach does not predict the optimal thresholds exactly, it
does come much closer than the histogram approach. Part
(b) plots the realized performance for each set of thresholds
on the corrupted images versus the corruption percentages.
Once again, the Gaussian approach does not achieve the op-
timum, but comes much closer than the histogram results.
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Fig. 1. Histogram decomposition. The original Lena his-
togram (solid), Gaussian approximation (dashed), and com-
ponent curves (dash-dot) are shown.
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Table 1. SD-ROM Statistical Model Equations.

1. Sorted value probability for two independent distributions (corruption and background image):

f(n)(x|Nc) =
∑N

i=1

∑A
j=α

∑B
k=β

∑Γ
l=γ

(
Nc

j , l

)(
Nb

(i − j) , (k − l)

)
Pj

ceP(i−j)
be Pl

clP
(k−l)
bl P(Nc−j−l)

cg P(Nb−(i−j)−(k−l))
bg

where,
α = max(0, i − Nb), A = min(i,Nc), Pce, Pcl, Pcg = Prob(impulse) = x,< x, or > x,
β = max(0, n − i), B = min(n − 1, N − i), Pbe, Pbl, Pbg = Prob(background) = x,< x, or > x,
γ = max(0, k − Nb + i − j), Γ = min(k,Nc − j), n = rank,

N = window size, Nc = impulse number, and Nb = N − Nc.

2. Probability mass functions (PMFs) for the rank-ordered differences:

Fc,(n)(z|Nc) =
∑255

x=0 Fc(x + z)f(n)(x|Nc) and Fu,(n)(z|Ni) =
∑255

x=0 Fb(x + z)f(n)(x|Nc)
where,

Fc(x) = the noise PMF and Fb(x) = the background image PMF.

3. Probability of center passing a single threshold:

Probpass(Ti|corrupted) =
∑8

j=0 Pc(j)[Fc,(9−i)(Ti|j) − Fc,i((−Ti − 1)|j)]
Probpass(Ti|uncorrupted) =

∑8
j=0 Pc(j)[Fu,(9−i)(Ti|j) − Fu,i((−Ti − 1)|j)]

4. Correct detection probability:

Probcorrect(T) = p ∗ (1 − Proball pass(T|corrupt)) + (1 − p) ∗ Proball pass(T|uncorrupt)
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Fig. 2. Performance comparison. The optimal thresholds found by direct search (solid), the statistical model using the Lena
histogram (dashed), and the statistical model using the Gaussian decomposition (dash-dot) are shown in (a). The performance
achieved by each set of thresholds in simulated tests are shown in (b).


