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ABSTRACT

In this paper, we propose a very simple image compres-
sion scheme. The proposed coding scheme employs the
multi-level dyadic wavelet decomposition, linear quan-
tization with a proper dead zone, and then it converts
the quantized wavelet coefficients into three 1-D se-
quences for adaptive arithmetic coding. First, some
of the clustered zeros in the multi-level dyadic wavelet
decomposition are represented with the quadtree code,
and then the remaining zeros and non-zero integers are
arranged as a 1-D sequence by raster scanning. Next,
the resulting integer sequence is decomposed into two 1-
D sequences with small alphabet. Despite the simplic-
ity of the proposed coding scheme, the rate-distortion
performance of the proposed image compression algo-
rithm is competitive with the best image coders in the
literature.

1. INTRODUCTION

In many different fields such as digital cameras or com-
puter tomography, digital images are replacing conven-
tional analog images. The volume of data required to
describe such images leads to greatly slower transmis-
sion and makes storage prohibitively costly. Therefore,
the information contained in the data has to be com-
pressed by extracting the principal elements, which are
then encoded, and consequently, the quality of the re-
constructed image with the principal elements is re-
duced. A fundamental goal of digital image compres-
sion is to reduce bit rates for transmission or stor-
age while maintaining an acceptable quality of recon-
structed images. Meanwhile, the complexity of the
compression algorithm has to be as low as possible so
as to be implemented with reasonable cost.

To this end, many image compression techniques
have been developed, such as transform image cod-
ing, predictive image coding and vector quantization.
Among these techniques, transform image coding is
most efficient, particularly at low bit rates. There are

basically three steps in transform image coding: trans-
formation, quantization, and entropy coding. Because
wavelet transform coefficients are well localized in both
space and frequency domains, wavelet image coding
has proven to be an efficient transform image com-
pression technique. Recently, some advanced wavelet
transform image coding algorithms have been devel-
oped, of which the popular ones are the embedded ze-
rotree wavelet transform coding algorithm (EZW) [1],
the coding algorithm based on set partitioning in hi-
erarchical trees (SPTHT) [2], and the stack-run coding
method (SR) [3]. These three wavelet image coding al-
gorithms adopt similar schemes in all the three steps:
multi-level dyadic wavelet transform, linear quantiza-
tion with a proper dead-zone, and adaptive arithmetic
entropy coding. The main difference among these three
algorithms is in the data structure representing the
quantized wavelet coefficients for adaptive arithmetic
entropy coding.

In addition, some other wavelet transform image
coding algorithms have been introduced to improve the
performance of the popular ones based on different mo-
tivations. Wu and Chen [4] developed some simple con-
text modeling techniques to squeeze out more statisti-
cal redundancy in the wavelet coefficients of EZW-type
image coders so as to improve the coding efficiency.
Joshi et al. [5] applied the classification technique to
subband image coding in order to exploit the nonsta-
tionary nature of the image subbands. Based on an
optimal classification of subbands, an optimal rate al-
location can be reached. The choice of quantization
method is a crucial issue to improve performance in
wavelet image compression. Xiong et al. [6] optimally
select the spatial zero-tree regions and optimally choose
the ‘uniform’ scalar quantizer for remaining coefficients
to improve upon EZW. Zhang and Fisher [7] modified
the EZW and SR algorithms by replacing scalar quanti-
zation with trellis-coded quantization (TCQ). Besides,
Tran and Nguyen [8] replace the dyadic wavelet trans-
form by M-channel uniform band maximally decimated
linear phase perfect reconstruction filter banks in or-



der to obtain finer frequency spectrum partitioning and
higher energy compaction.

Though these modified wavelet image compression
algorithms may be more efficient than those of the pop-
ular ones, they usually suffer from high computational
complexity. In general, with a particular coding tech-
nique, efficient coding algorithms are generally compli-
cated and simple coding algorithms are usually ineffi-
cient. For example, the SR coding scheme is simpler
than the SPTHT coding scheme, but the efficiency of
the SR algorithm is less than that of the SPIHT algo-
rithm. Consequently, a tough job in image coding is
to develop a coding algorithm that is not only efficient
in coding but also is simple in implementation. There
usually are two methods to design simple and efficient
coding algorithms. One is to modify a simple coding
algorithm by keeping its simplicity while improving its
efficiency; the other is to modify an efficient coding
algorithm by keeping its efficiency while reducing its
complexity.

Recently, we introduced an efficient wavelet image
compression scheme, in which we use 1-D variable length
block coding to exploit the clustered zeros of the 1-D
quantized wavelet coefficient sequence [9]. This com-
pression scheme possesses the simplicity of the SR cod-
ing scheme while reaching the efficiency of the SPTHT
algorithm. However, like the SR coding scheme, it is
basically a 1-D sequence processor so that it could not
exploit the 2-D nature of wavelet zeros effiiently. The
quadtree decomposition method is an efficient tech-
nique for describing 2-D regions in image processing,
and it has been used in different image coding algo-
rithms [10] - [12]. In this paer, we take the quadtree
code as a 2-D variable length square block coding method
to exploit the 2-D nature of wavelet zeros. The pro-
posed coding scheme employs the multi-level dyadic
wavelet decomposition, linear quantization with a proper
dead zone, and then it converts the quantized wavelet
coeflicients into three 1-D sequences for adaptive arith-
metic coding. First, some of the clustered zeros in
the multi-level dyadic wavelet decomposition are repre-
sented with the quadtree code, and then the remaining
zeros and non-zero integers are arranged as a 1-D se-
quence by raster scanning. Next, the resulting integer
sequence is decomposed into two 1-D sequences with
small alphabets.

2. BASICS OF WAVELET IMAGE
COMPRESSION

The principle behind transform image coding is based
on two factors: the correlation among the transform
coefficients is reduced so that redundant information

does not have to be coded repeatedly, and because of
the energy compaction property it is possible to code
only a fraction of the transform coefficients without
producing serious distortion. In transform image cod-
ing, an image is first transformed to a domain signifi-
cantly different from the image intensity domain, then
the transform coefficients are quantized with a finite
number of values, and finally these quantized trans-
form coefficients with many clustered zeros are coded
with entropy coding. Different transforms employ dif-
ferent transform structures, for example, in DCT trans-
form coding, an image is divided into small blocks to
be transformed, but in wavelet transform coding, the
whole image is transformed by a dyadic decomposition.
Since the discrete wavelet transform is well localized in
both the space and frequency domains, it gives good
compression results [1]- [8]. Therefore, it has received
much attention. Both vector quantization and scalar
quantization have been used in transform image cod-
ing. However, linear scalar quantization with a proper
deadzone is very popular in wavelet transform coding.
As to entropy coding, adaptive arithmetic coding has
been proven to be more efficient than Huffman coding.

The quantized transform coefficients are usually rep-
resented by an integer data set. In general, the range
of the set is very large, and because of the energy com-
paction property, the set contains many clustered zeros.
As we know, in adaptive arithmetic coding, a large al-
phabet of the input data not only increases the compu-
tational complexity and memory usage, but also makes
it very difficult to estimate the conditional probabili-
ties by frequency counts within a single image, which
is called the context dilution problem. Thus, it can
not be efficient to code the set directly with adaptive
arithmetic coding, and consequently, a tough job in
transform coding is to find an efficient data structure
to represent the 2-D nature of quantized transform co-
efficients for entropy coding. To reprsent clustered ze-
ros, JPEG uses a symbol EOB to represent a zero run.
EZW and SPIHT use a symbol for the zero tree root to
represent a special structure of clustered zeros within
subbands, and SR uses binary code to represent zero
runs. To solve the dilution problem, we have to find
a way to convert a data set with a large alphabet into
data sets with small alphabets. To this end, JPEG
employs a set of special symbols to jointly represent
a non-zero integer and a related zero run. EZW and
SPIHT use a bit-plane coding like scheme to convert
the integers into two 1-D sequences: dominant pass
and subordinate pass. The SR coding uses binary code
to represent the non-zero integers.



3. PROPOSED WAVELET IMAGE
COMPRESSION ALGORITHM

Our new wavelet coding scheme is similar to EZW,
SPIHT, and SR in the three steps: multi-level dyadic
wavelet transform, linear quantization with a proper
dead-zone, and adaptive arithmetic entropy coding. Af-
ter a multi-level dyadic subband decomposition and
quantization, we make three observations: (1) there
are many zeros, particularly at low bit rates with latge
step sizes, (2) most of the zeros are clustered into 2-D
groups of different sizes, and (3) the higher the fre-
quency of the related subband is, the larger the the
size is.

For a binary image (black and white), quadtree code
has proven to be a powerful technique for describing 2-
D regions. With the quadtree decomposition method,
for a given minimum size of the square block, a binary
image is divided into white square blocks of different
sizes, black square blocks of different sizes, and white-
and-black blocks of the minimum size. This decompo-
sion is represented by the 1-D quadtree code obtained
in the decomposition procedure. In order to exploit
such a 2-D nature of quantized wavelet zeros for adap-
tive arithmetic entropy coding, we use quadtree code
to represent the zero square blocks of different sizes.
In the first stage of the decomposition procedure, the
quantized dyadic wavelet decomposition image is con-
sidered as a binary image with two symbols: zero and
non-zero. In the decomposition, each square block is
examined if all the coefficients of te block is zero (white)
or non-zero (black). Otherwise this block (white-and-
black) is divided into four quadrants for further exam-
ination until a given minimum block size is reached.
The resulting quadtree code is usually represented by
a unique string of symbols “b” (black), “w” (white),
and “g” (white-and-black). To represent the resulting
quadtree code more efficiently for adaptive arithmetic
coding, we merge two symbols “b” and “g” into sym-
bol “1” and use symbol “0” to represent “w”. If the
symbol “1” represents a black block with a size larger
than the minimum size, it is followed by four Os so as
to avoid an ambiguity for representing both the black
block and the gray block.

In the second stage of the decomposition procedure,
the coefficients inside the black blocks and gray blocks
are raster scaned into an 1-D integer sequence in the
quadtree decomposition order. Since the resulting in-
teger sequence usually does not contain many clustered
zeros, the stack-run code [3] is not suitable to efficiently
represent it. To solve the dilution problem, we develop
a data decomposition method to convert the generated
integer sequence into two sequences with small alpha-

bets. Let i, p(i) and (—N,N) be an integer to be
entropy-coded in a data source S, its probability and
dynamic range. The entropy of S, H(S), is given by

N

H(S)=— Y p(i)logy p(i). (1)

i=—N

In order to reduce the alphabet, the data source S is
divided into sub-data sources g(k),k = 0,..., K, and
N < 2K g(k),k > 0 contains the integers in the range
[2F-1 28 — 1] and [-2* 4+ 1,-2%"1]. Note that g(0)
contains only one integer, 0.

Let H(g(k)) be the contribution of the integers in
the group g(k) and p(g(k)) be the probability of the
symbol of the group g(k). Thus, we have

H(g(k)) == > pli)log, p(i), (2)

i€g(k)

and

plg(k) = D pli). 3)

i€g(k)

For an integer i belonging to g(k), we use py (i) to
denote p(i)/p(g(k)), and Hy, is given by

Hy, = —p(g(k)) x > pi(i)logopr(i),  (4)
icg(k)

and thus, H(g(k)) can be rewritten as

H(g(k)) = —p(g(k))log, p(g(k)) + Hi.  (5)

Consequently, H(S) can be rewritten as

K

H(S) = (-p(g(k))log, p(g(k)) + Hr), ~ (6)
k=0

where Hy = 0. With the above data decomposition
method, the entropy-coding of the integer sequence
can be implemented by entropy-coding two sequences:
group symbol sequence and sequence corresponding to
Hy.

The data decomposition method can be applied to
the generated integer sequence as follows. In binary
representation of non-zero integers, there are three parts:
sign bit, most significant bit (MSB), and remaining
part called less significant bits (LSB). Because MSB
is always “1” it does not contain any information it-
self, but the MSB bit position contains information of
the non-zero integer size. We define the MSB bit po-
sition as length and the combination of the sign bit
and LSB as residue. Specially, the length of the inte-
ger zero is assigned to be zero, and it has no residue.
For example, the length of one (or minus one) is one,



and its residue contains only the sign bit. Similarly, the
length of three is two, and its residue is “01”. Based on
the above definitions, an integer sequence can be con-
verted into two sequences, to be called an L-sequence
(group symbol sequence) and an R-sequence (sequence
corresponding to Hy), where the i-th element of the
L-sequence, L(i) = the length of I(i), the i-th element
of the integer sequence, and the i-th element of the
R-sequence, R(i) = the residue of I(:). L(i) is a non-
negative integers, whereas R(7) is either a “0” or a “1”.

Thus, with the quadtree decomposition method and
the data decomposition method, the quantized wavelet
coefficients in the multi-level dyadic subband decom-
position is represented by three 1-D sequences of small
alphabets.

4. SIMULATION RESULTS

The proposed image coding scheme can be constructed
in the following steps. (1) Generate a given level dyadic
wavelet transform of an input image, (2) Linearly quan-
tize the wavelet coefficients with a proper dead-zone,
(3) Generate a quadtree code and a 1-D integer se-
quence with the quadtree decomposition method, (4)
Convert the integer sequence into an L sequence and
an R sequence with the data composition method, and
(5) Compress the quadtree code, the L sequence, and
the R sequence with an adaptive arithmetic code.

Both the Lena image and the Barbara image were
compressed with the proposed algorithm, the EZW al-
gorithm, and the SPIHT algorithm. Our simulation re-
sults indicate that the proposed coding algorithm is su-
perior to EZW and competitive with SPIHT, as shown
in Figure 1 for the Lena image and Figure 2 for the
Barbara image. The comparison between the proposed
coding scheme and our former 1-D coding scheme for
the Lena image is shown in Figure 3.

5. CONCLUDING REMARKS

We have presented in this paper a new wavelet image
coding scheme, in which we use the quadtree code to
exploit the 2-D nature of the quantized wavelet zeros
in the dyadic decomposition, and with the data decom-
position method, the integer sequence for remaining
zeros and non-zero integers is converted to L and R se-
quences. The proposed wavelet image coding scheme is
both computationally and conceptually simple. How-
ever, our simulation results have indicated that the
coding efficiency of the proposed wavelet image cod-
ing scheme is competitive with those of the best image
coders in the literature such as the SPIHT algorithm.
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