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ABSTRACT

By introducing the concepts of characteristic rate curves
and rate curve decomposition, a novel framework for
rate-distortion (R-D) analysis and source modeling is
developed in this work. With this framework, a fast al-
gorithm is then proposed to accurately estimate the R-
D curve of wavelet-based image coders. The proposed
algorithm is applied to the SPTHT (Set Partitioning
In Hierarchical Trees) [1] and Stact-Run (SR) encoders
[2]. Our extensive experimental results show that the
relative R-D curve estimation error is less than 5%.

1. INTRODUCTION

The classical R-D formula for a simple quantizer has
been developed a long time ago [3, 4]. It is well known
that there is a mismatch between the theoretical for-
mula and the actual R-D curve. Meanwhile, it might be
very difficult or even impossible to develop a close-form
expression for the actual R-D curve [5]. To estimate the
R-D curve of a transform encoder, Lin and Ortega [5]
first generate eight points on the curve. The whole rate
curve is then constructed by cubic interpolation. Ding
and Liu [6] model the rate curve with a exponential
function. The model parameters are then estimated
from the actual coding results. Both methods have
very high computational complexity. In addition, they
do not provide us with insight into the characteristics
of the coding system.

In this paper, by introducing two new concepts of
characteristic rate curves and rate curve decomposi-
tion, we propose a novel framework for R-D analy-
sis, modeling and estimation. The characteristic rate
curves are employed to characterize the input source
data accurately and robustly. With rate curve decom-
position, the behavior of the coding system is very well
approximated. With this framework, an R-D curve
estimation algorithm is developed and applied to the
SPIHT [1] and the Stack-Run (SR) [2] wavelet-based

encoders. Our extensive simulation results show the
the relative estimation error is less than 5%.

The paper is organized as follows. In Section 2,
we define the characteristic rate curves. Their unique
properties are shown in Section 3. In Section 4, an al-
gorithm is developed to estimate these rate curves. We
introduce the new concept of rate curve decomposition
in Section 5. The R-D curve estimation algorithm and
the experimental results are given in Section 6.

2. CHARACTERISTIC RATE CURVES

In this section, we define two characteristic rate curves
for the wavelet coefficients. First, the wavelet coeffi-
cients are uniformly quantized with stepsize ¢q. Let p
the percentage of zeros in the quantized wavelet coef-
ficients. Second, we rearrange all the wavelet coeffi-
cient into a 1-D array £ in the raster scan order. For
each consecutive string of zeros in £, their run length
is counted. Let 2, be the sum of all the sizes of these
run-length numbers. Here, the size of a non-zero inte-
ger is the number of bits for its binary representation.
Let @,. be the sum of all the sizes of the non-zero
wavelet coefficients in £. Obviously, both @, and @,
are functions of the quantization stepsize ¢, denoted by
Qn-(q) and Q.(q), respectively.

Note that p monotonically increases with g. This
implies that there is a one-to-one mapping between
them. Therefore, @,. and @, are also functions of
p, denoted by @, (p) and @Q.(p), respectively. For any
input image, following the above procedures, we can
generate these two curves by varying the quantization
stepsize q. These two curves are called the character-
wstic rate curves.

3. PROPERTIES OF THE
CHARACTERISTIC RATE CURVES

In this section, we show that the characteristic rate
curves have some very interesting properties. To this



end, we randomly select 24 sample images with a wide
range of R-D characteristics. The sample images are
shown in Fig. 1. We plot the two characteristic rate
curves for each sample image in Fig. 2. Two observa-
tions can be made on these plots. First, the two curves
of each sample image have almost the same pattern.
This invariance makes it possible for us to estimate the
R-D curve accurately and robustly. Second, Q..(p)
is almost a straight line passing through [1.0, 0.0]. It
should be noted that when the percentage of zeros is
100%, there is no non-zero coefficients. Hence Q.. be-
comes zero. Let 8 be the slope of the straight line.

We have run the above experiment over many other
images, the above two observations always hold. In the
future work, we shall provide a theoretical explanation
for these interesting phenomenon.

4. ESTIMATE THE CHARACTERISTIC
RATE CURVES

Based the unique properties of the characteristic rate
curves, in this section, we propose a fast algorithm to
estimate these two curves. Note that @, (p) is modeled
as a straight line passing through [1.0, 0.0]. We only
need to compute one point on the curve to construct
the whole rate curve.

A. Estimate Q,.(p)

Let distribution of the wavelet coefficients be D(z).
It can be approximated by the histogram of the integer
parts of the wavelet coefficients, denoted by H(n). For
any given quantization stepsize go and deadzone A, the
corresponding percentage of zeros is given by
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The slope of the rate curve @, (p) is then given by
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B. Estimate Q.(p)

Surprisingly, we discover that there is a strong lin-
ear correlation between 6 and the function value of
Q-(p). To this end, we watch the values of @.(p) at
pi = 0.6, 0.7, 0.75, 0.80, 0.85 and 0.90 for all the 24
sample images. For each p;, there are 24 pairs of [6,

Q:(pi)] which are plotted in Fig. 3. The correlation
coefficients between 6 and @Q(p;) are —0.52, -0.87, —
0.87, —0.88, —0.84 and —0.81, respectively. This implies
there is a strong linear correlation between Q. (p;) and
the slope 6. Hence, the following linear model

Q-(pi) = Aif + B; (4)

is employed to estimate Q. (p;). The coefficients A; and
B; are obtained by statistical regression. The linear
correlation models are also shown in Fig. 3.

It might be very difficult to find a theoretical ex-
planation for this interesting linear correlation. But
experimentally, it does exists in our extensive simula-
tion over a wide range of images.

5. RATE CURVE DECOMPOSITION

From the above sections, we have observed that in
the p-domain, the characteristic rate curves have very
unique properties. The source data can be character-
ized by these rate curves much more accurately and
robustly in the p-domain than in the g-domain. Since
these two rate curves characterize the input source data
very well, in this section, we will show that the actual
R-D curve of the wavelet transform coder can be rep-
resented by a linear combination of these two curves.

In functional analysis and digital signal process-
ing, we often study the behavior of a complex func-
tion/signal by decomposing it into a series of basis
functions/signals with well known properties. Fourier
transform and spectrum analysis are good examples [8].
In this work, we apply this methodology to R-D curve
estimation and analysis.

Let the actual rate-quantization (R-Q) curve of a
wavelet transform coder (for example, the zero-tree [7]
or the SPIHT [1] encoder) be R(q). From section II,
we know there is a one-to-one mapping between ¢ and
p. Therefore, we can map R(q) into the p-domain and
denote it by R(p).

In our rate curve decomposition scheme, we approx-
imate R(p) by a linear combination of the two charac-
teristic rate curves,

A~

R(p) =T1(p) - Qn=(p) + T2(p) - Q-(p) + T3(p). (5)

where {T';(p)} are chosen to minimize the L, norm

IR(p) = R(p)ll = max, [R(p) - R(). (6)
In general, the rate curve is smooth. To simply the
computation, we only need to determine the values of
Lk(p) at p; = 0.6, 0.7, 0.75, 0.80, 0.85 and 0.90 such
that |R(p;) — R(p;)| is minimized. This is a least mean



square (LMS) problem. For each sample image, we al-
reay have Q,.(pi), @:(p:), and the actual coding bit
rate R(p;). Tx(p;) is then obtained by solving the fol-
lowing linear regression equation

R(pi) = T1(pi) - Qnz(pi) +T2(pi) - Q= (pi) + T3(pi). (7)

In our extensive simulation, the probability of the rel-
ative approximation error produced by Eq. (5) or (7)
being less than 5% is 0.99. This implies it is very ac-
curate to approximate R(p) by a linear combination of
the characteristic rate curves.

6. ESTIMATION ALGORITHM AND
EXPERIMENTAL RESULTS

The characteristics rate curves and rate curve decom-

position form a framework for estimating of the R-D

curve of wavelet transform coders. For a given wavelet

transform encoder, for example, the EZW, the SPIHT

or any other one, the decomposition coefficients {I'x (p;)}
can be determined as in Section IV. The estimation al-

gorithm is summarized as follows:

e After wavelet transform, compute the approxima-
tion histogram H(z) of the wavelet coefficients.
From Eq. (2), Qn.(p) is determined. Its slope is
then obtained by Eq. (3).

e With the linear correlation model given in Eq.
(4), {Q:(p:)} is computed. Based on the decom-
position expression in Eq. (7), R(p;) is then esti-
mated.

e The one-to-one mapping between ¢ and p can
be directly computed from the histogram H(z).
The estimated rates in the p-domain can be then
mapped into the g-domain. The whole rate curve
can be constructed by linear interpolation.

The proposed estimation algorithm is applied to the
SPIHT and the Stack-Run (SR) encoder. We arbitrar-
ily choose six test images as shown in Fig. 4. The R-D
curves estimation results of the SR and SPIHT coding
system are shown in Fig. 5 and Fig. 6, respectively. It
can be seen that the estimated curves (dotted ones) are
very close to the actual rate-PSNR curves (solid ones).
The estimation error is less than 5%.

7. CONCLUDING REMARKS

In this work, we have introduced the concepts of char-
acteristic rate curves and rate curve decomposition,
which form the framework for R-D curve estimation
and analysis. The proposed algorithm has very low

computational complexity and very high estimation ac-
curacy. With the estimated R-D curves, bit rate and
picture quality (PSNR) control, bit allocation and R-
D optimization can be then performed to improve the
encoder performance and transmission efficiency.
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Figure 1: The 24 sample images.
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Figure 2: The plots of @,.(p) and @Q.(p) for the 24
sample images. The x-axis represents the value of p; the
dashed curve and the solid curve are function Q.. (p)
and function @, (p), respectively. All the subplots have
the same axis and labels as the as the first one.
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Figure 3: The linear models for the correlation between
0 and the values Q.(p;) at 0.60, 0.70, 0.75, 0.80, 0.85
and 0.90.
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Figure 4: The six test images for the evaluation of the
proposed algorithm.
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Figure 5: The R-D curve estimation results for the SR coding system.
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Figure 6: The R-D curve estimation results for the SPTHT coding system.



