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ABSTRACT

With blockwise binary classification and data parti-
tioning, we convert the image subbands to the type of
data for which the trellis coded quantization (TCQ) has
the best quantization performance. Compared to the
arithmetic coded TCQ (ACTCQ)[3] and other TCQ-
based coding schemes, the proposed algorithm reduces
the computational complexity by about 90%. How-
ever, it performs competitively with the best available
coding algorithms reported in the literature in terms
rate-distortion performance.

1. INTRODUCTION

Trellis coded quantization (TCQ), introduced by Mar-
cellin and Fischer [1, 2], has excellent rate-distortion
(R-D) performance for the memoryless uniform or gen-
eralized Gaussian source. Several methods have been
reported in the literature that apply the TCQ to wavelet
image coding.

In the ACTCQ coding algorithm [3], the input im-
age is first decomposed into 16 subbands with the low-
est frequency subband further transformed by a 4x4
DCT. Each subband is then modeled as a memory-
less Gaussian source. Based on the pre-computed op-
erational R-D curve of each subband, the TCQ step-
size is determined by means of optimal bit allocation.
Joshi, Fische, and Bamberger [4] apply the TCQ jointly
with the optimal subband classification to wavelet im-
age coding. Each subband is first classified into a few
classes by a recursive optimization algorithm which
maximizes the classification gain. Each class is then
modeled as a generalized Gaussian source and encoded
by the TCQ and arithmetic coding. These two algo-
rithms are both based on the pre-computed R-D curves
and optimal bit allocation which involves fairly high
computational complexity.

In this work, we investigate a more efficient way to
apply the TCQ to wavelet image coding with regard to

both the computational complexity and the compres-
sion performance. This paper is organized as follows.
In Section 2, we provide a brief review of the TCQ.
Then, in Section 3, we propose a coding algorithm in
which the subband data is first converted with block-
wise binary classification to the type of source for which
the TCQ has the best performance. Despite the greatly
reduced computational complexity, the extensive simu-
lation results presented in Section 5 show that the per-
formance of the proposed algorithm is quite competi-
tive when compared with other coding results reported
in the literature.

2. TRELLIS CODED QUANTIZATION

The TCQ has the advantage of granular gain over the
scalar quantization [1]. It can be regarded as a special
vector quantization with structured codebook which is
automatically generated from an expanded set of scalar
quantization levels during the quantization process [?].

Let A be the stepsize of TCQ. The uniform output
levels are then given by {P; = iA }. They are par-
titioned into four subsets Do = {Py;}, D1 = {Piit1},
Dy = {Pyit2}, and D3 = {Py;+3} as shown in Fig.
1(a). An 8-state (S to Ss) trellis as shown in Fig.
1(b) is defined by a rate-1 convolutional coder. There
are two branches leaving each state. The top branch
and the bottom one are marked by ‘0’ and ‘1’, respec-
tively. Each branch is associated with one of the four
subsets as shown in Fig. 1(b). For example, the top
and the bottom branches leaving Sy are associated with
Dy and D-, respectively.

In the TCQ, to quantize an input sequence is to
pick up a sequence of connected branches (path) in the
trellis. To quantize a coefficient select one of the two
branches which leave the current state. The state at
the other end of the selected branch becomes the cur-
rent state in turn. A branch is selected if the transform
coefficient is quantized to one output level in the subset
which is associated with itself. For example, at stage i,



as shown in Fig. 1(b), the branch leaving A associated
with D, is selected if the input data X; is quantized to
one output level, denoted with Q(X;), in the subset D .
Certainly, to minimize the distortion, Q(X;) should be
the closest output level to X; in Dq. It should be noted
that the quantization of X; depends on the quantiza-
tion of all the previous coefficients {X;|1 < j <i—1}.
For a given sequence of data to be quantized, the TCQ
encoder uses the Viterbi algorithm [5] to pick up the
path that minimizes the mean square error (MSE) be-
tween the input data sequence {X;} and the output
level sequence {Q(X;)}.

Note that, in Fig. 1(b), the two branches leaving
any trellis state are associated either with Dg/D2 or
with Dy /D3, which implies that the quantization out-
put of each transform coefficient is either from the su-
per set Zg = Do U Dy or Z; = Dy U D3. Therefore,
the TCQ encoder only needs to send out the index of
Q(X;) within the super set Zg or Z;. For example,
suppose the current position of the path is B whose
state is S3, the super set from which Q(X;y1) can be
chosen is Zy = Do U Dy. If the index of Q(X;) inside
Zg is sent out, the decoder knows from which subset,
either Dg or D, the quantization level @Q(X;) has been
chosen from. In addition, the next state that can be
decided which is either Sg or Ss.

3. BLOCKWISE BINARY
CLASSIFICATION AND DATA
PARTITIONING

In order to apply the TCQ to wavelet image coding to
achieve high compression efficiency, especially at very
low bit rates, we use blockwise binary classification and
data partitioning to convert the subbands data to the
type of data for which the TCQ has the best quantiza-
tion performance.

A. Blockwise Classification and Data Partition-

ing

After wavelet transform and before quantization,
the image subbands are equally partitioned into 2 x 2
blocks. Each block is termed an all-zero block if the
maximum magnitude of all the coefficients inside are
less than a given threshold T'. Otherwise it is termed
a non-zero block. Each all-zero block or non-zero block
is marked by a ‘0’ or a ‘1’, respectively. These block
marks are compressed with the arithmetic coding and
sent out to the decoder.

Each coefficient in the all-zero blocks is quantized
to zero. Only the non-zero blocks are encoded by a 4-
state uniform TCQ [1]. In the arithmetic coded TCQ
(ACTCQ) [3], the quantization output is further com-

pressed by an arithmetic coder. We observe that the
compression performance of the arithmetic coder can
be improved by adding variable length integer (VLI)
coding before it. Suppose g; is an output index of the
TCQ. Its size S; is defined as

= 0 if q=0;
SZ_{ |logy |gi| | +1 if g #0. (1)

If ¢; # 0, its residue bits consists S; — 1 bits for the
binary representation of |¢;| — 297! and one additional
bit for the sign. The size sequence {S;} is further
compressed by a first-order arithmetic coder while the
residue bits are sent out directly for the sake of low
complexity The VLI coding improves the compression
performance of the arithmetic coder by reducing the
total bin number and enhancing the local correlation
of the input data [7].

B. Determine the TCQ Stepsize

Next we determine the values of A and T. Ob-
viously, their different vaules correspond to different
bit allocation between the source of all-zero blocks and
the source of all non-zero blocks. To maintain the low
computational complexity of the proposed coding algo-
rithm, we try to avoid introducing the optimal bit al-
location into our coding algorithm when choosing the
values of A and T. Let R = %. Table 1 shows the
peak signal-to-noise ratio (PSNR) results for images
Lena, Barbara and Goldhill at 0.25 bpp with differ-
ent R. It can be seen that R = 0.6 always yields the
near optimum compression performance. This can be
explained as follows. The input of the TCQ is the 1-
D immediate array formed by all the non-zero blocks.
The variation of the statistical properties and spatial
distribution of the 1-D array is largely reduced by the
blockwise binary classification. This is because all the
all-zero blocks which are essential to the variation of
the spatial distribution and compression ratio are al-
ready “kicked out”.

4. ADVANTAGES OF THE PROPOSED
ALGORITHM

Fig. 2 shows the result of the blockwise partition-
ing and binary classification for Lena at T = 25.4.
The white and the black regions represent the non-
zero blocks and the all-zero blocks, respectively. The
percentage of the non-zero blocks is 7.1%. The percent-
ages of non-zero blocks of images Lena, Barbara, Gold-
hill, and Peppers at bit rates of 0.25 bpp and 0.50 bpp
are listed in Table 2. In the proposed algorithm, the
TCQ is only applied to the non-zero blocks instead of



the whole decomposed image. Therefore, the computa-
tional complexity of the quantization has been greatly
reduced by about 90%.

5. EXPERIMENTAL RESULTS

We have applied the proposed coding method to many
images across a wide range of bit rates. Compression
results of SPTHT [6], EZW [8], ACTCQ [3], and the
proposed coding algorithm for 512x512 gray images
Lena and Barbara are plotted in Figs. 3 and 4. The
9/7 wavelet filter and the 5-level dyadic subband de-
composition are employed in the simulation. The ex-
perimental results show that the proposed method con-
sistently outperforms the SPTHT by about 0.3 dB for
Lena and 0.5 dB for Barbara.

6. CONCLUSION

In this paper, we first provide a brief review of the TCQ
and some TCQ-based wavelet image coding systems.
In order to apply the TCQ to wavelet image coding
to achieve better compression performance, especially
at very low bit rate, we propose a new coding algo-
rithm in which the TCQ is applied to non-zero blocks
after blockwise binary classification. The proposed al-
gorithm does not involves the pre-computation of the
operational R-D curves and the optimal bit allocation.
The computational complexity of the quantization has
been reduced by more than 90%. However, the experi-
mental results show that the compression performance
of the proposed coding algorithm is quite competitive
when compared with other results reported in the lit-
erature.
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Figure 1: (a) Partition of the uniform codebook for the 3
TCQ; (b) 8-state trellis for the TCQ.
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