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ABSTRACT

In wavelet image compression, all information loss
occurs during quantization. Based on the property of
bi-orthogonal wavelets, optimal 2-D quantization er-
ror feedback �lters are designed to reduce the recon-
struction error. With very low complexity with regard
to computation and implementation the error feedback
system improves the PSNR of reconstructed image by
about 0.25 dB. In addition, due to its similar structure
to the dithered quantizer, it also improves the subjec-
tive quality of the reconstructed image by reducing the
contouring and ranging e�ect.

1. INTRODUCTION

In wavelet image compression, all the information loss
occurs during the quantization process [1]. Hence, the
eÆciency of the quantizer plays a key role in image
compression algorithm design. In wavelet transform,
it is desirable that the associated �lters be FIR and
linear phase. Hence, bi-orthogonal wavelets are used
in wavelet image compression instead of the orthogonal
wavelets [2][3]. An eÆcient quantizer can be designed
based on the property of the bi-orthogonal wavelet �lter
bank.

In digital �lter implementation using �xed-point arith-
metic, the truncation or round-o� error of multiplica-
tion operation can be treated as a noise at the output
of the �lter structure. Error feedback �lters can be de-
signed to reduce the noise energy [4]. In this paper,
in order to reduce the reconstruction error in wavelet
image compression, we have derived and designed op-
timal 2-D quantization error feedback �lters based on
the property of the bi-orthogonal wavelet. Moreover,
since the proposed error feedback system has a similar
structure to the non-substractively dithered quantizer,
it also improves the subjective quality of the recon-
structed image.

2. STRUCTURE OF 2-D QUANTIZATION
ERROR FEEDBACK

Since the transfer function from the quantization er-
ror to the reconstruction error is independent with the
analysis �lter bank, when designing the quantization
error feedback �lters, we only need to consider the syn-
thesis �lter bank. Let the lowpass and highpass synthe-
sis �lters be F0(z) and F1(z), respectively. For simplic-
ity, let's consider one level of synthesis. The synthesis
structure in Fig. 1(a) is equivalent to the structure in
Fig. 1(b). Since the four branches in Fig. 1(b) op-
erate separately, without loss of generality, we derive
and design the optimal quantization error feedback �l-
ter for the 2-D �lter FLH(z1; z2) = F1(z1) � F2(z2) in
the second branch.
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Figure 1: Two equivalent synthesis structures: (a) one
level of synthesis; (b) the parallel implementaion by
2-D �ltering.

The 2-D error feedback structure used in this paper
is shown in Fig. 2(a). e0 is the quantization error,
which is assumed to be white with variance �2 when
the quantization step size is relatively small. In the



Q

+
+ -

D(z1, z2)

+
data

LL band

e 0

2x2 up sampling

error diffusion

2-D quantization 

F  (z1, z2)
LH

1e
output image

(a)

Q

+
+ -

+

e 0

1e

1-D quantization 
error diffusion

x1      x2      x3      x4

e
D(z)

up sampling by 2

F(z)

1-D input

data

output data

(b)

Figure 2: (a) the 2-D quantization error feedback struc-
ture. (b) the 1-D quantization error feedback structure.

following section, we will derive the explicit expression
of the optimal 2-D �lter D(z1; z2) in the feedback loop
as shown in Fig. 2(a).

3. DERIVATION OF OPTIMAL
FEEDBACK FILTER

In order to simplify the derivation procedure of the op-
timal 2-D error feedback �lter D(z1; z2), we �rst com-
pute the optimal 1-D feedback �lter for F (z) which
is either F0(z) or F1(z). The 1-D feedback structure
shown in Fig. 2(b) is similar to the 2-D feedback struc-
ture shown in Fig. 2(a). The optimal feedback �lter

D(z) =
NP
n=1

dnz
�n should minimize the energy of the

reconstruction error e1. The mean square of e1 is given
by

MSE = MSE(d1; d2; � � � dN )

= �2

�Z
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j1� e2jwD0(e
2jw)F (ejw)j2dw (1)

To �nd the minimum point of this function, let
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Written in a matrix form, Eq. (2) becomes
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where

Ajk�nj =

�Z

0

cos 2(n� k)jF (ejw)j2dw;

Bk = (�1)
�Z

0

cos 2kw(F (ejw)j2dw: (4)

From Appendix (I), we know A is invertible, hence Eq.
(3) is valid, andMSE(d1; d2; � � � dN ) has a unique min-
imum point because from Eq. (1), we have

lim
jj(d1;d2;���dN )jj!1

jjMSE(d1; d2; � � � dN )jj =1 (5)

Therefore, with the quantization error feedback �lter
given in Eq. (3), the energy of the reconstruction error
is minimized. From Eq. (1), the peak signal-to-noise
ratio (PSNR) of the reconstructed image will be in-
creased theoretically by

� = 10 log 10

�R
��

jF (ejw)j2dw
�R
��

jF (ejw)j2j1� e�2jwD(e�2jw)j2dw
:

(6)
Next we derive the optimal feedback �lter for the 2-

D case as shown in Fig. 2(b). Let the transfer function
from the quantization error e0 to the reconstruction
error e1 be

T (z1; z2) = D(z1; z2) + 1

=

NX
k=0

NX
n=0

Tknz
�k
1 z�n2 ; (7)

where T00 = 1. The mean square of the reconstruction
error is given by

MSE =MSE(T )

=
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To �nd the minimum point, for all l and m such that
l �m 6= 0, let

0 =
@

@Tlm
M(T )

=

NX
k=0

NX
n=0

TknA
(0)
kl A

(1)
nm (8)



where

A
(0)
kl =

�Z
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cos 2(k � l)ujF0(eju)j2du;

A(0)
nm =

�Z
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cos 2(n�m)ujF1(ejv)j2dv: (9)

Note that in Eq. (3) we already have the explicit so-
lution of the 1-D optimal feedback �lter for a given
synthesis �lter F0(z) or F1(z). Let the optimal feed-

back �lter for F0(z) and F1(z) be D0(z) =
NP
n=1

d0nz
�n

and D1(z) =
NP
n=1

d1nz
�n, respectively. From Eqs.(1)

and (2), it is straightforward to show that
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satis�es Eq. (8). From Eq. (7), we know

D(z1; z2) = [1 +D1(z1)][1 +D0(z2)]� 1 (11)

is the optimal error feedback �lter for FLH(z1; z2). Fol-
lowing the same procedure, we can also derive the opti-
mal error feedback �lters DLL(z1; z2), DHL(z1; z2) and
DHH (z1; z2) for synthesis �lters FLL(z1; z2), FHL(z1; z2)
and FHH (z1; z2), respectively.

4. A DESIGN EXAMPLE

Let's take the Debauchies (5, 3) bi-orthogonal wavelet
[3] for example. Its lowpass and highpass �lters are

F0(z) =
1

2
p
2
(z�1 + 2 + z);

F1(z) =
1

4
p
2
(�z�2 � 2z�1 + 6� 2z � z2)z;

respectively. According to Eq. (3), we compute the op-
timal �rst-order error feedback �lters D0(z) and D1(z)
for F0(z) and F1(z), respectively,

D0(z) = �0:1711z�1;
D1(z) = 0:1751z�1: (12)

From Eqs. (3) and (11), the optimal feedback �lters for
FLL(z1; z2),FLH(z1; z2),FHL(z1; z2) and FHH (z1; z2) are

DLL(z1; z2) = �0:1711z�11 � 0:1711z�12 ;

DLH(z1; z2) = �0:1711z�11 + 0:1751z�12 ;

DHL(z1; z2) = +0:1751z�11 � 0:1711z�12 ;

DHH(z1; z2) = +0:1751z�11 + 0:1751z�12 ; (13)

respectively.

5. EXPERIMENTAL RESULTS

We apply the error feedback �lters in Eq. (13) to the
synthesis bank shown in Fig. 2(a) and simulate the syn-
thesis process as shown in Fig. 1(b) on two 512�512
images Lena and Peppers. After one level decompo-
sition of each image, the wavelet coeÆcients in each
subband are quantized at di�erent step sizes with or
without quantization error feedback. The quantized
wavelet coeÆcients are encoded by the stack-run im-
age coding algorithm [5]. The rate-PSNR curves for
Lena and Peppers are plotted in Fig. 3. It can been
seen that with quantization error feedback, the PSNR
of output image is improved by about 0.25 dB on av-
erage. One unique property of the quantization error
feedback is that PSNR will keep increased even when
its value is very high.

6. DITHERING EFFECT

At large quantization step sizes, the quantization noise
is not independent with the original signal. It is ob-
served that by adding an independent random variable
called dither before quantization and subtracting af-
ter it, the perceptual quality of the image improves
substantially [6]. Wavelet image compression typically
introduces two kinds of artifacts into the coded im-
ages: contouring and ringing. Contouring refers to
the false contours in smooth areas, which is caused
by the coarse quantization of the low frequency sub-
bands. The ringing e�ect refers to the ripples around
the edges in the reconstructed image, which is caused
by the coarse quantization of high frequency subbands.
These artifacts are very visible and subjectively annoy-
ing. Dithering can be applied to improve the subject
quality. However, it is observed in [6] that dithering
can cause an increase in both entropy and distortion.

Our quantization error feedback has a similar struc-
ture to the non-substractively dithered quantizer. The
only di�erence is, in non-substractively dithered quan-
tizer a white random noise is added before quantiza-
tion; but in the error feedback system a deterministic
signal is added to the original data before quantization
by distributing the quantization error into the neigh-
borhood points as shown in Fig. 2(a). Therefore, we
expect that quantization error feedback structure can
improve the subjective quality without loss of PSNR.
To show this, the quantization error feedback system
in Fig. 2(a) is applied to the Lena image at a relative
large quantization step size. In Fig. 4, it can be clearly
seen that with error feedback the contouring e�ects on



the face and shoulder are reduced. But at the same
time the PSNR of output image is increased by 0.27
dB with the optimal quantization error feedback given
in Eq. (13).

7. CONCLUDING REMARKS

Based on the property of the bi-orthogonal wavelet, we
have derived the explicit expression of the optimal 2-D
quantization error feedback �lters for the synthesis �l-
ter bank. The simulation results show that with quan-
tization error feedback, the PSNR of reconstructed im-
age is improved by about 0.25 dB. In addition, it has
been shown that quantization error feedback can also
improve perceptual quality due to its dithering e�ect.
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APPENDIX (I)

A is a Toeplitz matrix. Suppose there exits ~X =
(x1; x2; : : : ; xN ) 2 RN such that

~XA ~Xt = 0 (14)

Then, from (4), we have

�Z

0

NX
k=0

NX
n=0

xkxn cos 2(n� k)wjF (ejw)j2dw = 0 (15)

Note that

j
NX
k=0

xke
2jkw j2 =

NX
k=0

NX
n=0

xkxn cos 2(n�k)wjF (ejw)j2dw

(16)

Hence ~X = 0, which implies A is invertible. 2
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Figure 3: Experimental results for Lena and Peppers.

Figure 4: Contouring e�ect is reduced by quantization
error feedback. Left: reconstructed image without er-
ror feedback; Right: reconstructed image with error
feedback.


