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Abstract

Computational Methods for Automatic Image Registration

by

Marco Zuliani

Image registration is the process of establishing correspondences between two or

more images taken at different times, from different viewpoints, under different

lighting conditions, and/or by different sensors, and aligning them with respect

to a coordinate system that is coherent with the three dimensional structure of

the scene. Once feature correspondences have been established and the geometric

alignment has been performed, the images are combined to provide a representa-

tion of the scene that is both geometrically and photometrically consistent. This

last process is known as image mosaicking.

The primary contribution of this research is the development of computational

frameworks that tackle in a general and principled way the problems arising in

the construction of an image registration and mosaicking system. Specifically,

we present a general theory to detect image point features that are suitable for

matching. Our theory generalizes and extends much of the previous work on de-

tecting feature locations. We introduce a novel, physically motivated curve/region

descriptor suitable to establish image correspondences in a geometrically invariant

fashion. New methods to estimate robustly the image transformation parameters

in presence of large quantities of outliers and of multiple models are also presented.

Finally we present a fully automated registration and mosaicking system that can

x



produce seamless mosaics from image pairs. Extensive experimental results with

biological images, satellite images and consumer photographs are presented.
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Chapter 1

Introduction

“Caminante, no hay camino,

se hace camino al andar.1”

A. Machado

Image registration is the process of aligning two or more images taken at different

times, from different viewpoints, and/or by different sensors with respect to a co-

ordinate system that is coherent with the three dimensional structure of the scene.

Once feature correspondences have been established and the geometric alignment

has been performed, the images are combined to provide a representation of the

scene that is both geometrically and photometrically consistent. This process is

known as image mosaicking.

For a long time, image registration and mosaicking have been two leading

research themes in the image analysis community (as confirmed by three major

1Traveller, there is no road, you make your path as you walk.

from Proverbios y cantares XXIX
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surveys [12, 137, 122] appearing in the span of 12 years). All the innovative

and significant contributions to the registration problem have found immediate

application in many disparate areas such as remotely sensed image processing,

medical image analysis, scene reconstruction, surveillance, automatic navigation

and augmented reality.

One of the reasons that image registration is an extremely challenging prob-

lem is the large degree of variability of the input data. The images that are to

be registered and mosaicked may contain visual information belonging to very

different domains and can undergo many geometric and photometric distortions

such as scaling, rotations, projective transformations, non rigid perturbations of

the scene structure, temporal variations, and photometric changes due to different

acquisition modalities and lighting conditions. Figure 1.1 shows some examples

of image pairs belonging to different domains that have been registered using the

algorithms that will be described and analyzed in the next chapters.

Despite the large number of efforts made to construct efficient algorithms to

solve different aspects of the image registration and mosaicking problem, there still

exist a number of obstacles that need to be overcome and several open questions

that need to be answered. In the next section we will discuss the motivations that

lead us to tackle some of these obstacles and to answer some of these questions.

1.1 Motivation

An image registration system must be able to provide accurate and realistic

results, to self assess the quality of its output and, at the same time, it should

2
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require minimal human intervention and reduced computational resources. It ap-

pears evident that the design of such a system requires the synergistic integration

of the expertise coming from different fields such as: early vision, pattern recog-

nition, robust statistics, 3D geometry, computer graphics and numerical analy-

sis just to name a few. An immediate consequence of this observation is that

the overall system will be composed of several modules that must interact ro-

bustly in a hierarchical fashion, where each unit is able to cope with the possibly

noisy/inaccurate results produced in the earlier processing stages and to provide

feedback to improve the quality of the final result.

The fundamental modules that compose the registration pipeline that we con-

sider in this dissertation are shown in Figure 1.2. According to the taxonomy

introduced in [137], we will focus our attention on feature-based approaches. The

overall system first extracts a set of features from the images that are to be

registered. Then, distinctive labels are associated with each feature to establish

tentative image correspondences. These matches are further refined by pruning

those correspondences that are incompatible with the underlying geometric model

used to describe the transformation between the images. Finally the parameters of

the models are estimated and the images are fused together to produce a coherent

mosaic.

This thesis is motivated by the desire to study each of these modules in a

rigorous and principled manner. In the following chapters we develop a frame-

work to quantitatively analyze the problems to be solved and we design practical

algorithms that are general enough to be applicable in a large variety of image reg-

istration scenarios. More specifically, for each module composing the registration

3
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Figure 1.1: Some examples of image pairs that have been registered and mo-
saicked using the methods that will be described in the following chapters. First
row: a pair of EDR (extreme dynamic range) images acquired by the right nav-
igation camera of the Spirit rover during its mission to Gusev crater on Mars
(courtesy of NASA). Second row: an image pair of a complex 3D outdoor scene
taken with a consumer camera. Third row: a pair of retinal images acquired
using a confocal microscope (courtesy of Dr. S. K. Fisher, Dr. G. Lewis and
Dr. M. Verardo). Forth row: two images of a graffiti scene subject to a strong
perspective distortion taken using a consumer camera.

4



Introduction Chapter 1

system we will:

• state formally the generalized instances of the problem that is to be solved,

• establish connections with some algorithms already used by the image anal-

ysis community,

• develop models that limit the need to resort to empirical considerations to

justify the design choices for the proposed algorithms,

• evaluate the impact of the approximations introduced to simplify both the

theoretical analysis and the practical implementation of the algorithms, and

• quantify the strengths and limitations of the proposed algorithms and eval-

uate the accuracy and the quality of the results.

These modules are then implemented and combined to produce a registration sys-

tem that is able to render photorealistic mosaics consistent with the 3D structure

of the scene.

1.2 Thesis Organization and Contributions

We will now outline the structure of this dissertation and briefly summarize

the contributions of each chapter.

1.2.1 Chapter 2: Point Feature Detectors: Theory

This chapter contains a thorough theoretical analysis of point feature detectors

based on the Generalized Gradient Matrix (GGM) (also known as autocorrelation

5
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Feature Extraction
Chapter 2,3

Feature Description
Chapter 4

Feature Matching
Chapter 6

Model Estimation
Chapter 5,6

Image Fusion
Chapter 6

Input Output

Figure 1.2: Overview of the registration system modules that have been studied
in this thesis. The final mosaic of the images of the Cathedral of Our Lady
of Amiens is obtained using the methods described in this disseration (image
courtesy of J. Nieuwenhuijse, copyright by New House Internet Services BV,
www.ptgui.com).
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matrix or structure tensor). In this chapter:

• We introduce a novel framework based on condition theory that motivates

the use of the autocorrelation matrix as a fundamental ingredient for point

detection.

• We introduce a set of generalized point detector functions based on the spec-

tral properties of the image GGM. Such detectors are defined for multichan-

nel images with spatial dimension that can be greater than 2. For single

channel images these generalized functions become equivalent to some of

the commonly used point detectors.

• We establish in-depth connections among the detectors showing that cer-

tain commonly used detectors are equivalent modulo the choice of a specific

matrix norm.

• We list a set of analytical properties of the generalized detectors that de-

fine bounds to their performance and suggest effective ways to reduce their

computational complexity.

1.2.2 Chapter 3: Point Feature Detectors: Experiments

This chapter contains an exhaustive experimental evaluation of the point de-

tectors studied in Chapter 2. More specifically:

• We experimentally validate the theoretical claims made in Chapter 1 regard-

ing detector equivalences.

7



Introduction Chapter 1

• We characterize the repeatability of the point detectors and find that they

exhibit a behavior that is almost linear for a relevant set of scalings and

projective distortions that are found in real life scenarios.

• Quite surprisingly we find that for natural images it is possible to disregard

the color information and at the same time improve the detector perfor-

mance.

1.2.3 Chapter 4: Drums, Curve Descriptors and Affine

Invariant Region Matching

Motivated by the possibility of establishing image correspondences using curve

features rather than interest points, in this chapter we introduce a novel curve/region

descriptor based on the modes of vibration of an elastic membrane. In particular:

• We introduce and study the theoretical properties of a novel physically mo-

tivated curve/region descriptor based on the modes of vibration of a mem-

brane. We revisit the problem of curve isospectrality within the image anal-

ysis domain.

• We develop a normalization procedure that allows us to characterize the

shape of a curve independent of its affine distortions.

• We propose a method to couple the descriptor and the normalization pro-

cedure to robustly match curves between images taken from different points

of view.

8
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• We provide extensive experimental results to measure the performance of

our descriptor using both synthetic and real images. We also compare our

descriptor with state of the art curve/region descriptors.

1.2.4 Chapter 5: RANSAC Stabilization

Given the need to estimate the parameters of (multiple) geometric or photo-

metric models in the presence of a large number of outliers, we develop a robusti-

fication framework that improves the results obtained using RANSAC. The novel

contributions of this chapter are:

• The introduction of a stabilization framework that improves the quality of

estimates obtained using RANSAC in the presence of large uncertainties of

the noise scale and multiple instances of the model.

• The introduction of a pseudo-distance to quantify the dissimilarity between

geometric transformations.

• The reduction of the problem of grouping similar models to the problem of

identifying the largest maximal clique in a graph.

• The validation of the stabilization framework by means of extensive experi-

ments using both synthetic and real data.

1.2.5 Chapter 6: Applications

This chapter contains an overview of the algorithms developed in the previous

chapters integrated into a registration and mosaicking system. Using the frame-
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work developed in Chapter 2, we introduce the concept of characteristic structure

of a point neighborhood and show how it can be used to improve the detection of

matching points between image pairs related by large scale variations. We then

devote our attention to the development of a set of techniques to obtain a seamless

mosaic of the registered images. The contributions contained in this chapter can

be summarized as follows:

• We apply the framework based on condition theory to identify the charac-

teristic structure of a point neighborhood and show how this can be used to

establish matches between images related by large scale variations.

• We explore the possibility of using indexing and dimensionality reduction

techniques to speed the computation of tentative image correspondences.

• We introduce a novel robust equalization procedure to correct the photomet-

ric appearance of two images that are to be fused together.

• We present a physically motivated algorithm to calculate the best stitching

line between registered images.

1.2.6 Summary

This thesis makes several new contributions to the classical problems of es-

tablishing correspondences between images, of robustly registering them and of

producing geometrically and photometrically consistent mosaics. Practical, ef-

ficient and robust implementations of these methods have been developed and

tested on large collections of images belonging to several different domains.

10



Chapter 2

Point Feature Detectors: Theory

“Basic research is what I’m doing

when I don’t know what I’m doing.”

Attributed to W. von Braun

This chapter contains a thorough theoretical analysis of point feature detectors

based on the Generalized Gradient Matrix (GGM) (also known as autocorrelation

matrix or structure tensor). In this chapter:

• We introduce a novel framework based on condition theory that motivates

the use of the autocorrelation matrix as a fundamental ingredient for point

detection (Sections 2.3 and 2.4).

• We introduce a set of generalized point detector functions based on the spec-

tral properties of the autocorrelation matrix. Such detectors are defined for

multichannel images with spatial dimension that can be greater than 2. For

single channel images these generalized functions become equivalent to some

of the commonly used point detectors (see Section 2.5 and 2.6).

11
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• We establish in-depth connections among the detectors showing that cer-

tain commonly used detectors are equivalent modulo the choice of a specific

matrix norm (see Section 2.5).

• We list a set of analytical properties of the generalized detectors that de-

fine bounds to their performance and suggest effective ways to reduce their

computational complexity (see Section 2.5).

2.1 Introduction

Corner detection in images is important for a variety of image processing tasks

including tracking, image registration, change detection, determination of camera

pose and position and a host of other applications. In the following, the term

“corner” is used in a generic sense to indicate any local image feature that is

useful for the purpose of establishing point correspondence between images.

Detecting corners has long been an area of interest to researchers in image

processing. Some of the most widely used corner detection approaches (Harris-

Stephens [50], Noble-Förstner [98, 38], Shi-Tomasi [116], Rohr [107]) rely on the

properties of the averaged outer product of the image gradients:

L(x, σD, I) = (GσD
∗ I) (x) (2.1a)

µ(x, σI , σD, I) =
(
wσI
∗ ∇xL(·, σD, I)∇T

xL(·, σD, I)
)
(x) (2.1b)

In the previous equations L(x, σD, I) indicates the smoothed version of the single

channel image I at the scale σD, whereas µ(x, σI , σD, I) is a 2× 2 symmetric and

positive semi-definite matrix representing the averaged outer product of the image

12
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gradients (also known within the computer vision and image processing commu-

nity as auto-correlation matrix, gradient normal matrix or structure tensor). The

function wσI
weights properly the pixels about the point x at the scale σI . Note

how the notion of scale is related to the shape of the Gaussian differentiation ker-

nel GσD
(the smaller is σD the larger is the sensitivity to fine image details) and

to the structure of the integration kernel (in general, the larger is the parameter

σI , the larger is the averaging effect on the neighborhood about the point x).

Förstner [38], in 1986 introduced a rotation invariant corner detector based on

the ratio between the determinant and the trace of µ; in 1989, Noble [98] consid-

ered a similar measure in her PhD thesis. Rohr in 1987 [107] proposed a rotation

invariant corner detector based solely on the determinant of µ. Combinations of

first order image derivatives have also been used by Rohr et al. to locate point

landmarks in 3D tomographic images [42, 108]. Harris and Stephens in 1988 [50]

introduced a function designed to detect both corners and edges based on a linear

combination of the determinant and the squared trace of µ, revisiting the work of

Moravec [92] that dates back to 1980. This was followed by the corner detector

proposed by Tomasi and Kanade in 1992 [124], and refined in 1994 in the well-

known feature measure of Shi and Tomasi [116], based on the smallest eigenvalue

of µ. All these measures create a value at each point in the image with larger values

indicating points that are better for establishing point correspondences between

images (i.e., better corners). Corners are then identified either as local maxima

for the detector values or as points with detector values above a given threshold.

All of these detectors have been used rather successfully to find corners in images

but have the drawback that they are sometimes based on heuristic considerations.

13
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Recently Kenney et al. in 2003 [63] avoided the use of heuristics by basing corner

detection on the conditioning of points with respect to window matching under

various transforms such as translation, Rotation Scaling and Translation (RST),

and affine pixel maps. Along similar lines Triggs [129] proposed a generalized form

of the multi-scale Förstner detector that selects points that are maximally stable

with respect to a certain set of geometric and photometric transformations.

Methods to detect interest points in a scale invariant fashion have been de-

veloped by Lindeberg [71] using the tools made available by scale space theory

[36, 70]. More recently Baumberg [5], Mikolajczyk [86] and Lowe [74] developed

point detectors that are robust1 with respect to affine transformations of the im-

age. We want to emphasize how the approaches proposed by Baumberg and

Mikolajczyk both depend on an initial step where candidate points are detected

at different scales using the Harris detector. Therefore, rather than being truly

affine invariant, such detectors are robust in the presence of affine transformations

of the image; the degree of robustness is directly connected to the repeatability of

the detector used to identify the candidate points. Similar considerations hold for

Lowe’s algorithm, that seeks for point candidates in correspondence of the local

extrema of the scale space signature generated by the difference of Gaussians.

Since images that are related via an affine transformation will not necessarily

originate extrema at corresponding positions, the overall detector is robust but

not invariant. In all the robust methods mentioned above, the auto-correlation

matrix plays once again a fundamental role.

1In this context, the robustness of a detector refers to its capability of identifying correspond-
ing points in images that are related by a certain geometric transformation. This property has
been formalized quantitatively by Schmid et al. introducing the concept of ε-repeatability [113].
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This chapter presents a theoretical analysis of corner detectors based on the

image auto-correlation matrix. In this chapter we will reorganize and extend the

ideas that were initially presented in the papers [63, 140, 64]. More specifically

the contributions of this chapter can be summarized as follows:

• We will provide a justification for the central role that the gradient normal

matrix plays in corner detection. We will motivate its importance using

two different perspectives: the estimation of the optical flow and the char-

acterization of the sensitivity of a point neighborhood with respect to noise

perturbations. The novel mathematical tool that will be used is condition

theory.

• We will provide generalized expressions for the some of the commonly used

corner detectors, establish a relation between them and analyze and compare

their relevant properties.

This chapter is structured as follows (see also Figure 2.1). We first introduce

the auto-correlation matrix using two different perspectives, the first based on

the computation of the optical flow (Section 2.3) and the second based on the

characterization of the sensitivity of a point neighborhood with respect to noise

perturbations (Section 2.4). In Section 2.5 we will introduce a set of generalized

corner detector functions, establish relations between them and extensively discuss

their theoretical properties. In Section 2.6 we will also show that some of the

commonly used corner detector functions based on the auto-correlation matrix are

just special instances of a specific generalized detector. Finally the conclusions

and the discussion of some future research directions can be found in Section 2.7.
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Optical Flow Point Neighborhood
Sensitivity

Gray Level Images

Multispectral Generalized
Images

Local Self Similarity

Generalized Detector Functions

Generalization

Intrinsic Structure Detection
Chapter 5

Local Transformation
Estimation

Experimental Evaluation
Chapter 3

A(Ω(x))

fHS

fST

fNF

fR

fK,q

KTθ,x(Ω(x))

Figure 2.1: Overview of the framework used to study the generalized corner
detector functions.

This theoretical analysis will be supplemented in Chapter 2 by a set of exper-

iments that will test the performance of the detectors with real imagery. In the

next chapter we will also outline the connections between the experimental results

and the theoretical properties of the detectors. Moreover in Chapter 6 we will in-

troduce the notion of intrinsic neighborhood of an image point and describe an

algorithm for the detection of such neighborhood using the tools made available

by condition theory.

2.2 Preliminaries

First of all we will introduce a few notation conventions. Throughout the chap-

ter boldface letters will indicate vectors. The image pixel dimension is indicated

16
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with the letter n. When n = 2 we are considering usual 2D images, but all the

theoretical results will hold in cases where n > 2, for example in computed axial

tomography (CAT) images, where the intensity signal is defined on a 3D lattice

(in this case n = 3 ). We will refer to images with n > 2 as generalized images.

The image intensity dimension is instead indicated by the letter m: m = 1 models

a single channel image (such as graylevel image), m = 3 can model an RGB image

and other values of m may be used to model arbitrary multichannel images.

2.2.1 The Gradient Matrix

We begin this section by introducing the gradient matrix in the special case

of a 2D single channel image. This quantity will be generalized in the next sec-

tions. Let I(x) be the intensity of a single channel image at the image point

x =

[
x1 x2

]T

. Let Ω be a window about the point of interest x: the gradient

matrix A over this window is defined as:

A(Ω(x))
def
=


Ix1(y1) Ix2(y1)

...
...

Ix1(yN) Ix2(yN)

 (2.2)

where subscripts indicate differentiation with respect to x1 and x2 and y1, . . . ,yN ∈

Ω(x). To simplify the notation we will omit the dependence of A on Ω(x) when

this does not generate confusion.
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The 2× 2 gradient normal matrix 2 is given by:

ATA
def
=

 ∑N
i=1 Ix1(yi)

2
∑N

i=1 Ix1(yi)Ix2(yi)∑N
i=1 Ix1(yi)Ix2(yi)

∑N
i=1 Ix2(yi)

2


where the summation is over the window Ω about the point of interest. As men-

tioned in the introduction, the gradient normal matrix ATA is the basis of many

corner detectors that have been used by the computer vision and image processing

community (Harris-Stephens [50], Noble-Förstner [98, 38], Shi-Tomasi [116], Rohr

[107]). Note that this matrix can be obtained discretizing the auto-correlation

matrix (2.1b) under the assumption that the weight has the form:

wσI
(y) =


1 if y ∈ Ω(x),

0 otherwise.

Why should a corner detector just depend on A (or, equivalently, on ATA)?

Can we generalize the expression of ATA for multidimensional and multichannel

images? What are the properties of this matrix? What is the relation among

the corner detectors based on the gradient normal matrix? We will try to answer

these questions by looking at the problem of estimating the optical flow and the

sensitivity of a point neighborhood using the tools made available by condition

theory, which are briefly introduced in the next section.

2.2.2 Condition Theory: A Brief Introduction

As early as 1987, with the work of Kearney et al. [62] it was realized that

the normal matrix associated with locally constant optical flow is critical in de-

2A real square matrix M is normal if MMT −MTM = 0. It can be immediately verified
that M = ATA is normal.
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termining the accuracy of the computed flow. Kearney et al. also reported that

ill-conditioning in the matrix ATA and large residual error in solving the equa-

tions for optical flow can result in inaccurate flow estimates. This was supported

by the work of Barron et al. [3] who looked at the performance of different op-

tical flow methods; see also [6]. More recently, Shi and Tomasi [116] presented

a technique for measuring the quality of local windows for the purpose of deter-

mining image transform parameters (translational or affine). For local translation

they argued that to overcome errors introduced by noise and ill-conditioning, the

smallest eigenvalue of the normal matrix ATA must be above a certain threshold:

Tλ ≤ min(λ1, λ2) where Tλ is the prescribed threshold and λ1, λ2 are the eigenval-

ues of ATA. When this condition is met the point of interest has good features

for tracking.

The current viewpoint on condition estimation can trace its roots to the era

of the 1950’s, with the development of the computer and the attendant ability to

solve large linear systems of equations and eigenproblems. The question facing

investigators at that time was whether such problems could be solved reliably.

The solution of a system of equations can be viewed as a mapping from the

input data D ∈ Rn to the solution or output X = X(D) ∈ Rm. If a small change

in D produces a large change in D(X) then X is ill-conditioned at D. Following

Rice [105], we define the δ-condition number of X at D by:

Kδ = Kδ(X,D) ≡ sup
‖∆D‖≤δ

‖X(D + ∆D)−X(D)‖
‖∆D‖

where ‖ · ‖ denotes the vector 2-norm: ‖D‖2 =
∑

i |Di|2. For any perturbation
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D with ‖∆D‖ ≤ δ, the perturbation in the solution satisfies:

‖X(D + ∆D)−X(D)‖ ≤ δKδ

The δ-condition number inherits any nonlinearity in the function X and conse-

quently is usually impossible to compute. For this reason the standard procedure

is to take the limit as δ → 0. If X is differentiable at D we can define the local

or differential condition number:

K = K(X,D) ≡ lim
δ→0

Kδ(X,D)

Using a first order Taylor expansion, we have:

X(D + ∆D) = X(D) +XD ∆D +O(‖∆‖2)

where XD is the m× n gradient matrix with entries:

(XD)ij =
∂Xi

∂Dj

This expansion shows that the local condition number is just the norm of the

matrix XD:

K(X,D) = ‖XD‖

and:

‖X(D + ∆D)−X(D)‖ ≤ K‖∆D‖+O(‖∆D‖2)

Large values for K(X,D) indicate that X is ill conditioned in D.
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2.3 The Generalized Gradient Matrix: an Opti-

cal Flow Perspective

2.3.1 Optical Flow for Single Channel Images

Let I = I(·, t) be a single channel image sequence and suppose that a point

of interest has time dependent coordinates x = x(t). The optical flow problem

is to discover the time evolution of x. In the standard approach this is done by

making the assumption of constant brightness:

I(x(t), t) = I(x(t) + dx, t+ dt) = c

where c is a constant with respect to t. If we expand this constraint about the

point

[
x1(t) x2(t) t

]T

and neglect higher order terms we obtain:

Ix1(x, t) dx1 + Ix2(x, t) dx2 + It(x, t) dt = 0

where, as usual, subscripts denote differentiation.3 The previous equation can be

rewritten in matrix form as:[
Ix1(x, t) Ix2(x, t)

]
dx = −It(x, t) dt

where It(x, t) is the infinitesimal difference of successive frames and dx =

[
dx1 dx2

]T

is referred to as the optical flow vector. This is one equation for the two unknowns

dx1 and dx2. To overcome this difficulty the standard approach is to assume that

3We will maintain the sign of equality even after neglecting the higher order terms of the
Taylor expansions. However we should keep in mind that we are dealing with approximate
relations.
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dx1 and dx2 are constant in a region Ω about x. This leads to the overdetermined

set of equations:
Ix1(y1, t) Ix2(y1, t)

...
...

Ix1(yN , t) Ix2(yN , t)

 dx = −


It(y1, t)

...

It(yN , t)


where we adopted a time scale in which dt = 1. More compactly we may write

this as:

A(Ω(x))dx = η

where η = −
[
It(y1, t) . . . It(yN , t)

]T

. The least squares solution to this set

of equations is obtained by multiplying both sides by AT to obtain a square system

and then multiplying both members by (ATA)−1 to get:

dxcomputed = (ATA)−1ATη = A†η

where A† is also known as the pseudo-inverse of A. A major problem with this

approach is that some points give better estimates of the true optical flow than

others. For example, if the image intensities in the region about x are nearly

constant (uniform illumination of a flat patch) then A ≈ 0 and the least squares

procedure gives bad results.

2.3.2 A Thought Experiment

We can assess which points are likely to give bad optical flow estimates by a

simple ansatz: suppose that the scene is static so that the true optical flow is zero:

dxexact = 0. If the images of the scene vary only by additive noise, then η (the
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difference between frames) represents the noise itself. The error in the optical flow

estimate is given by e
def
= dxexact − dxcomputed, and we may write:

‖e‖ = ‖dxexact − dxcomputed‖ = ‖0− A†η‖ = ‖A†η‖ ≤ ‖A†‖ ‖η‖

Thus we see that the term ‖A†‖ controls the error multiplication factor; that is

the factor by which the input error (the noise η) is multiplied to get the output

error (the error in the optical flow estimate). Large values of ‖A†‖ correspond to

points in the image where we cannot estimate the optical flow accurately in the

presence of noise at least for the static image case.

If we use the 2-norm together with Lemma A.2.2, then we have:

‖A†‖22 =
1

λmin(ATA)

(where λmin(ATA) indicates the smallest eigenvalue of ATA). We conclude that

the error multiplication factor for the 2-norm in the optical estimate for the static

noise case is equal to 1√
λmin(AT A)

. This motivates the use of the gradient normal

matrix in point feature detection, since the ability to accurately determine op-

tical flow at a point is intimately related to its suitability for establishing point

correspondence between images (i.e. whether it is a good corner).

2.3.3 Optical Flow for Multichannel Generalized Images

The need to locate good points for tracking occurs in other settings besides

images with pixel dimension two and intensity dimension one. For example we

may want to consider good matching points in signals (pixel dimension is one) or

tomographic medical images (pixel dimension is three) or color images (intensity

23



Point Feature Detectors: Theory Chapter 2

dimension is three) or hyperspectral images (intensity dimension much greater

than one). In order to set up a framework for discussing corner detection for

images with arbitrary pixel and intensity dimensions let x
def
=

[
x1 . . . xn

]T

denote the pixel coordinates and I
def
=

[
I1 . . . Im

]T

the intensity vector for

the image. We use the optical flow method described before to set up a corner

detection paradigm. Let x = x(t) be a point of interest in a time dependent

image I = I(·, t). We assume that this point has constant brightness over time:

I(x(t), t) = I(x(t) + dx, t+ dt) = c (2.3)

Expanding this constraint about the point

[
x(t)T t

]T

and neglecting higher

order terms we obtain:

JI(x, t) dx = −It(x, t) (2.4)

where we once again assumed that dt = 1 and the Jacobian matrix JI(x, t) ∈

Rm×n has entries [JI(x, t)]i,j = ∂Ii(x, t)/∂xj, and:

dx =

[
dx1 . . . dxn

]T

It =

[
dI1/dt . . . dIm/dt

]T

As we did before let A = JI(x, t) and η = −It. If ATA is invertible then the

least squares solution to (2.4) is given by:

dx = A†η (2.5)

To illustrate this consider the problem for a signal (pixel dimension n = 1, in-

tensity dimension m = 1). In this case the Jacobian is just the usual gradi-

ent of the signal: JI(x, t) = dI(x, t)/dx and the matrix ATA is invertible if

the gradient is nonzero. Compare this with the case of an image (pixel dimen-

sion is two, intensity dimension is one). In this case the Jacobian is again the
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gradient JI(x, t) = ∇I(x, t) =

[
∂I(x, t)/∂x1 ∂I(x, t)/∂x2

]
and the matrix

ATA = ∇I(x, t)T∇I(x, t) is the outer product of the gradient row vector. Con-

sequently the 2 × 2 matrix ATA for a single channel image is rank deficient (its

rank is at most 1) and so it is not invertible. This singularity disappears in the

case of a multichannel image. For example if I =

[
R G B

]T

, then the rows

of the Jacobian are the gradients of the red, green and blue channels:

JI =


∂R
∂x1

∂R
∂x2

∂G
∂x1

∂G
∂x2

∂B
∂x1

∂B
∂x2

 =


∇R

∇G

∇B


In this case the 2×2 matrix ATA = ∇RT∇R+∇GT∇G+∇BT∇B is the sum of

the outer products of the three color channel gradient row vectors. Consequently

it is invertible if any two of the channels have independent gradient vectors.4 In

general we find that:

JITJI =
m∑

i=1

(∇Ii)T ∇Ii

From this we conclude that the gradient normal matrix JITJI is n× n where n

is the pixel dimension and has rank at most m where m is the intensity dimen-

sion. Consequently it is not invertible if the pixel dimension exceeds the intensity

dimension (n > m). If the pixel dimension is larger than the intensity dimension

then we may overcome the non-invertibility of ATA by making the additional

constraint that the optical flow is locally (i.e. in a region) constant. In this case

the equation (2.4) holds over the region Ω(x) composed of N points and the least

4We should note here that for natural images the RGB channels tend to be highly correlated
and therefore the matrix JI is likely to be poorly conditioned. We will come back to this
problem in the experimental section.
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squares solution is obtained by stacking these sets of equations into a large system:

A(Ω(x))dx =


JI(y1)

...

JI(yN)

 dx = −


It(y1)

...

It(yN)

 = η

Again the least squares solution has the form dx = A†η. If we now look at

the static optical flow case dxexact = 0 and assume that the images in the time

sequence differ only by additive noise then the vector η is the additive noise over

the region and the error e = dxexact − dxcomputed satisfies:

‖e‖ = ‖dxexact − dxcomputed‖ = ‖0− A†η‖ = ‖A†η‖ ≤ ‖A†‖ ‖η‖

Thus we see that even in this general setting the term ‖A†‖ controls the error

multiplication factor; that is the factor by which the input error (the noise η) is

multiplied to get the output error (the error in the optical flow estimate). As in

the case of single channel images, large values of ‖A†‖ correspond to points where

we cannot estimate the optical flow accurately in the presence of noise at least

for the static image case. As said earlier for the single channel image case we

have ‖A†‖22 = 1
λmin(AT A)

; this motivates the role of ATA in corner detector for the

general problem of arbitrary pixel and intensity dimensions.

Remark 2.3.1 For the purposes of interpretation it is helpful to rewrite ATA as:

A(Ω(x))TA(Ω(x)) =
N∑

j=1

m∑
i=1

(∇Ii(yj))
T ∇Ii(yj) =

N∑
j=1

(JI(xj))
T JI(xj) (2.6)

That is, ATA is the sum over the points yj in the region Ω(x) of the outer prod-

ucts of the gradient vectors of each intensity channel (since the gradient operator

returns a row vector).
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2.3.4 Optical Flow for Arbitrary Motion Models

Throughout the whole discussion concerning the estimation of the optical flow,

we assumed that the motion model for the image region Ω(x) was a pure trans-

lation. In this section we will extend the previous discussion to general motion

models (see [116] for a feature tracking approach with affine motion models and

the exhaustive discussion in [2]). Consider a model that describes the motion of

a point y in the region Ω(x):

Tθ,x : Ω(x) ⊆ Rn → Rn

y 7→ Tθ,x(y)

and let θ represent the identity in the parameter space (i.e. Tθ,x(y) = y).

Example 2.3.2 Consider the situation depicted in Figure 2.2. In this case the

region Ω(x) is a circular neighborhood defined as:

Ω(x) =
{
y ∈ R2 : (y1 − x1)

2 + (y2 − x2)
2 ≤ r

}
and the rotation, translation and scaling is represented by the transformation:

Tθ,x(y) = x+ s

 cosφ sinφ

− sinφ cosφ

 (y − x) +

 a

b


Hence, the parameter vector is θ =

[
a b s φ

]T

(and consequently the identity

vector is given by θ =

[
0 0 1 0

]T

). A more convenient representation for

this transformation can be obtained letting θ =

[
a b C S

]T

, where C =

s cosφ, S = s sinφ. This is possible because any matrix A = sR where s ∈ R and
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x+ dx

Ω(x+ dx, t+ dt)

Ω(x, t)

Figure 2.2: An example of a neighborhood
Ω(x) =

{
y ∈ R2 : (y1 − x1)2 + (y2 − x2)2 ≤ r

}
undergoing a rotation a

translation and a scaling between time t and time t+ dt.

R ∈ SO(2) can be written in the form

 C −S

S −C

. Using this representation

Tθ,x is linear in θ. Note also that Tθ,x(x) = x+

[
a b

]T

.

We can rewrite the brightness constraint equation (2.18) as:

I(y(t), t) = I
(
Tθ+dθ,x(t) (y(t)) , t+ dt

)
= c (2.7)

The Taylor expansion of the second member yields:

I
(
Tθ+dθ,x(t) (y(t)) , t+ dt

)
= I(y(t), t) + JI(y(t), t)JθTθ,x(t)(y(t))dθ

+ It(y(t), t)dt+ h. o. t.

and therefore, neglecting the higher order terms and plugging the previous ex-

pression in the brightness constraint equation we obtain:

JI(y(t), t)JθTθ,x(t)(y(t))dθ = −It(y(t), t)dt

28



Point Feature Detectors: Theory Chapter 2

If, similarly to what did before, we let A(y(t)) = JI(y(t), t)JθTθ,x(t)(y(t)) , dt = 1

and η = −It(y(t), t), we can write:

A(Ω(x))dθ = η (2.8)

To estimate the motion parameters dθ ∈ Rp we need at least p equations. Equa-

tion (2.8) can be solved in a least square sense only if m ≥ p. If this condition

is not met once again we stack the equations that describe the motion of every

point belonging to the region Ω(x), obtaining a GGM that has the form:

A(Ω(x)) =


JI(y1(t), t)JθTθ,x(t)(y1(t))

...

JI(yN(t), t)JθTθ,x(t)(yN(t))

 (2.9)

If also in this case we assume that the images in the time sequence differ only by

additive noise (so that the vector η actually represents the additive noise over the

region Ω(x)) and we define the error vector to be:

e = dθexact − dθcomputed

then the term ‖A†‖ controls the error multiplication factor and if we consider the

matrix 2-norm we still have that ‖A†‖22 = 1
λmin(AT A)

. Therefore we have shown

how the generalized gradient normal matrix plays a central role in estimating

the optical flow for generic motion models for generalized multispectral images.

Finally note that (2.9) can be considered a generalization of the gradient matrix

that was introduced in (2.2.1) in the presence of motion models more complicated

than pure translations.
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2.4 The Generalized Gradient Matrix: a Region

Sensitivity Perspective

2.4.1 Condition Theory for Region Sensitivity

What is the sensitivity of an image point neighborhood Ω(x) to noise? To

answer this question we shall measure how much the intensity pattern in the

considered neighborhood looks like itself after it is perturbed by noise (in other

words we are trying to quantify the degree of self-similarity of the neighborhood).

To this purpose, the noise can be simply represented by an additive random signal

that sums to the intensity. However, the quantitative measurement of the effects

produced by the noise is a more complex task. Consider a point y ∈ Ω(x). The

expression for the image intensity I corrupted by noise η at point y is given by:

Ĩ(y)
def
= I(y) + η (2.10)

We choose to model the effect of the noise by a transformation parameterized by

the vector θ = θ + ∆θ that describes the geometric distortion of the intensity

pattern in Ω(x). More precisely:

Ĩ(y) = I(Tθ+∆θ,x(y)) (2.11)

where:

Tθ,x : Ω(x) ⊆ Rn → Rn (2.12)

y 7→ Tθ,x(y) (2.13)

and θ represents the identity in the parameter space (i.e. Tθ,x(y) = y). It is clear

that a neighborhood is more sensitive than another if the same amount of noise
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produces larger deviations from θ in (2.11). We now have all the ingredients to

answer the question that opened this section: the sensitivity of a point neighbor-

hood to noise will be measured using the notion of differential condition number

introduced in (2.2.2):

Definition 2.4.1 The condition number associated with the point neighborhood

Ω(x) with respect to the transformation Tθ,x is defined as:

KTθ,x
(Ω(x))

def
= lim

δ→0
sup
‖η‖≤δ

‖∆θ‖
‖η‖

(2.14)

The larger the condition number KTθ,x
is, the larger is the magnitude of the

variation of the parameter vector ∆θ induced by the noise and consequently the

larger is the sensitivity of the neighborhood to the noise (or more pictorially, the

smaller is the condition number the more similar is the intensity in Ω(x) to itself

after being perturbed by noise).

It is now worth noticing two things. First, the condition number becomes

practically useful only if we are able to provide a closed form for its expression.

Second, if the statistical distribution of the noise is fixed, we expect the derivatives

of the image intensity pattern in Ω(x) to play a fundamental role in determining

the sensitivity of Ω(x) (or equivalently in the calculation of the condition number).

Along this line of thought, the following theorem provides a computable expression

to estimate the condition number, which turns out to be intimately connected with

the gradient matrix associated with the point neighborhood Ω(x) introduced in

(2.2) and generalized in (2.9).

Theorem 2.4.2 A first order estimate of the condition number (2.14) is given
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by:

K̂Tθ,x
(Ω(x)) = ‖A† (Ω(x)) ‖ (2.15)

where † denotes the pseudo inverse of the matrix:

A (Ω(x))
def
=


A(y1)

...

A(yN)

 ∈ RmN×p (2.16)

which is formed by the N sub-matrices:

A(yi)
def
= w(yi − x)JI(yi) JθTθ,x(yi) (2.17)

obtained from a set of N points that sample the neighborhood Ω(x). The scalar

function w(yi − x) denotes the weight associated with the point yi.

Proof: In the limit for η → 0, we have that ∆θ → 0 and therefore (as-

suming that the necessary smoothness conditions are satisfied) we can expand the

right hand side of equation (2.11) about the point θ (in the parameter space) via

Taylor series, obtaining for each point yi that samples the neighborhood Ω(x) the

following expression:

Ĩ(yi) = I(Tθ,x(yi)) + JI(Tθ,x(yi)) JθTθ,x(yi)∆θ + h. o. t. = I(yi) + ηi

If we drop the higher order terms, we recognize that I(Tθ,x(yi)) ≡ I(yi) and we

multiply both members of the equation by a suitable weighting function w(yi−x),

we obtain the approximate equation:

w(yi − x)JI(yi) JθTθ,x(yi)∆θ ≈ w(yi − x)ηi (2.18)

where the (h, k)th entry of the Jacobian matrix JI(yi) ∈ Rm×n is given by

∂Ih(yi)/∂yk and the matrix JθTθ,x(yi) ∈ Rn×p represents the Jacobian of the
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transformation Tθ,x with respect to the p dimensional parameter vector θ. If

equation (2.18) holds for N points and if we indicate the overall weighted noise

vector with η, then we can group the resulting set of N equations into the linear

system:

A (Ω(x)) ∆θ = η (2.19)

where A (Ω(x)) is obtained by stacking the matrices A(yi) as written in (2.17).

At this point we have been able to relate the displacement ∆θ of the parameter

vector due to the noise. If A(Ω(x)) is full rank, then equation (2.19) can be

inverted in a least square sense, yielding:

∆θ = A† (Ω(x))η (2.20)

Since for any valid vector norm the positive homogeneity property holds, i.e. ‖αx‖ =

|α|‖x‖, then we can write:

sup
‖η‖≤δ

‖∆θ‖
‖η‖

= sup
‖η‖≤δ

‖A† (Ω(x))η‖
‖η‖

= sup
‖η‖=1

‖A† (Ω(x))η‖ = ‖A† (Ω(x)) ‖

Therefore the condition number can be estimated as: K̂Tθ,x
(Ω(x)) = ‖A† (Ω(x)) ‖.

Example 2.4.3 We will illustrate the concepts introduced in this section using

the single channel synthetic image shown in Figure 2.3(a). The original image

is composed of a bright square in the top left corner (with intensity value equal

to 128) placed over a dark background (with intensity value 0). We considered

200 images obtained by adding to the original image a different realization of

Gaussian noise characterized by zero mean and standard deviation ση = 10. For

each of these realizations we considered the circular neighborhoods Ω1(x1) and
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Figure 2.3: Image (a) is realization of a synthetic image composed of a bright
square in the top left corner (with intensity value equal to 128) placed over
a dark background (with intensity value 0) corrupted by Gaussian noise char-
acterized by zero mean and standard deviation ση = 10. The bright circles
identify the neighborhood Ω1(x1) (top) and the neighborhood Ω2(x2) (center).
Figure 2.3(b) shows the parameter vectors calculated for a specific instance of
Figure 2.3(a) by solving (2.20) in a least square sense. The red crosses are
associated with the region Ω1(x1) and the green crosses to the region Ω2(x2).
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Ω2(x2) (represented as bright circles in Figure 2.3(a)) with radius 8 pixels and

respectively centered at x1 =

[
32 64

]T

and x2 =

[
64 64

]T

. Each marker in

Figure 2.3(b) corresponds to the parameter vector calculated for a specific instance

of Figure 2.3(a) by solving (2.20) in a least square sense. The red crosses are

associated with the region Ω1(x1) and the green crosses with the region Ω2(x2).

The transformation chosen to model the effects of noise is a pure translation:

Tθ,x(y) =

 y1 + θ1

y2 + θ2


It is clear that the spread of the parameter vector θ (and more specifically of

its first component θ1) is much larger for the neighborhood Ω1(x1). This fact

can be explained comparing the intensity pattern contained in the two neighbor-

hoods: when Ω1(x1) slides along the straight edge, its intensity content does not

vary. Therefore small amounts of noise can be “compensated” by larger trans-

formations. On the other hand the corner contained in Ω1(x1) remains very

distinctive even after it is perturbed by noise, and therefore the spread of the

transformation parameters is smaller. Finally note that since the components

of the vector η are i. i. d. Gaussian variables, then η ∼ N (0, σ2
ηI). Moreover,

since linear transformations of jointly Gaussian vectors are still jointly Gaus-

sian vectors and A†
(
A†
)T

= (ATA)−1, then from ∆θ = −A†η it follows that

∆θ ∼ N
(
0, σ2

η(A
TA)−1

)
. This observation explains the scatter of the parameter

vector in Figure 2.3(b) and justifies the choice of defining the condition number

(2.14) in terms of the supremum of the ratio between ‖∆θ‖ and ‖η‖.
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2.4.2 Condition Theory for Local Transformation Estima-

tion

In this section we study the conditions under which we can robustly estimate

the parameters of a transformation that relates two image regions Ω(x) and Ω′(x′).

The same approach was introduced in [63] in the case of gray-level images for a

set of linear transformations.

Consider a transformation defined as in (2.12), so that for any y ∈ Ω(x) there

exists a point y′ ∈ Ω′(x′) such that y′ = Tθ,x(y) (technically speaking, Tθ,x

establishes a bijection between the sets Ω(x) and Ω′(x′)). Let’s also define the

cost function:

CT (θ) =
1

2

∑
y∈Ω(x)

w(y − x)‖I(y)− I ′(Tθ,x(y))‖2 (2.21)

where w is an appropriate weighting function. The cost function C measures the

intensity discrepancy between two corresponding regions. In this case our goal is

to estimate the parameter vector that minimizes (2.21), i.e. :

θ̂ = argmin
θ∈Rp

CT (θ) (2.22)

Of course, we are interested in selecting point features (and their corresponding

neighborhood) such that small amounts of noise will not bias the estimate (2.22).

To decide whether or not a region Ω(x) can be used to reliably estimate the

parameter vector θ, we resort once again to the notion of condition number.

Consider a noise free case where I ′(Tθ,x(y)) = I(y). The effect of the noise can

be modeled as a variation of the vector that parameterizes the transformation
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between the image regions, i.e. :

I ′(Tθ+∆θ,x(y)) = I(y) + η (2.23)

To relate the impact of η to the parameter variation ∆θ we will use the condition

number defined in (2.14). The next theorem will show how the first order estimate

of the condition number obtained in (B.1) is valid also for the problem defined in

this section.

Theorem 2.4.4 The expression for the condition number introduced in (B.1),

i.e. :

K̂Tθ,x
(Ω(x)) = ‖A† (Ω(x)) ‖

measures the stability of the parameter estimate θ̂ = argminθ∈Rp CT (θ).

Proof: The first step of the proof is to relate the parameter variation ∆θ to

the noise vector η. Consider the Taylor expansion of the right hand side term in

(2.23) (this is meaningful when η → 0 and therefore ∆θ → 0). Neglecting the

higher order terms we can write:

I ′(Tθ+∆θ,x(y)) = I ′(Tθ,x(y)) + JI ′(Tθ,x(y))JθTθ,x(y)∆θ

and therefore using expression (2.23) we get:

I(y)− I ′(Tθ,x(y)) = JI ′(Tθ,x(y))JθTθ,x(y)∆θ − η (2.24)

In the noisy case the cost function CT is minimized by θ + ∆θ: by plugging

equation (2.24) in the expression of the cost function we obtain:

CT (θ + ∆θ) =
1

2

∑
y∈Ω(x)

w(y − x)‖JI ′(Tθ,x(y))JθTθ,x(y)∆θ − η‖2
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This expression is formed by a summation of positive terms and is minimized

when each of these terms is simultaneously minimized. This happens when, for

each yi ∈ Ω(x), we have that:

w(y − x)JI ′(Tθ,x(yi))JθTθ,x(yi)∆θ = w(y − x)ηi

The structure of this equation closely resembles the structure of equation (2.18).

Therefore, from now on, we can follow the same line of thought used in the proof of

Theorem 2.4.2, the only difference being the fact the second factor that composes

the matrices A(yi) depends on the Jacobian of the image I ′ about the point

y′i = Tθ,x(yi).

From this discussion we conclude that θ can be estimated reliably for regions Ω(θ)

where KTθ,x
is small.

The concepts introduced in this section share some commonalities with those

described in [129]. In fact, the matrix M defined in [129], p. 5, Equation (5),

corresponds to the constitutive block of the GGM (2.17). Moreover the saliency

criterion defined by Triggs is essentially equivalent to the value of the estimate of

the condition number (B.1) calculated using a specific matrix norm and neglecting

the illumination model. Example 2.6.2 will summarize these considerations in the

context of point detection for two dimensional graylevel images. Note also that

the paper by Tommasini et al. [125] builds on the work of Shi and Tomasi [116]

by examining the statistics of the residual difference between a window and a

computed backtransform of the corresponding window in a second image with the

goal of deriving conditions for rejecting a tentative match.
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Figure 2.4: Figure (a) shows a Graffiti scene and Figure (b) displays an ex-
ample of the corresponding detector response map. Darker points indicate a
stronger response. The response is larger for neighborhoods that contain highly
structured (i.e. well conditioned) intensity patterns. Flat or poorly textured
areas do not produce any response.

2.5 Generalized Corner Detector Functions

The main goal of the previous discussion was to explain why and how the

GGM encodes the information necessary to identify set of points that can be

reliably matched between images. In this section we will study a set of generalized

detector functions that extract such information from the GGM and that produce

a dense map that can be used to identify distinctive and stable tie points (see

Figure 2.4). More specifically we will:

• review the properties of the GGM and study its behavior in the presence

of geometric transformations of the images (Section 2.5.1),

• introduce a set of generalized corner detector functions (where the attribute

generalized indicates the fact that they are defined for n ≥ 1 and m ≥
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1) based on the matrix A(Ω(x)), establish analytic relations between the

generalized corner detector functions and find analytical bounds for different

types of transformations associated with the GGM A(Ω(x)) (Section 2.5.2),

• enumerate a list of remarkable properties of the generalized corner detector

functions (Section 2.5.3),

• specialize this results for 2-dimensional single channel images and show how

some of the most widely used detector functions are nothing but specific

instances of these generalized detectors (Section 2.6).

2.5.1 The Generalized Gradient Matrix: Recapitulation

In the previous sections we showed how the GGM A(Ω(x)) ∈ RmN×p con-

structed for different purposes and at different levels of generalization contains

the information that enables us to decide whether the region Ω about the point

x can be tracked, identified or matched reliably. This analysis was carried out

studying the effects of the noise and using the tools of condition theory. For the

sake of convenience we recall that given a neighborhood Ω(x) and a set of points

y1, . . . ,yn that sample such a neighborhood, the GGM is defined as:

A (Ω(x))
def
=


A(y1)

...

A(yN)

 ∈ RmN×p (2.25)

Such a matrix is formed by the N submatrices:

A(yi) = w(yi − x)JθI(Tθ,x(yi)) = w(yi − x)JI(yi) JθTθ,x(yi)
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stacked one on top of the other, and w denotes a suitable weighting function (usu-

ally chosen to be radially symmetric). If all the intensity channels of a generalized

image are scaled by a factor ν, then the GGM is scaled by the same factor and so

is its spectrum. For the sake of the analysis that will be developed in the reminder

of the chapter we rewrite the matrix (2.25) as the product of three matrices. The

first one is the diagonal matrix of the weights, the second one is the block diagonal

matrix of the image Jacobians and finally the last one is the matrix composed of

the transformation Jacobians:

A =


w(y1 − x)Im . . . 0

...
. . .

...

0 . . . w(yN − x)Im


︸ ︷︷ ︸

RmN×mN


JI(y1) . . . 0

...
. . .

...

0 . . . JI(yN)


︸ ︷︷ ︸

RmN×nN


JθTθ,x(y1)

...

JθTθ,x(yN)


︸ ︷︷ ︸

RnN×p

It is worth remarking that the GGM inherits any dependence of JθTθ,x on the

parameters of the transformation. For this reason, if the transformation Tθ,x is

affine, then A (Ω(x)) does not depend on θ.

On the Invariance of the Generalized Gradient Matrix

Before continuing, we would like to study what happens to the GGM when

it is constructed for two corresponding neighborhoods that are related via the

geometric transformation BΘ,X (defined, mutatis mutandis, as in (2.12)). We

assume that such transformation establishes a bijection between Ω(x) and Ω′(x′)

such that if y′ = BΘ,X(y) then I(x) = I ′(x′). At a first look one may expect that

the models we presented in Section 2.4 should have the property of describing the

sensitivity of a neighborhood despite the image transformation BΘ,X . However it
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Figure 2.5: Two images related by a linear transformation. Note how the
edges that define the corner structure in Ω(x) become almost collinear after
the transformation (2.26) is applied to the image.

turns out that such an expectation cannot (and should not) hold in general. In fact

it is possible that certain transformations modify the sensitivity of a neighborhood

in the presence of noise. This is illustrated in the following example.

Example 2.5.1 Consider the images in Figure 2.5 which are related via the linear

transformation:

BΘ,X(x) =

 sx γ

0 sy


 cos(φ) − sin(φ)

sin(φ) cos(φ)

x (2.26)

where sx = 0.4, sy = 1.0, γ = 0.5 and φ = −45◦. The intensity pattern that is

contained in Ω(x) defines a corner-like structure. The transformation BΘ,X has

the effect of straightening the corner edges in Ω(x), making them almost collinear.

Qualitatively it seems resonable that the intensity pattern contained in Ω′(x′) is

more sensitive to the effects of noise.

We will now make the previous statements more precise by introducing a suffi-

cient condition5 that guarantees that the matrices A(Ω(x)) and A′(Ω′(x′)) have

5Another sufficient condition will be presented in Lemma 2.5.14.
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the same spectrum (which is intimately connected to the structure and to the

sensitivity of the associated neighborhood).

Theorem 2.5.2 (Spectrum Invariance Sufficient Conditions) LetBΘ,X be

a transformation that locally relates two images so that I ′(x′) = I(x) (where

x′ = BΘ,X(x)). If the sampling of the neighborhood is dense enough, and:

JθTθ,x′(BΘ,X(y)) = JBΘ,X(y) JθTθ,x(y) (2.27)

then the spectra of the GGMs A(Ω(x)) and A′(Ω′(x′)) are the same.

Proof: The proof of the theorem starts by considering the blocks that com-

pose the GGMs A(Ω(x)) and A′(Ω′(x′)). Without losing any generality we as-

sume the weighting to be uniform (i.e. w ≡ 1). Using the notation introduced in

Section 2.4 and summarized at the beginning of this section we can write:

A(y) = JθI(Tθ,x(y))

A′(y′) = JθI
′(Tθ,x′(y

′))

Recalling that the vector θ parameterizes the identity transformation and expand-

ing the previous expressions using the chain rule we obtain:

A(y) = JθI(Tθ,x(y))

= JI(Tθ,x(y)) JθTθ,x(y)

= JI(y) JθTθ,x(y) (2.28)

and similarly:

A′(y′) = JθI
′(Tθ,x′(y

′))

= JI ′(Tθ,x′(y
′)) JθTθ,x′(y

′)

= JI ′(y′) JθTθ,x′(BΘ,X(y)) (2.29)

43



Point Feature Detectors: Theory Chapter 2

Moreover, since I(y) = I ′(BΘ,X(y)), differentiating both members of the previous

equation with respect to y yields:

JI(y) = JI ′(y′) JBΘ,X(y) (2.30)

Plugging the previous expression in (2.28) we can rewrite the blocks that compose

the matrix A(Ω(x)) as:

A(y) = JI ′(y′) JBΘ,X(y) JTθ,x(y) (2.31)

Comparing (2.29) with (2.31) we see that the condition (2.27) is sufficient to

guarantee that A(y) ≡ A′(y′). Finally, since we are considering corresponding

neighborhoods, when the sampling is dense enough6, the matrices A(Ω(x)) and

A′(Ω′(x′)) are approximately related by via block permutations of their rows.

Such an operation leaves the spectrum of the matrices unchanged.

There are cases where we are interested in comparing the sensitivity of two

neighborhoods that are related via a transformation BΘ,X(y). If the spectral

invariance condition (2.27) is not met, one possible solution is to map the neigh-

borhoods onto a normalized domain Ω and evaluate A(Ω) (see Figure 2.6). We

will now present an example where we adopt this strategy to estimate the local

scaling factor between two corresponding neighborhoods.

Example 2.5.3 Consider a RGB image I ′ obtained from the image I after ap-

plying a rotation of 30◦ degrees and a 25% scaling. The left (right) plot in Figure

6Neither in the statement of Theorem 2.5.2 nor this its proof we formalized precisely how
the sampling density actually modifies the spectrum of the A. Experiments with real imagery
suggest that this issue has a limited impact in practical applications. An accurate analysis
to derive analytical bounds for the spectrum fluctuations is beyond the scope of this work.
However we believe that the Hoffman and Wielandt theorem (see [53], p. 365) is an essential
tool to understand the relation between the density of the sampling and the fluctuation of the
spectrum.

44



Point Feature Detectors: Theory Chapter 2

y

x

340 345 350 355 360 365 370

250

255

260

265

270

275

y

x

420 425 430 435 440 445 450 455

175

180

185

190

195

200

205

210

y

x

-1 0 1

-1

-0.5

0

0.5

1

y

x

-1 0 1

-1

-0.5

0

0.5

1

Warping

Warping

s = 0.75 Normalized Neighborhood
φ = 30◦

Figure 2.6: The image shows two corresponding circular regions and their
average gradient direction defined as in (2.32). The regions are warped on a
normalized neighborhood. The green dots represent the discretization lattice.

2.7 displays the value of the reciprocal of the condition number estimate of A (A′)

for a circular neighborhood parameterized by the radius r (recall that the condition

number estimate depends only on the spectrum of A). The transformation Tθ,x

that describe the effects of the noise models a rotation, a scaling and a transla-

tion, and therefore the condition (2.27) is not met. To cope with this problem,

the neighborhoods are warped onto a circular normalized patch Ω that is centered

about the points x (x′) and whose local coordinate system is aligned to the average
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Figure 2.7: The plots display the reciprocal of the condition number of the
GGM (2.25) for two neighborhoods centered about two corresponding points
belonging to an image pair related by a rotation of 30◦ degrees and a 25% scaling
(see Example 2.5.3). The considered transformation Tθ,x models a rotation, a
scaling and a translation. The dashed line displays the original curve, whereas
the continuous blue curve corresponds to the smoothed version.

image gradient (see Figure 2.6), which is calculated according to:

g =
1

Nm

N∑
i=1

m∑
j=1

∇Ij(xi) (2.32)

The plots of the reciprocal of the condition number associated with the normalized

neighborhood are displayed in Figure 2.7. Such plots are essentially related by a

uniform scaling along the radii axis. When the ratio between the radii corresponds

to the scaling factor between the images, the inverse of the condition number ap-
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proximately attains the same value. Indeed the ratio of the radii corresponding

to the first local maximum of the curves returns the scaling factor between the

images, as confirmed by the numerical values that can be retrieved from the plots

in Figure 2.7:

first peak of 1
K

for image I

first peak of 1
K

for image I ′
=

13.54

18.14
≈ 0.75

The amplitude differences in the corresponding portions of the curves are to be

attributed to the effects of finite precision arithmetic, to the discretization of the

signals (in fact the curves appear to be more distorted for smaller neighborhoods)

and to the fact that the neighborhoods are not sampled exactly at the same lo-

cations. See Section 6.1.1 in Chapter 6 for a thorough discussion regarding the

possibility of using the condition number to detect the characteristic structure of

a point neighborhood.

2.5.2 Generalized Corner Detectors Basics

Definition 2.5.4 A (local) Generalized Corner Detector Function (GCDF) for

an image with pixel dimension n and intensity dimension m associated with the

transformation Tθ,x(y) is a real-valued function f of the GGM A(Ω(x)) defined

as in (2.25).

Definition 2.5.5 Let σ1(A) ≥ σ2(A) ≥ . . . ≥ σp(A) be the singular values of the

GGM A (assuming mN ≥ p). Then a Generalized Corner Detector Function

(GCDF) that depends solely on the spectrum of the GGM is called a Spectral

Generalized Corner Detector Function (SGCDF).
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• Generalized Harris-Stephens (geometric/arithmetic mean SGCDF):

fHS(Ω(x))
def
=

p∏
i=1

σi(A)2 − α

[
p∑

i=1

σi(A)2

]p

(2.33)

where α ∈
[
0, 1

pp

]
is a user supplied constant.

• Generalized Rohr (geometric mean SGCDF):

fR(Ω(x))
def
=

[
p∏

i=1

σi(A)2

] 1
p

(2.34)

• Generalized Noble-Förstner (harmonic mean SGCDF):

fNF (Ω(x))
def
=


1Pp

i=1
1

σi(A)2
if σi(A) 6= 0 for every i,

0 otherwise.

(2.35)

• Generalized Shi-Tomasi:

fST (Ω(x))
def
= σp(A)2 (2.36)

• Kenney (condition number based SGCDF):

fK,q(Ω(x))
def
=


1»Pp

i=1
1

σi(A)2q

– 1
q

if σi(A) 6= 0 for every i,

0 otherwise.

(2.37)

We will now present some general properties related to the analytical structure

of the detector functions introduced above. This preliminary discussion serves

to simplify the presentation of the results of Section 2.5.3, that target some rel-

evant specific issues arising in the context of corner detection for multichannel

generalized images.
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Detector Structure

The Harris-Stephens, the Rohr and the Noble-Förstner Spectral Generalized

Corner Detector Function (SGCDF) are closely connected to the so called Pythagorean

means [49]:

MA(x1, . . . , xp)
def
= 1

p

∑p
i=1 xi Arithmetic Mean

MG(x1, . . . , xp)
def
= (

∏p
i=1 xi)

1
p Geometric Mean

MH(x1, . . . , xp)
def
= pPp

i=1
1
xi

Harmonic Mean

In fact, from the previous definitions, we can derive the following identities:

fHS(Ω(x)) = MG

(
σ2

1, . . . , σ
2
p

)p − αppMA

(
σ2

1, . . . , σ
2
p

)p
fR(Ω(x)) = MG

(
σ2

1, . . . , σ
2
p

)
fNF (Ω(x)) =

1

p
MH

(
σ2

1, . . . , σ
2
p

)
When the matrix A is full rank, the Kenney’s SGCDF is obtained by calculating

the inverse of condition number estimate (B.1) of the GGM utilizing the Schatten

q-norm (see (A.4)):

fK,q(Ω(x)) =
1

‖A†‖2S,2q

The structure of the Rohr and of the Noble-Förstner SGCDFs will be motivated

using the equivalence relations that will be presented in the next section.

We will now focus on the interpretation of the Harris-Stephens SGCDF. When

Tθ,x is a pure translation and n = 2 (and consequently p = 2), the space of the

squared singular values is partitioned as shown in Figure 2.8. In his paper [50],

Harris explains how the detector was designed to be invariant with respect to
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Figure 2.8: Figure (a) shows the amplitude of the Harris-Stephens SGCDF for
a pure translation in the case n = 2. Brighter values indicate a larger response.
The continuous yellow lines identify the loci defined by fHS = 0. Figure (b)
shows the level set surface fHS = 0 of the Harris-Stephens SGCDF in the case
n = 3. The red line is generated by the vector d = [1 . . . 1]T .

rotations, to have a small computational complexity7 and to properly partition

the space of the eigenvalues of ATA:

R [using our notation R = fHS] is positive in the corner region, nega-

tive in the edge regions and small in the flat regions. Note that increas-

ing the contrast (i.e. moving radially away from the origin) in all cases

increases the magnitude of the response. The flat region is specified

by Tr [the trace of ATA] falling below some selected threshold.

From the more general point of view presented in Section 2.4, the Harris SGCDF

partitions the space of the singular values of A so that the region around the axis

of the cone defined by the condition fHS ≥ 0 is associated with neighborhoods that

are well conditioned. We conjecture that these considerations can be extended to

7Calculating just the trace and determinant of the gradient normal matrix it is possible to
avoid its explicit eigen-decomposition.
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a generic transformation for an arbitrary dimension of the pixel space: well con-

ditioned neighborhoods will be characterized by a set of singular values that lie

near the axis of the cone defined by the condition fHS ≥ 0. Our conjecture is valid

provided that the locus F (α) = {λ ∈ Rp : fHS(λ) ≥ 0} defines a cone-like struc-

ture with apex at the origin and axis aligned with the vector d =

[
1 . . . 1

]T

(for the case p = 3 see Figure 2.8(b)). Such locus is not empty if and only if:

α ≤
MG

(
σ2

1, . . . , σ
2
p

)p
ppMA

(
σ2

1, . . . , σ
2
p

)p (2.38)

This happens when α belongs to the interval
[
0, 1

pp

]
(as specified in the formal

definition of the Harris-Stephens SGCDF), as a consequence of the inequality

between arithmetic and geometric means (see [49], p. 17). Such a result states

that the arithmetic mean of a set of non-negative real numbers is greater or equal

than the geometric mean of the same set of numbers and that equality is achieved

if and only if all the number in the set are equal. This said, our conjecture can

be formalized as:

Conjecture 2.5.6 (Relation Between α and φ) Consider the hypercone C(2φ) ={
λ ∈ Rp : dTλ− ‖λ‖‖d‖ cos(φ) ≥ 0

}
, where d =

[
1 . . . 1

]T

and 2φ is the

apex angle. Then there exist α∗ ∈
[
0, 1

pp

]
(depending on φ) such that for any

ε > 0 arbitrarily small we have: C(2φ) ⊆ F (α∗) and C(2φ+ ε) * F (α∗).

We believe that a proof of Conjecture 2.5.6 for p > 2 might be quite involved and

that its discussion would take us too far afield. However we would like to gain a

deeper understanding regarding the relation between the angle of the apex of the

hypercone and the parameter α. To achieve this goal we will construct a point λC

that lies on the surface of the cone C(2φ) and we will show how, when φ becomes
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larger, F (α) encloses such point only if α becomes smaller. Let’s consider the

point λC =

[
µ t . . . t

]T

. This point belongs to the surface of C(2φ) if and

only if dTλ−‖λ‖‖d‖ cos(φ) = 0. This constraint allows µ to take only two values:

µ1,2 =
p− 1± p

√
p− 1 cos(φ) sin(φ)

p cos(φ)2 − 1
t

Interestingly enough, in the above expression t factors out, and therefore our

considerations will be valid not just for the points λC1,2 but for all the points that

have the same direction of λC1 or λC2 . If we let γ = p
√
p− 1 sin(φ) to simplify

the notation, the condition (2.38) that enforces both λC1,2 to be contained inside

F (α) can be written as α ≤ Tα, where Tα = min{Tα1 , Tα2} and:

Tα2 =
[p− 1 + pγ cos(φ)]

[
p cos(φ)2 − 1

]p−1

pp [p2 cos(φ)− p cos(φ) + γ]p cos(φ)p

Tα2 =
[p− 1− pγ cos(φ)]

[
p cos(φ)2 − 1

]p−1

pp [p2 cos(φ)− p cos(φ)− γ]p cos(φ)p

Figure 2.9 shows the behavior of Tα as a function of the cone angle 2φ for different

values of p. As suggested by our conjecture, when the cone angle grows larger

the value of α must decrease to have C(2φ) contained in F (α). The graphs seem

to suggest that when p > 2 the apex angle of the cones that can be contained in

F (α) is limited by a value that is less than 90 degrees. However this is not true:

when α = 0 the locus F (α) contains all the points with non negative components

and the detector response is always positive. Finally note that when φ = 0, α is

equal to 1
pp . Even if this analysis is not general, it definitely points to the validity

of the conjecture.

Example 2.5.7 (Harris-Stephens Detector Sensitivity) In this example we

will specialize the previous observations for the case where Tθ,x models a trans-
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Figure 2.9: Figure (a) shows the curve that relate the threshold Tα to the cone
apex angle 2φ. Figure (b) illustrates the situation studied in Example 2.5.7.

lation and n = 2. It can be shown that the locus fHS = 0 is indeed a cone and

therefore there exists a one to one relation between α and φ. More specifically the

values for µ are:

µ1,2 =
1± sin(2φ)

cos(2φ)
t

and:

α = Tα1 ≡ Tα2 =
cos(2φ)

4 cos(φ)2

The above expression can be inverted yielding:

φ = arccos

(
1√

2
√

2α+ 1

)
The empirically arrived values suggested in the literature for α are in the range

[0.04, 0.06]. This approximately translates in a cone angle 2φ ∈ [82◦, 85◦]. There-

fore smaller values of α make the Harris-Stephens detector more sensitive by en-

larging the region that is associated with corner-like structures (i.e. fHS ≥ 0, see

Figure 2.9(b)).
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Detector Equivalence Relations

The SGCDFs just introduced are not independent one from the other; it can

be shown that two of them (the Noble-Förstner SGCDF and the Shi-Tomasi

SGCDF) are actually equivalent to Kenney’s SGCDF modulo an appropriate

choice of the matrix norm used to estimate the condition number. Similar con-

siderations hold for the Rohr’s SGCDF, even though the relation with Kenney’s

SGCDF is more involved and is valid only in a limit sense. The following theorem

expresses analytically such relations:

Theorem 2.5.8 (Generalized Detectors Equivalence Relations) The follow-

ing interesting relations hold among the SGCDF (2.34), (2.35), (2.36) and (2.37):

• Generalized Rohr equivalence: limq→0
q
√
pfK,q = fR

• Generalized Noble-Förstner equivalence: fK,1 = fNF

• Generalized Shi-Tomasi equivalence: fK,∞ = fST

Proof: We begin our proof showing the generalized Rohr equivalence. The

following chain of equations hold:

lim
q→0

q
√
pfK,q = lim

q→0

q
√
p[∑p

j=1
1

σj(A)2q

] 1
q

=
1

limq→0
1

p
1
q

[∑p
j=1

1
σj(A)2q

] 1
q

Because of the result presented in [49], (p. 15), which states that:

lim
q→0

(
1

p

p∑
j=1

xq
j

) 1
q

= p

√√√√ p∏
j=1

xj
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we can write:

1

limq→0

[
1
p

∑p
j=1

1
σj(A)2q

] 1
q

=
1

p

√∏p
j=1

1
σj(A)2

=

[
p∏

j=1

σj(A)2

] 1
p

which proves that limq→0
q
√
pfK,q = fR. As far as the generalized Noble-Förstner

equivalence is concerned, note that fK,1 = 1Pp
j=1

1
σj(A)2

. Finally the last equivalence

follows from the fact that limq→∞ ‖A†‖2S,2q = σmax(A
†)2 = 1

σmin(A)2
(as explained

in Appendix A.2.1).

Because of the equivalence relations established in the previous theorem, we will

introduce the following definition:

Definition 2.5.9 A (local) SGCDF that is derived from fK,q for any value of q ≥

1 is called condition number based (henceforth Condition Number Based (CNB))

SGCDF.

Neither the Harris SGCDF nor the Rohr SGCDF are Condition Number Based

(CNB) SGCDF. It is straightforward to verify that there does not exist a value

of q > 0 such that fHS = fK,q (in fact for any positive α the Harris-Stephens

SGCDF can become negative). As far as fR is concerned, recall that in the proof

of Theorem 2.5.8 it was shown that:

lim
q→0

q
√
p

‖A†‖2S,2q

=
1

p

√∏p
j=1 σj(A†)2

The quantity that appears at the denominators of the left hand side of the previous

equation (i.e. the inverse of the geometric mean of the singular values of A†) is not

a norm since it becomes zero when any of the singular values is zero. Moreover

the triangle inequality is not satisfied.8

8Actually the geometric mean always satisfies the reversed triangle inequality: for any two
vectors u and v with positive components MG(u+ v) ≥MG(u) +MG(v).
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Analytical Bounds

The GGM A(Ω(x)) depends on the type of geometric transformation that

we are considering (see (2.17)). It seems reasonable to expect that transforma-

tions Tθ,x that are more complex (i.e. described by more parameters) will produce

SGCDF responses that have a smaller value. In fact, if we adopt the perspective

introduced in Section 2.4.1, we expect that all the parameters of the transfor-

mation will be modified in the attempt to compensate for the effects of noise,

hence producing a larger value for ‖∆θ‖. Similarly, if we model the problem as

we did in Section 2.4.2, it is intuitively clear that if we use the same amount of

information, the stability of the estimate of a higher dimensional parameter vector

will worsen. These empirical considerations are quantitatively formalized in the

following theorem:

Theorem 2.5.10 (Generalized Detector Bounds) Let n be the pixel dimen-

sion of the generalized image I and consider the translational transformation

Tθ,x(y) = y + b ∈ Rn, where θ = b and the affine transformation Tθ,x(y) =

x + B(y − x) + b, where θ =

[
bT vec (B)T

]T

∈ Rn(n+1) and vec (B) returns

the vector formed by columns of A stacked one upon the other. Then for any

neighborhood Ω(x), any CNB SGCDF satisfies the inequality:

fTranslation
K,q ≥ fAffine

K,q (2.39)

Proof: This proof can be regarded as a constructive method to identify

bounds for the response of a SGCDF for a given transformation. The Jacobian

for the translational transformation is the identity matrix In whereas the Jacobian

for the affine transformation (that is parameterized by a p = n(n+1) dimensional
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vector) can be written as:

JθT
Affine
θ,x (yi) =

[
In (yi,1 − xi,1)In . . . (yi,n − xi,n)In

]
∈ Rn×p

Consequently the ith block of the GGM in the affine case becomes:

AAffine(yi) =

[
JI(yi) (yi,1 − xi,1)JI(yi) . . . (yi,n − xi,n)JI(yi)

]
∈ Rm×p

Therefore the matrix ATranslation(yi) is obtained from AAffine(yi) by removing the

last n2 columns and the same consideration applies to the matricesATranslation(Ω(x))

and AAffine(Ω(x)). Using Inequality (A.6) from Theorem A.2.4 and passing to

the reciprocals we can write:

1

σ1+n2

≥ 1

σ
(n2)
c,1

1

σ2+n2

≥ 1

σ
(n2)
c,2

...
...

1

σn+n2

≥ 1

σ
(n2)
c,n

Summing the n corresponding members of the previous inequalities raised to the

power 2q we get:
n∑

i=1

(
1

σi+n2

)2q

≥
n∑

i=1

(
1

σ
(n2)
c,i

)2q

The left hand side of the previous equation can be augmented considering the first

largest n2 singular values of AAffine(yi):

n2∑
i=1

(
1

σi

)2q

+
n∑

i=1

(
1

σi+n2

)2q

=

p∑
i=1

(
1

σp

)2q

≥
n∑

i=1

(
1

σ
(n2)
c,i

)2q
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It is straightforward to recognize that the previous inequality can be rewritten as:

‖AAffine,†(Ω(x))‖S,2q ≥ ‖ATranslation,†(Ω(x))‖S,2q

and taking the reciprocals of both members we conclude that fAffine
K,q ≤ fTranslation

K,q .

This theorem holds neither for the Harris-Stephens SGCDF nor for the Rohr

SGCDF. Using Inequalities (A.6) we can write:

n∏
i=1

σi+n2 ≥
n∏

i=1

σ
(n2)
c,i

but in general it is not possible to augment the left hand side of the previous

inequality utilizing all the singular values of AAffine. Similar considerations can

be extended to the Harris-Stephens detector, where the situation is complicated

by the presence of the difference between the geometric and the arithmetic mean.

Theorem 2.5.10 confirms the intuition that for any given region Ω(x), the

higher is the complexity of the transformation used either to model the effects

of noise (see Section 2.4.1) or to model the transformation of the intensity (as

discussed in Section 2.4.2), the higher is the corresponding condition number and

consequently the smaller the SGCDF response. This result is important from the

computational viewpoint, in order to reduce the complexity associated with the

calculation of the SGCDF when the transformation is characterized by a large

number of parameters. In fact, as stated in (2.39), a neighborhood that yields a

small SGCDF response with respect to a translation will have a smaller response

for an affine transformation. Hence it makes sense to calculate the response of

the SGCDF fAffine
K,q (high computational complexity task) only at the points

where fTranslation
K,q attains its maxima (small computational complexity task). We
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finally would like to emphasize how this theorem provides a partial answer to the

following observation by Triggs (quoted from [129], p. 10):

The main observation is that different models often select different

keypoints, and more invariant models generate fewer of them, but

beyond this it is difficult to find easily interpretable systematic trends.

Computational Complexity

All the SGCDFs relies on the calculation of the singular values of the GGM

A(Ω(x)). In general this task is achieved using an iterative algorithm that requires

about 2p2(mN + p) floating point operations ([44], p. 254). As shown in Lemma

A.2.1, σj(A)2 = λj(A
TA), and therefore when p � mN we can take advantage

of those algorithms that can diagonalize a symmetric matrix with a complexity

O(p3). Moreover, trace(ATA) =
∑p

j=1 σj(A)2 and det(ATA) =
[∏p

j=1 σj(A)
]2

,

and therefore for the Harris-Stephens and Rohr SGCDF we can avoid the explicit

calculation of the singular values of A at the price of computing the determinant

of the generalized gradient normal matrix ATA.

2.5.3 Properties of the Generalized Corner Detectors

In this section we will enunciate a set of relevant properties of the SGCDFs.

Some of them are satisfied only in case Tθ,x models a pure translation. Even

with this limitation these properties are quite relevant, especially in the light of

Theorem 2.5.10, that states that the responses of the SGCDFs associated with

a pure translation provide an upper bound for the values that can be attained by

the SGCDFs associated with more complex transformations.
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Definition 2.5.11 Given two matrices S1 and S2 compatibly dimensioned, we

write S1 ≤ S2 if S2 − S1 is positive semi-definite. That is, for any vector v we

have vT (S2 − S1)v ≥ 0.

Definition 2.5.12 Let σ1, . . . , σn be the eigenvalues of A(Ω(x)). We say that

a set of points X in the image I has constant eigen-energy with respect to the

q-Schatten norm if ‖A(Ω(x)‖2S,2q is constant for every x ∈ X.

Definition 2.5.13 A point x is isotropic (with respect to the image I) if the

singular values of the GGM are all equal: σ1 = . . . = σp.

Rotation Invariance

A desirable property for a SGCDF is to be invariant with respect to rotations

and reflections of a generalized image. The next lemma provides a sufficient

condition for a SGCDF to be invariant with respect to orthogonal transformations

(used to model rotations or rotoinversions, i.e. a rotation followed by a flip).

Lemma 2.5.14 (Rotation Invariance) Any SGCDF that is associated with a

translational transformation and that depends solely on the singular values of the

GGM is invariant with respect to rotations and reflections of image.

Proof: Consider two images I and I ′ related by a rotation and possibly a

reflection, i.e. I(x) = I ′(x′) = I ′(Ux), where U is an orthogonal matrix in Rn×n.

From (2.30) we can write JI(y) = JI ′(y′) U and since JTθ,x = In, the blocks

(2.17) that compose the GGM can be written as:

A(y) = w(y − x)JI(y) = w(UT (y − x))JI ′(y′)U = w(y′ − x′)A′(y′)
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(assuming that the weighting function has a radial symmetry). Hence we can also

write A(Ω(x)) = A′(Ω′(x′))U and the assertion follows from the observation that

the singular values are invariant under the action of orthogonal matrices.

All the SGCDFs defined in 2.5.5 satisfy the previous lemma. This invariance

property in general does not hold when the transformation Tθ,x is different from

a pure translation. In this case JTθ,x is different from the identity and therefore

it is not possible to factor out from the GGM an orthogonal matrix.

Monotonicity

The spectrum of the gradient normal matrix encodes the information regarding

the sensitivity of a neighborhood in the presence of noise: the larger the singu-

lar values the smaller the sensitivity to noise. This property is captured in the

monotonic behavior of the SGCDFs.

Lemma 2.5.15 (Monotonicity) The Rohr SGCDF and any CNB SGCDF

are non decreasing in σ1(A), . . . , σp(A).

Proof: By convenient abuse of notation let’s make explicit the dependence

of the SGCDF f from the singular values of the GGM; we need to show that

the inequality:

f(σ1, . . . , σi, . . . , σp) ≤ f(σ1, . . . , σi + δ, . . . , σp) (2.40)

holds for an arbitrary index i and for any δ > 0. Let’s start with the case f = fR.

It is simple to verify that for every i we have:

∂fR

∂σj

=
2fR

pσj

> 0
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and therefore the non decreasing property holds with strict inequality. Let’s now

consider the case f = fK,q. Since the q-Schatten norm of the GGM is defined as

the q-norm of the vector composed of its singular values and since the vector q-

norm is absolute (i.e. it depends only on the absolute values of the vector entries)

then it is also monotone (see [53], p. 285). Therefore the assertion (2.40) follows

from the inequality:∥∥∥∥∥
[

1
σ1

. . . 1
σi

. . . 1
σp

]T
∥∥∥∥∥

2q

≥

∥∥∥∥∥
[

1
σ1

. . . 1
σi+δ

. . . 1
σp

]T
∥∥∥∥∥

2q

To understand the meaning of the previous lemma let’s consider the SGCDF

associated with a pure translation and let’s recall that σi(A)2 = λi(A
TA). Then

the matrix ATA provides a measure of both the strength of the intensity gradients

and their independence. This can be encapsulated by the natural ordering on

symmetric matrices formally defined in 2.5.11. Thus if we have two neighborhoods

Ω1(x1) and Ω2(x2) such that AT
1A1 > AT

2A2 (where A1 = A(Ω1(x1)) and A2 =

A(Ω2(x2))), then the condition expressed in Lemma 2.5.15 means that the gradient

vectors at x2 are stronger and/or more independent than those at x1. Similar

considerations hold when Tθ,x models other transformations: in this case the

matrix ATA encodes the level of strength/independence of the intensity gradients

with respect to the transformation parameters. The Harris-Stephens SGCDF

does not satisfy the non decreasing property as it can be shown by contradiction.

If we assume that fHS is non decreasing, then for every index i we have that
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∂fHS

∂λi
≥ 0 (where λi = σ2

i ) and therefore:

p∏
j=1

j 6=i

λj ≥ αp

(
p∑

j=1

λj

)p−1

Since both the left and the right hand side of the previous equation are positive,

we can multiply the left hand side and the right hand side of each inequality for

all 1 ≤ i ≤ p obtaining:(
p∏

j=1

λj

)p−1

≥ αppp

(
p∑

j=1

λj

)p(p−1)

(2.41)

and consequently:

0 < α ≤

(∏p
j=1 λj

) p−1
p

p
(∑p

j=1 λj

)p−1 =
1

p

[
MG(λ1, . . . , λp)

MA(λ1, . . . , λp)

]p−1

(2.42)

From the previous equation9 it follows that there exist values of α such that the

partial derivatives of fHS are not positive. This contradicts our initial assumption

regarding the fact that the Harris-Stephesn SGCDF satisfies the non decreasing

property.

Example 2.5.16 In this example we will apply the previous analysis when Tθ,x

models a translation, n = 2 and m = 1 (i.e. we are dealing with a simple sin-

gle channel image). Consider Figure 2.10 that shows two image neighborhoods

containing a corner point. Let Ω1(x1) and Ω2(x2) be the circular neighborhoods

(represented by the nodes of the discretization grid). Let ∆i be the intensity vari-

ation and φi be the angle (between the segments that define the partition between

9Note that the upper bound is not tight: this is a consequence of the method we used to
construct the inequality (2.41).
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Figure 2.10: The images show two corner structures and the discretization
lattice used to compute the SGCDF response. The left structure exhibits a
“weaker” corner structure: in fact both the intensity difference and the angle
φ1 are smaller than those of the right structure.

the dark and the bright portions of the image) in the neighborhood Ωi(xi) (where

i = 1, 2). Since ∆1 > ∆2 and φ1 > φ2 we can qualitatively say that the corner

structure contained in the second neighborhood is more “strong” that the structure

contained in the first one. This is confirmed quantitatively by the evaluation of

the spectrum of the corresponding gradient normal matrices:

λ(AT
1A1) = {3.5804, 0.0674} λ(AT

2A2) = {4.1789, 0.1175}

The eigenvalues of AT
2A2 are larger than the corresponding eigenvalues of AT

1A1.

In order for the Harris-Stephens SGCDF to be nondecreasing, the inequality

(2.42) states that α must belong to the interval (0, 0.0673]. If we pick α out of this

interval (say α = 0.07) we obtain that:

fHS(Ω1(x1)) = −6.9014 ≥ −8.0115 = fHS(Ω2(x2))

In other words the Harris-Stephens SGCDF yields a larger response for the neigh-

borhood that contains a weaker corner structure.10 This fact is undesirable, espe-

10The negative value attained by the detector is in agreement with the plot displayed in Figure
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cially in a context that requires a preliminary pruning of the points based on the

magnitude of the SGCDF response. Finally we want to remark that this problem

cannot be solved just by taking the magnitude of fHS. As it can be inferred from

Figure 2.8(a), considering |fHS| would cause points associated either to a small

λ1 or to a small λ2 to produce responses with the same value of the responses

produced by eigenvalue pairs inside the cone fHS > 0 (in other words a corner

would be confused with an edge).

Isotropy

There exist an infinite number of GGMs (i.e. an infinite number of neighbor-

hoods) characterized by a set of singular values that have the same eigen-energy

(see Definition 2.5.12). It turns out that the SGCDF introduced in this chapter

attain their maximum value when all the singular values of the GGM are the

same.

Lemma 2.5.17 (Isotropy) The Harris-Stephens, Rohr and any CNB SGCDF

calculated over a set of eigen-energy points (defined as in 2.5.12) attain their

maximum value at a point of isotropy (defined as in 2.5.13).

Proof: To prove the lemma we need to solve a constrained optimization

that can be treated as a Lagrange multiplier problem (see A.3.1 and for a more

thorough discussion of the topic see [9]). With the customary abuse of notation,

we will express the dependence of the SGCDF and of the constraint in terms

of the eigenvalues of the generalized gradient normal matrix ATA, recalling that

2.8(a).
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λi(A
TA) = σi(A)2. Our goal is to maximize f(λ1, . . . , λp) subject to the eigen-

energy constraint h(λ1, . . . , λp) =
(∑p

j=1 λ
q
j

) 1
q

= c, where c > 0 is an arbitrary

constant, and λi > 0 for every i. We seek for the candidate solutions at the

stationary points of the Lagrangian F (λ1, . . . , λp) = f + γ(h − c), where the

unknown constant γ is the Lagrange multiplier .

The proof of the isotropy property for the Harris-Stephens is quite involved

and therefore is carried out separately in Lemma A.3.3.

Let’s now focus on the Rohr SGCDF. To simplify the notation, let’s define

the following quantities: P
def
=
∏p

j=1 λj and Sq
def
=
∑p

j=1 λ
q
j , so that ‖λ‖q = S

1
q
q = c.

The components of the gradient of the Lagrangian are:

∂F

∂λi

=
P

1
p

pλi

+ γS
1−q

q λq−1
i

and by equating all the gradient components to zero we obtain that:

λi =
P

1
pq

(−γp)
1
q c

1−q
q

Since the right hand side of the previous equations does not depend on the index

i, then the gradient of the Lagrangian vanishes when all the eigenvalues of the

generalized normal matrix are equal.

Finally let’s consider the case of a CNB SGCDF, i.e. fK,q =
(∑p

j=1 λ
−q
j

)− 1
q
.

The components of the gradient of F are given by:

∂F

∂λi

= S
− 1+q

q

−q λ−q−1
i + γS

1−q
q λq−1

i

As we did before, by forcing the gradient components to zero we get that all the

eigenvalues must be equal, since:

λi =

−S− 1+q
q

−q

γc1−q


1
2q
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Also in this case it is useful to initially consider Tθ,x to be a pure translation and

to analyze the generalized gradient normal matrix ATA. If the matrix ATA has a

large value of vTATAv for a vector v then it is well-conditioned for point matching

with respect to translational shifts from x in the direction v. As a directional

vector v moves over the n-dimensional unit sphere the values of vTATAv pass

through all the eigenvalues λ1, . . . , λn of ATA. This means that if one eigenvalue

is smaller than the others, then the corresponding eigenvector v is a direction in

which the corner is less robust than in the other eigenvector directions (in the

sense of point matching conditioning, see Section 2.4.2). From this we see that

Lemma 2.5.17 can be interpreted as the property that the SGCDF subject to

the restriction of constant eigen-energy attains its maximum if the neighborhood

identifies a corner that doesn’t have a weak direction: all the unit norm directional

vectors v yield the same value for vTATAv. That is, we must have λ1 = . . . = λn.

Similar considerations extend to the case where Tθ,x models a transformation that

is more general than a pure translation.

Neighborhood Restriction

The next lemma describes what happens to a corner detector when its response

is calculated on a restriction of the original point neighborhood Ω(x).

Lemma 2.5.18 (Neighborhood Restriction) Consider a neighborhood ω(x) ⊆

Ω(x). Then for the Rohr SGCDF and for any CNB SGCDF the following in-

equality holds:

f(Ω(x)) ≥ f(ω(x))

67



Point Feature Detectors: Theory Chapter 2

Proof: Let’s consider a set of points Y = {y1, . . . ,yN} that sample the

region Ω(x) and suppose that the points that sample the region ω(x) form a

subset of Y of cardinality N ′. Because of this, the GGM associated with ω(x)

can be obtained from the GGM associated with Ω(x) by retaining only the row

blocks associated with the points that sample ω(x). The proof of this lemma

follows very closely the proof of Theorem 2.5.10, the only difference being the fact

that the interlacing property of the singular values is now a consequence of the

removal of N −N ′ blocks of m rows from the GGM A(Ω(x)). Using the notation

introduced in Theorem (A.2.4) and Equation (A.7), it is readily inferred that the

claim holds for Rohr’s SGCDF. As far as the CNB SGCDFs are concerned, we

start by writing the set of inequalities:

1

σ1

≤ 1

σ
(m(N−N ′))
r,1

1

σ2

≤ 1

σ
(m(N−N ′))
r,2

...
...

1

σp

≤ 1

σ
(m(N−N ′))
r,p

Summing the corresponding members of the previous inequalities after raising

them to the power 2q and computing the qth root we obtain:

‖A†(Ω(x))‖S,2q ≤ ‖A†(ω(x))‖S,2q

which allows us to conclude that fK,q(Ω(x)) ≥ fK,q(ω(x)).

This lemma sheds some light on the relation between the sampling density and

the detector response. If the step of the discretization lattice is smaller, then the
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response of the SGCDF is smaller as well. The property just discussed does not

apply to the Harris-Stephens detector, as it will be shown in the next numerical

example.

Example 2.5.19 Consider the following numerical example. The spectra of the

GGMs A(Ω(x)) ∈ R3·50×4 and A(ω(x)) ∈ R3·38×4 (obtained from A(Ω(x)) remov-

ing 12 points, i.e. 12 blocks of m = 3 rows) are:

σ (A(Ω(x))) = {8.5792, 3.5454, 3.2763, 3.1456}

σ (A(ω(x))) = {7.2104, 3.1528, 2.8921, 2.6782}

and they satisfy the interlacing Inequalities (A.7). The respective responses of the

Harris-Stephens detector for α = 0.2 1
pp are:

fHS(Ω(x)) = −3.3787 · 103

fHS(ω(x)) = 2.8687 · 103

and they violate the inequality of Lemma 2.5.18.

Neighborhood Reduction

Motivated by the result stated in the previous Lemma, we now discuss the be-

havior of a SGCDF when we reduce the dimensionality of the considered neigh-

borhood. More specifically, let’s consider the function:

p : RnP → Rn

y′ 7→ x+ V (y′ − x′)

where v1, . . . ,vnP
are a set of orthonormal vectors and V =

[
v1 . . . vn

]
∈

Rn×nP . In other words the function p maps points from RnP to the affine space
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generated by the columns of V and passing through the point x. Therefore the

restriction of the neighborhood Ω(x) can be defined as

ω(x)
def
= {x′ ∈ RnP : p(x′) ∈ Ω(x)}

In the next lemma we will show that the response of a SGCDF restricted to an nP -

dimensional neighborhood is always larger or equal than the response calculated

over the original neighborhood Ω(x).

Lemma 2.5.20 (Neighborhood Reduction) Let’s consider the SGCDFs as-

sociated with a translational transformation for the neighborhoods Ω(x) and ω(x).

Then

f(Ω(x)) ≤ f(ω(x))

Proof: The effect of the noise under the mapping p can be modeled similarly

to what we did in (2.10), i.e. Ĩ(p(y′))
def
= I(p(y′)) + η. Since we are consider-

ing a transformation that models a pure translation, we can write Ĩ(p(y′)) =

I(p(Tθ+∆θ′,x′(y
′))). Thus, adapting the reasoning used to obtain (2.17), we get:

A′(y′) = w(y′ − x′)JI(p(y′)) Jp(y′) JθTθ′,x′(p(y))

From the hypothesis of the lemma we have that JTθ,x = In and therefore the

blocks that form the GGM are related as:

A′(y′) = A(y)V

Consequently the GGM becomes A′(ω(x)) = A(Ω(x))V . If we complete the basis

v1, . . . ,vnP
with a set of n− nP orthogonal vectors we have that

σ(A′) = σ

A [ V U

] InP
0

0 0


 (2.43)
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Projection

I
x2

Ω(x)

x1

ω(x)

π

Figure 2.11: The picture illustrates the neighborhood reduction property pre-
sented in Lemma 2.5.20. The restriction to a lower dimensional subspace has
improved the sensitivity properties of the neighborhood Ω.

The right multiplication by the matrix that has its diagonal composed of nP ones

and n − nP zeros acts as a selector of the columns of A′. The singular values

of A′ are thereby interlaced according to the inequalities (A.6). Finally, since

σ(A

[
V U

]
) = σ(A), we can conclude the proof the same way we did for

Theorem 2.5.10.

Note that the Harris-Stephens and the Rohr detectors violate Lemma 2.5.20, be-

cause of the same reasons they violate Theorem 2.5.10.

To motivate this lemma, consider an image which is black to the left of the

center line and white to the right of the center line (see Figure 2.11). Such an

image has an aperture effect in that we may be able to determine left-right motion

but not up-down motion. That is any point x on the center line is not suitable as

a feature for full motion detection. This is seen in the eigenvalues of the gradient
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normal matrix ATA: min(λ1, λ2) = 0. Thus we get a zero value for the Rohr and

any CNB SGCDF; the Harris-Stephens detector gives a negative value for this

example. Now suppose that we pass a line through x and consider the signal of

intensity values from the original image along this line. This signal is piecewise

constant with a step as it crosses through x. Thus it has a good feature for

tracking at x; the restriction to a lower dimensional subspace has improved the

sensitivity properties of the neighborhood Ω.11

The consequences of this property are important if we want to attain efficiency

of detection by for example using a 1D corner detector in say the x1-direction; we

could then cull the points which have a small response and then do a full detector

evaluation at the remaining points in the image. The isotropy property and the

definition of the SGCDF ensures that local maxima for the full detector were not

eliminated during the preliminary 1D sweep.

Remark 2.5.21 At first glance the neighborhood restriction and the neighborhood

reduction properties seem to contrast with each other. However a careful look into

such properties makes it clear that the considered scenarios are deeply different.

The neighborhood restriction property deals with a neighborhood obtained as a sub-

set of the points in Ω(x). On the other hand, the neighborhood reduction property

describes the case where ω(x) is a lower dimensional subspace and therefore the

number of parameters that are used to model the noise distortion is smaller than

for Ω(x). In the example shown in Figure 2.11 the restriction to ω(x) produces a

response that is zero both for the Rohr’s and the CNB SGCDFs.

11As a technical note, if the subspace line that we choose through x is vertical then no step
will appear and the point is still not suitable as a feature point. However this does not violate
the spirit of Lemma 2.5.20 since the neighborhood was already unsuitable as a corner in the
original (higher dimensional) setting.
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Intensity Projection

Similarly to what we did in the previous section, we now study the effects of

a projection in the space of the intensities.

Lemma 2.5.22 (Intensity Projection) Let mP ≤ m and let P ∈ Rm×m be

the orthogonal projector that projects the intensity space onto a mP -dimensional

space. Then for Rohr’s detector and for any CNB SGCDF, if we indicate with

the superscript prime the response for the projected image, the following inequality

holds:

f ′K,q(Ω(x)) ≤ fK,q(Ω(x)) (2.44)

Proof: Suppose that the intensity is projected onto a space spanned by the

orthonormal basis v1, . . . ,vm so that the orthogonal projector is defined as the

rank mP matrix P = V V T , where V =

[
v1 . . . vmP

]
. The GGM (2.25)

associated with the image whose intensity is projected onto the range of V can be

written as:

A′ =


w(y1 − x)Im . . . 0

...
. . .

...

0 . . . w(yN − x)Im


︸ ︷︷ ︸

W∈RmN×mN


P . . . 0

...
. . .

...

0 . . . P


︸ ︷︷ ︸

Π∈RmN×mN


JI(y1)JθTθ,x(y1)

...

JI(yN)JθTθ,x(yN)


︸ ︷︷ ︸

A∈RmN×p

Since W is diagonal and Π is block diagonal and given that the two matrices are

compatibly partitioned, it is possible to show that they commute, i.e. WΠ = ΠW .

Thus we can write that σ(A′) = σ(WΠA) = σ(ΠWA). If we now consider the

singular value decomposition of Π, i.e. Π = UΠΣΠV
T
Π and we recall that the sin-

gular values of a matrix are invariant with respect to unitary transformations, we
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RGB Y 

Π

Figure 2.12: The left picture represents the RGB image I and the right picture
I ′ shows the luminance component Y of I. Whereas in the left image there is
a well defined corner, the right image does contain any interest point.

have that σ(ΠWA) = σ(ΣΠV
T
Π WA). Using the same argument we can also write

σ(V T
Π WA) = σ(WA) = σ(A). At this point we resort once again to the interlacing

property of the singular values to relate the spectrum of A′ to the spectrum of A.

Lemma A.2.3 states that the spectrum of Π is given by σ(Π) = {1, . . . , 1︸ ︷︷ ︸
mP N

, 0 . . . , 0}

and consequently the left multiplication by the matrix ΣΠ selects a subset of the

rows of the matrix V T
Π WA that, as we saw before, has the same spectrum of A.

The final part of this proof and of the proof of Lemma 2.5.18 run along similar

lines. Inequalities (A.7) allow us to conclude that fR(Ω(x)) ≥ f ′R(Ω(x)) and that:

‖A†(Ω(x))‖S,2q ≤ ‖A′†(Ω(x))‖S,2q

Consequently fK,q(Ω(x)) ≥ f ′K,q(Ω(x)).

Example 2.5.23 Let’s consider an RGB image I and its grayscale version I ′.

Usually the grayscale information of a color image is obtained from the luminance

component of the YIQ representation12 of the same image. The linear relation that

12The YIQ system is a color primary system constructed by a linear transformation of the
RGB cube.
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transforms the RGB representation into the YIQ representation is the following:
Y

I

Q

 =


0.229 0.587 0.114

0.596 −0.275 −0.321

0.212 −0.523 0.311



R

G

B


Consequently the luminance subspace is generated by the vector:

v =


0.229

0.587

0.114


and since the norm of v is not one, the orthogonal projector must be written as

P = vvT

vT v
. Any RGB intensity value which is orthogonal to the subspace generated

by v will have the same luminance Y. As shown in Figure (2.12), it may happen

that a prominent corner structure disappears when we consider its graylevel rep-

resentation. Even though this example describes a simple worst case scenario, it

provides a practical interpretation of the inequality (2.44).

2.5.4 Summary

Table 2.1 summarizes the properties of the SGCDFs introduced in this section.

In the second column of the table it is possible to check whether such properties

are valid for an arbitrary transformation Tθ,x or if they only hold in the special

case where Tθ,x models a translation.
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Property Only for Harris-Stephens Rohr CNB
Translations

Analytic Bounds N. A. No No Yes

Rotation Invariance Yes Yes Yes Yes
Monotonicity No No Yes Yes
Isotropy No Yes Yes Yes
Neighborhood Restriction No No Yes Yes
Neighborhood Reduction Yes No No Yes
Intensity Projection No No Yes Yes

Table 2.1: Summary of the fundamental properties of the SGCDFs.

2.6 Specialization for 2-Dimensional Single Chan-

nel Images

We will now restrict our attention to the important case of single channel, two

dimensional images and specialize the results derived in the previous section. To

model the effect of noise we will consider the following linear transformations:

• Translation:

Tθ,x(y) = y +

 θ1

θ2

 (2.45)

The Jacobian of this transformation coincides with the 2×2 identity matrix.

• RST:

Tθ,x(y) = x+

 θ3 −θ4

θ4 θ3

 (y − x) +

 θ1

θ2

 (2.46)

If we let θ3 = s cosφ and θ4 = s sinφ then s is the scaling factor and φ the
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rotation angle (see Example 2.3.2). The corresponding Jacobian is:

JθTθ,x =

 1 0 y1 − x1 −(y2 − x2)

0 1 y2 − x2 y1 − x1


• Affine:

Tθ,x(y) = x+

 θ3 θ5

θ4 θ6

 (y − x) +

 θ1

θ2

 (2.47)

The Jacobian of the transformation is:

JθTθ,x =

 1 0 y1 − x1 0 y2 − x2 0

0 1 0 y1 − x1 0 y2 − x2


All the Jacobians do not depend on the transformation parameters θ but only on

the geometry of the neighborhood Ω(x). The immediate consequence is that the

GGM depends only on the functional form of the transformation and not on the

transformation parameters.

Generalized Detectors Specialization

In the case of 2 dimensional (m = 2) and single channel images (n = 2), for

a transformation that models a pure translation the expressions of the SGCDFs

become:

• fHS = λ1λ2 − α(λ1 + λ2)
2 = det(ATA)− α trace(ATA)2

• fR =
√
λ1λ2

• fNF = λ1 λ2

λ1+λ2
= det(AT A)

trace(AT A)

• fST = λ2
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where λ1 ≥ λ2 are the eigenvalues of the gradient normal matrix ATA. The

previous identities, combined with Theorem 2.5.8, shows how some of the com-

monly used corner detector functions based on the gradient normal matrix can

be obtained as special instances of the Kenney’s detector and therefore can be

interpreted using the approaches based on condition theory discussed in Sections

2.4.1 and 2.4.2.

Given the structure of the function that models an RST transformation we

can also derive the following analytical bounds:

Lemma 2.6.1 (Analytical Bounds Specialization) Consider the transforma-

tions (2.45), (2.46) and (2.47). Then:

fTranslation
K,q ≥ fRST

K,q ≥ fAffine
K,q

Proof: The proof proceeds along the same lines as the proof of Theorem

2.5.10, after noting that the GGM associated with the RST transformation can

also be obtained by removing the columns of the RST transformation can also

be obtained by removing the columns of the gradient matrix associated with the

affine transformation.

Figure 2.13 illustrate visually the result stated in the previous lemma.

Example 2.6.2 Consider the castle scene shown in Figure 2.14(a) and the re-

sponse maps of the Noble-Förstner detector when Tθ,x(y) models a translation

(b), a rotation, scaling and translation (c) or an affine transformation (d). The

neighborhood used to compute the gradient normal matrix ATA is circular and its

radius is 6 pixels.
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Figure 2.13: Plot (b) shows the logarithm of the response of the Noble-Förstner
detector along the red scanline shown in (a) when Tθ,x(y) models a translation
(2.45), a rotation, scaling and translation (2.46) or an affine transformation
(2.47). Note that the plots satisfy the inequalities introduced in Lemma 2.6.1.

It is interesting to visually inspect how the corner detectors responses vary

according to the transformation Tθ,x(y). In particular the analysis of the response

map near the black points that appear in the background of the scene give rise to

some interesting considerations. If we follow the approach introduced in 2.4.2, we

can state that such points allow one to clearly estimate local translations but are

not sufficient to estimate the parameters of a local rotation and scaling or even

worse of a local affine transformation. This is why Figures 2.14(c, d) show a very

weak response of the detector at such points. These remarks are in agreement with

the analysis presented in [129] and summarized in Figure 1 of the same paper.
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Figure 2.14: The response maps of the Noble-Förstner detector for the Castle
scene in (a) when Tθ,x(y) models a translation (b), a rotation, scaling and
translation (c) or an affine transformation (d). Darker colors indicate larger
values of fNF .

80



Point Feature Detectors: Theory Chapter 2

2.7 Conclusions

In this chapter we developed a thorough theoretical analysis of point feature

detectors based on the spectral properties of the GGM. We introduced a novel

framework based on condition theory that motivates the use of the autocorrelation

matrix as a fundamental ingredient for point detection. We then introduced a set

of spectral generalized corner detector functions based on the spectral properties

of the generalized matrix matrix. Such detectors are defined for multichannel

images with spatial dimension that can be greater than 2. For single channel

images these generalized functions become equivalent to some of the commonly

used point detectors. Within this framework we established in-depth connections

among the detectors showing that certain detectors are equivalent modulo the

choice of a specific matrix norm and we listed a set of analytical properties of

the SGCDFs that define bounds to their performance and suggest effective ways

to reduce their computational complexity. The theory presented in this chapter

will be supplemented by the experimental analysis in Chapter 3. The theoreti-

cal foundations laid in this chapter and the experiments carried out in the next

chapter will be the starting point to design the detector module for the registra-

tion and mosaicking system described in Chapter 6. Finally we want to remark

that the framework presented in this chapter is general enough to be applicable

in other domains of image analysis, such as the identification of curve landmarks,

as discussed in Appendix B.
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Chapter 3

Point Feature Detectors:

Experiments

“There’s two possible outcomes:

if the result confirms the hypothesis, then you’ve made a discovery.

If the result is contrary to the hypothesis, then you’ve made a discovery.”

E. Fermi

This chapter contains an exhaustive experimental evaluation of the point detectors

studied in Chapter 2. More specifically:

• We experimentally validate the theoretical claims made in Chapter 2 regard-

ing detector equivalences (see Section 3.4).

• We characterize the repeatability of the point detectors and find that they

exhibit a behavior that is almost linear for a relevant set of scalings and

projective distortions that are found in real life scenarios (see Section 3.4).
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• Quite surprisingly we find that for natural images it is possible to disregard

the color information and at the same time improve the detector perfor-

mance (see Section 3.4).

3.1 Introduction

In this chapter we will supplement the theoretical analysis of the point de-

tectors introduced previously by means of a thorough set of experiments. More

specifically, we will study how the performances of the proposed detectors vary

in the presence of geometric and photometric transformations that are commonly

found in real life scenarios. We will consider both the cases when the detectors

operate on RGB images and on graylevel images.

This chapter is structured as follows. In Section 3.2 we will discuss the funda-

mental issues arising in the practical implementation of the detectors introduced

in the previous chapter, and the methodology that we use in our experimental

analysis. Section 3.4 contains the description of the experiments as well as their

discussion. Finally some directions for the design of point feature detectors based

on the gradient normal matrix are presented in Section 3.5.

3.2 Implementation Details

In this section we turn our attention to some issues that arise in the implemen-

tation of the detector functions described in Section 2.6. First of all we need to

decide which neighborhood we will consider to calculate the gradient normal ma-

trix. We opted for a circular neighborhood whose radius is related to the standard
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Parameter Description Symbol Value Units

Standard deviation of the differentiation filter σD 1 pixels
Neighborhood radius r d3σDe = 3 pixels
Point features minimum distance dmin 3 pixels

Table 3.1: Summary of the parameters used to implement the detectors de-
scribed in Section 2.6.

deviation σD of the Gaussian filter used to compute the image derivatives. Thus

we set r = d3σDe. The image derivatives are computed convolving the image with

the derivatives of Gaussian kernels, as suggested in [36, 70]. In our experiments

we set σD = 1. Where needed, the spectral decomposition of the matrix ATA is

performed as described in Appendix A.2.4. We used a uniform weight w = 1 for

all the points inside the neighborhood. This choice is mainly dictated by com-

putational efficiency constraints: in our implementation the components of the

gradient normal matrix are updated recursively taking advantage of the SIMD

(Single Instruction, Multiple Data) architecture of the CPU. After the response

of the detector is calculated at each point of the image (except for the border

portions which are discarded because of the artifacts due to the convolution) we

check the 8-connected neighborhood of each pixel. A feature point is detected

when the value of the response at the central pixel is not smaller than the re-

sponse of the neighboring ones and at least one of the 8-connected neighbors has

a response that is strictly smaller than the central one. Moreover we discard tie

points that are closer than dmin pixels. Our current research-oriented implemen-

tation of the detector takes about 0.75 seconds to find about one thousand points

on a 800× 600 image with a 2.4GHz Intel Xeon CPU.

84



Point Feature Detectors: Experiments Chapter 3

3.3 The Experimental Setup

3.3.1 Repeatability

The main tool that we will use for our analysis is deeply influenced by the work

of Schmid et al. [113] and Mikolajczyk et al. [87, 89], where the performance of a

point detector is measured in terms of repeatability. The repeatability quantifies

the ability of a point detector to identify corresponding points in the presence of

image distortions that modify both the geometry of the image (such as rotations,

scalings or projective transformations) and its intensity (such as Gaussian noise,

compression artifacts, motion blur, and light changes). Quoting Schmid et al. in

[113]:

[High] Repeatability signifies that detection is independent of changes

in the imaging conditions, i.e. the parameters of the camera, its posi-

tion relative to the scene, and the illumination conditions.

In our experiments we considered images related by a geometric transformation

that can be modeled by a planar homography H.1 Under this assumption, if we

call X1 the set of tie points detected in the first image and X2 the set of tie points

detected in the second image, we can define the ε-corresponding sets as:

C1(ε)
def
=

{
x1 ∈ X1 : ∃x2 ∈ X2 s.t. dist(x1, H

−1x2) ≤ ε
}

(3.1)

C2(ε)
def
= {x2 ∈ X2 : ∃x1 ∈ X1 s.t. dist(Hx1,x2) ≤ ε} (3.2)

where dist(·, ·) is the function that returns the Euclidean distance between two

points expressed in homogeneous coordinates. We will also call ε-corresponding

1When the distortion only affects the intensity of the image, then the corresponding homog-
raphy coincides with the identity matrix.
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Figure 3.1: Test images used in the experiments.

two points x and y such that dist(x,x) ≤ ε. This said, the definition of the

ε-repeatability is:

rε
def
=

|C1(ε)|
min(|X1|, |X2|)

=
|C2(ε)|

min(|X1|, |X2|)
(3.3)

where |Ci(ε)| indicates the cardinality of the set Ci(ε). Note that the ε-repeatability

is normalized in the interval [0, 1]: when rε = 1 all the points detected in one image

are also detected in the other image within a tolerance of ε pixels.

3.3.2 Image Distortions

The image dataset that we used in our experiments consists of a set of 6 RGB

images belonging to different domains (see Figure 3.1). Their original resolution

is 800× 600 pixels. For each image we synthesized the following distortions.

• Rotations. We generated 18 images obtained by rotating the original image

from 10◦ to 180◦ with rotation increments of 10◦.
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• Scalings. We generated 15 images obtained by scaling the original image

from 5% to 75% with scaling increments of 5%.

• Projective distortions. We generated 8 images obtained by applying to

the original image an homographic transformation that simulates a change

in the position of the camera. Each homography is generated following

the procedure that is explained pictorially in Figure 3.2. The rectangle

ABCD, which represents the boundary of the original image, is transformed

into the rectangle A′B′C ′D′, which represents the boundary of the new

image. The transformation is parameterized by a single positive scalar α

such that A′O = (1 + α)AO, B′O = (1 + α)BO and C ′O = (1 − α)CO,

D′O = (1− α)DO. The values of α that we used are:

{−0.20,−0.15,−0.10,−0.05, 0.05, 0.10, 0.15, 0.20}

• Intensity noise. We generated 10 images by perturbing each channel of the

original RGB image with zero mean Gaussian noise with standard deviation

ranging from 2.55 to 25.5 with increments of 2.55 intensity units.

• Blur. We generated 7 images by applying a Gaussian low-pass filter to each

channel of the original RGB image with standard deviation ranging from 1

to 4 pixels with increments of 0.5 pixels.

The images obtained applying the geometric transformations have been rendered

using a bicubic interpolation method. Figure 3.3 displays some of the distortions

considered in our experiments.
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Figure 3.2: The picture illustrates the method used to generate the homogra-
phies that model the projective distortions.

3.4 Experimental Results

We carried out three groups of experiments considering five detector functions:

Harris-Stephens, Rohr, Noble-Förstner (i.e. Kenney for q = 1), Kenney for q = 2

and Shi-Tomasi (i.e. Kenney for q =∞). In all the experiments we compared the

performance of the detectors when the input is either an RGB or graylevel image

and for two values of the distance threshold: ε = 1, 2 pixels.

In Section 3.4.1 we analyzed how the number of corresponding points that

are detected both in the original image and in its distorted version varies with

respect to different image distortions. Section 3.4.2 presents the results of the

average repeatability for all the geometric and photometric distortions, for all the

considered detectors, for ε = 1, 2 pixels. Finally Section 3.4.3 discusses the rate

of growth of the repeatability with respect to the number of detected points. All

the plots for the experimental results can be found at the end of this chapter.
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φ = 10◦

φ = 60◦ φ = 120◦

s = 0.95

s = 0.50

s = 0.25

α = −0.20 α = 0.05 α = 0.2

ση = 2.55 ση = 15.30 ση = 25.50

σblur = 1.0 σblur = 2.5 σblur = 4.0

Figure 3.3: Some examples of the images synthesized by considering specific
instances of the following geometric distortions (from top to bottom): rotation,
scaling, projective, intensity noise and blur.
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Before continuing, we would like to emphasize how the comparison of our

results with the results obtained by Schimd et al. in [113] requires some care.

First of all the image dataset we are dealing with is not acquired changing the

parameters of the imaging device (such as its pose or its position) or the scene

conditions (such as the lighting), but instead it is synthesized starting from a set of

real images. This allows us to have precise control over the considered distortions,

at the price of disregarding some other distortions that occur when dealing with

real images. The motivation behind this choice is to isolate the impact of each

distortion on the performance of the detectors. We want also to emphasize that in

[113] only two scenes were considered (namely the “Asterix” and the “Van Gogh”

scene, whose pixel resolution is not specified in the paper) whereas our dataset

covers a wider variety of images.

3.4.1 Average Percentage of Corresponding Points

Using the definition (3.2), we plotted the percentage 100 |C1(ε)|
NP

of correspond-

ing point pairs that are detected within the given distance threshold ε (in our

experiments one or two pixels) with respect to the parameters that define the

image distortions. The total number of feature points detected in the reference

image is denoted by NP .2 For these experiments the graphs displayed in Figure

3.4 to 3.7 contains five curves, one for each detector. Each point that defines a

curve is obtained by taking the average over all the corresponding experimental

instances for the images in the dataset.

2Note that in our experiments the transformed images contain entirely the original image,
therefore our experimental setup is meaningful, since we do not have to worry about points that
are potentially detected in one image but not in the other.
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In general all the detectors perform better when the graylevel version of the

image is considered, even though the fluctuations are never larger than 5%. When

the distance threshold is lowered from two pixels to one pixel the percentage of

the corresponding points decreases approximately by 20%, except in the case of

the intensity perturbation, where the number of corresponding points decreases

about 30%. Interestingly enough, the curves for the scaling and projective dis-

tortions exhibit an essentially linear behavior with respect to the transformation

parameters. Even if the performance of the detectors is quite similar, the Harris-

Stephens detector tends to behave slightly worse than the other detectors, whereas

the Noble-Förstner and the Rohr detector consistently yield the best percentages.

Note also that the image blurring produces a rapid drop in the performance of

the detectors.

3.4.2 Repeatability for Geometric and Photometric Dis-

tortions

The graphs displayed in Figure 3.8 to 3.12 show the values of the ε-repeatability

for different distortions. Also in this case the detectors perform better when they

operate on the graylevel version of the image. The overall results for the graylevel

images for the Harris-Stephens detector are analogous to those obtained in [113].

As expected from the equivalence Theorem 2.5.8, the other detectors are char-

acterized by performances that are very close to each other, the only noticeable

difference being the better behavior of Rohr’s detector in the presence of image

blur. Also for the ε-repeatability the curves relative to scaling and projective

distortions are essentially linear. As expected the curves describing the average
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distance between ε-corresponding feature points are inversely correlated with the

ε-repeatability. Moreover larger distortions cause the average corresponding point

distance to shift towards the threshold ε.

3.4.3 Repeatability Rate of Variation

The goal of this experiment is to study the rate of variation of the repeata-

bility with respect to the total number of points NP detected in an image. The

ordinate of the graphs tabulate the values rε

rεmin
; as expected they are increasing

with the number of considered points. This observation suggests that it is im-

portant to evaluate the benefit obtained by considering a larger number of local

maxima in the detector response map (i.e. considering also the local maxima that

have a small value). For this experiment we only considered the Noble-Förstner

detector and for each type of distortion we plotted the curves corresponding to a

representative subset of the parameters used to synthesize the distorted images.

The points are sorted in order of decreasing detector response. The corresponding

plots are shown in Figure 3.13 to Figure 3.16. In the presence of large scalings

(s ≈ 0.5) it is beneficial to consider a larger number of local maxima in the de-

tector response map (i.e. to augment NP ). This is also true when dealing with

projective distortions, whereas for rotations the benefit obtained by augmenting

the value of NP is negligible. Similar considerations hold for photometric distor-

tions. In general the rate of change of the repeatability of the Noble-Förstner

detector does not change considerably when considering RGB images rather than

graylevel images and when changing the distance threshold from one pixel to two

pixels.
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3.4.4 Experiment Summary

The set of the experiments described in the previous sections support the

following general statements.

• Experientially, the behavior of the Harris-Stephens detector, the Rohr de-

tector and the Condition Number Based (CNB) detectors on synthetically

distorted natural images is very similar. However the Harris-Stephens de-

tector seems to perform slightly worse than the other detectors, whereas the

Rohr and Noble-Förstner detectors perform slightly better.

• We were surprised to find out that all the considered detectors perform con-

sistently better when they operate on the graylevel version of the image

rather than on the corresponding RGB version. We explain this by recall-

ing that the RGB channels of natural images tend to be highly correlated.

This redundancy may cause the numerical stability properties of the Gen-

eralized Gradient Matrix (GGM) to deteriorate. This is because the GGM

is composed of blocks of three rows that are almost “linearly” dependent.

• The number of ε-corresponding features roughly decreases by 20% when the

distance threshold changes from two pixels to one pixel.

• The repeatability curves exhibit an approximately linear behavior for the

scaling and projective distortions tested in the experiments. This makes it

possible to predict a priori the number of expected ε-corresponding features

for a given range of distortions.
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The previous observations are in good accordance with the conclusions derived

from the theoretical discussion presented in Chapter 2. The similarity of behavior

of the tested detectors is predicted by Theorem 2.5.8, that established a set of

analytical equivalence relations between the Condition Number Based (CNB)

detectors and the Rohr detector. We also hypothesize that the slight decrease of

performance for the Harris-Stephens detector can be attributed to the fact that

it fails to satisfy the monotonicity property 2.5.15.

3.5 Prolegomena for the Design of SGCDFs

In light of the theoretical analysis presented in the previous chapter and of

the experimental results discussed in this chapter, we will provide some prefatory

remarks regarding the design of feature point detectors based on the spectral

properties of the Generalized Gradient Matrix (GGM).

• The image derivatives should be computed in accordance with the direc-

tions provided by scale space theory, i.e. by means of convolution with the

derivatives of Gaussian kernels. This is also supported by the discussion in

[113].

• For natural images it is recommended to operate on their graylevel versions.

This reduces the computational complexity and improves the performances

of the detectors.

• The Noble-Förstner (i.e. Kenney for q = 1) detector is the suggested choice

to detect features in natural images. Its experimental performances are
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extremely satisfactory, its computation does not require the explicit eigen-

decomposition of the gradient normal matrix ATA, and it can be derived

within a sensible mathematical framework. Moreover it does not require the

introduction of a constant whose value can be guessed only by resorting to

empirical considerations (like the Harris-Stephens detector).

• Before setting up a pyramidal decomposition approach such as the one de-

scribed by Lowe [74], evaluate if it is worth coping with the computational

burden associated with the image decomposition and with the generation of

a large number of candidate feature points. Our experiments indicate that

the average percentage of ε-correspondences and the repeatability associated

with scaling and projective distortions remain acceptable also in presence of

remarkable geometric and photometric distortions.

• It is not necessarily good practice to consider all the points that can be ob-

tained from the local maxima of the detector map. Our experiments show

that only the points that are characterized by a strong response maintain

good repeatability properties. For example, for a projective distortion asso-

ciated with the parameter value α = 0.15, the 2-repeatability increases by

20% if the total number of considered points increases from 200 to 800.
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Figure 3.4: Percentage of detected points for geometric distortions for ε = 2 pixels.
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Figure 3.5: Percentage of detected points for geometric distortions for ε = 1 pixels.
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Figure 3.6: Percentage of detected points for photometric distortions for ε = 2 pixels.
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Figure 3.7: Percentage of detected points for photometric distortions for ε = 1 pixels.
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Figure 3.8: Repeatability and average correspondence distances for image rotations.
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Figure 3.9: Repeatability and average correspondence distances for image scalings.
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Figure 3.10: Repeatability and average correspondence distances for image
projective distortions. 102
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Figure 3.11: Repeatability and average correspondence distances for image
intensity Gaussian noise. 103
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Figure 3.12: Repeatability and average correspondence distances for image blur.
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Figure 3.13: Repeatability variation for geometric distortions for ε = 2.
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Figure 3.14: Repeatability variation for geometric distortions for ε = 1.
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Figure 3.15: Repeatability variation for photometric distortions for ε = 2.
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Figure 3.16: Repeatability variation for photometric distortions for ε = 1.
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Chapter 4

Drums, Curve Descriptors and

Affine Invariant Region Matching

“In mathematics you don’t understand things.

You just get used to them.”

J. von Neumann

Motivated by the possibility of establishing image correspondences using curve fea-

tures rather than interest points, we introduce in this chapter a novel curve/region

descriptor based on the modes of vibration of an elastic membrane. In particular:

• We introduce and study the theoretical properties of a novel physically mo-

tivated curve/region descriptor based on the modes of vibration of a mem-

brane. We revisit the problem of curve isospectrality within the image anal-

ysis domain (see Section 4.2).

• We develop a normalization procedure that allows us to characterize the
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shape of a curve independent of its affine distortions (see Section 4.3).

• We propose a method to couple the descriptor and the normalization pro-

cedure to robustly match curves between images taken from different points

of view (see Section 4.3).

• We provide extensive experimental results to measure the performance of

our descriptor using both synthetic and real images. We also compare our

descriptor with state of the art curve/region descriptors (see Section 4.4).

4.1 Introduction

The quest for efficient curve and region descriptors has been one of the leading

themes in the image analysis community. In general, good descriptors should be

invariant under an appropriate class of geometric transformations (e.g. rotation-

scaling-translation or affine), robust in the presence of noise, efficient to compute

and easy to compare. Zhang et al. [135] classified the curve description approaches

into two groups: contour-based and region-based methods. Each of these groups is

further subdivided into two subgroups containing global or structural approaches.

Some of the recently proposed descriptors fall in the contour-based category, as the

curvature scale space (CSS) descriptor [90] (which has been standardized within

the MPEG-7 framework) and the shape context matrices [8]. Some others be-

long to the class of region-based methods, like the descriptors based on moments

(geometric [37], Zernike, also standardized within the MPEG-7 framework, and

Legendre [123]), on region frequency representations (Fourier descriptors [134]),

on the medial axis transform [93] and on shock graphs [117]. Recently Gorelick et
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Figure 4.1: A set of curves extracted and matched in a pair of images taken
from different point of views. The shape of the matched curves are similar,
however only two matches are consistent with the geometry of the scene.

al. exploited the properties of the Poisson equation to characterize shapes and to

derive a set of features that can serve as descriptors [46].

We are interested in a descriptor that can be used in the context of image regis-

tration where we will focus on image features defined by Jordan curves (i.e. curves

that are closed and do not cross themselves, see the example in Figure 4.1 and the

Definition (B.1.1)). By using curve features rather than point features one can

avoid the problem of detecting neighborhoods that transform consistently with

the images (see [87, 89] for extensive surveys regarding the neighborhood adapta-

tion problem and [68, 72] for image registration systems based on curve features).

However this comes at the price of developing a matching strategy that is at least

affine invariant, so that perspective distortions can be handled robustly.

The approaches mentioned before either do not always satisfy the MPEG-7 re-

quirements or they are not completely suitable to establish affine invariant matches

between curves. The computation of the CSS descriptors is quite demanding, the
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algorithm converges slowly if the curve is very complex (i.e. the curve presents

many points with large curvature) and depends on some empirical parameters that

need to be fine tuned. The comparison of CSS descriptors is not simple. Shape

context matrices provide local curve descriptors that are not very compact (since

they consist of the coefficients of a matrix) and their comparison is not very fast.

Moment invariants of higher orders do not have a clear physical interpretation

and the matching procedure requires a normalization process to compensate for

the different dynamic range of the moments of different orders. However recently

Zhang et al. [133] experimentally showed that Fourier descriptors and Zernike

moment descriptors perform better than the CSS descriptors. Shock graphs are

very suitable in scenarios where the similarity between curves is defined in terms

of structure, but are not the ideal solution if the notion of equivalence is defined

within the class of some specific geometric transformation. Moreover the compu-

tational complexity for extracting these descriptors and matching them is quite

high. Finally note that, with the exception of moments, it is not straightforward

to extend the descriptors listed above to represent also the intensity pattern inside

the curve. For an extensive quantitative comparison of region descriptors that ex-

plicitly take into account the intensity pattern within the region, the interested

reader should refer to the survey by Mikolajczyk et al. [88].

In this chapter we will present a curve descriptor that partly satisfies the six

principles set by MPEG-7 (which are good retrieval accuracy, compact features,

general application, low computation complexity, robust retrieval performance,

and hierarchical coarse to fine representation) and a few other important require-

ments, such as being Rotation Scaling and Translation (RST) invariant, having
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a clear physical interpretation and being capable of taking into consideration the

intensity content of a closed contour (when the curve identifies an image region).

The descriptor we propose is novel in the sense that it combines intimately both

the information regarding the shape of a region and its intensity content.

This chapter is structured as follows. Section 4.2 introduces the Helmholtz

descriptor, it discusses its analytical properties and presents the numerical scheme

used to compute the descriptor. Section 4.3 will describe a preprocessing step that

aims at extracting the shape of a curve to obtain an affine invariant matching

algorithm. In Section 4.4 we will show some experimental results and we will

evaluate the performance of the descriptors. Finally the conclusions are presented

in Section 4.5.

4.2 The Descriptor

In 1966, the mathematician M. Kac published his famous paper entitled “Can

One Hear the Shape of a Drum?” [58]. Kac was interested in understanding

whether the knowledge of the modes of vibration of a drum was sufficient for

univocally inferring the geometric structure of the drum itself. The problem posed

by Kac can be related to the problem of constructing curve or region descriptors.

In fact, if we imagine that the curve we want to label defines the contour of a drum,

it is reasonable to think that the spectrum of such a curve (in terms of modes of

vibration) could be an appealing descriptor, given the fact that it can be easily

made RST invariant and has a strong physical characterization. Moreover the

intensity inside the image region defined by the curve can be used to model the
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(a) (b)

Figure 4.2: Figure (a) (courtesy of Dr. T. Driscoll) shows the first four eigen-
modes of an isospectral domain. Figure (b) (courtesy of Dr. Buser, Dr. Con-
way, Dr. Doyle and Dr. Semmler) shows another example of an isospectral
domain.

physical properties of the membrane so that the modes of vibration are related not

only to the structure of the boundary but also to the region content. With this

in mind, the answer to Kac’s question becomes crucial, i.e. we would like to have

the normal modes of vibration of a drum to identify univocally its geometry (so

that we can establish a bijection between the space of the Jordan curves modulo

a given transformation and the curve descriptors).

The problem posed by Kac remained unsolved until 1992 when the mathemati-

cians C. S. Gordon, D. L. Webb and S. Wolpert proposed a pair of isospectral

drums having the same area and perimeter but different contours. In other words

“One Cannot Hear the Shape of a Drum” [45, 15, 30] (see Figure 4.2 for some

examples of isospectral drums). Even though for our purposes this fact is unfortu-

nate, since it implies that there may exist curves that are not related by an RST

transformation and nonetheless have the same spectrum (i.e. possibly the same

descriptor), the experiments presented in Section 4.4 will show how this problem
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has a limited impact in real life scenarios. Note that an application of the Laplace

operator (deeply connected with the spectral properties of planar domains) has

also been explored by Saito [111] for image analysis applications and that Sclaroff

and Pentland introduced the idea of describing objects in terms of generalized

symmetries that remain defined by the object’s eigenmodes [114].

In the following subsections we will describe in detail the proposed curve de-

scriptor and the numerical scheme used to compute it.

4.2.1 The Helmholtz Equation

Let Γ be a Jordan curve corresponding to the boundary of Ω, an open subset

of R2. The vibration of the membrane of a drum whose contour is defined by Γ is

expressed by the function w(x, t) : Ω̄× R→ R which solves the wave equation:

4w(x, t)− 1

v(x)2

∂2w

∂t2
(x, t) = 0

where 4 denotes the Laplacian operator, t indicates time and v(x) > 0 indicates

the phase velocity of the membrane.1 This equation can be solved via separation

of variables, assuming that w can be decomposed into a spatial part and into a

temporal part according to w(x, t) = u(x)q(t). It can be shown that the spatial

part solves the Helmholtz equation, i.e. the elliptic partial differential equation:

4u(x) + λ
1

v(x)2
u(x) = 0 (4.1)

1For a real membrane the phase velocity is proportional to
√

T
σ(x) , where T denotes the

membrane tension (expressed in Newtons over meters) and σ the membrane density (expressed
in kilograms per square meter, and function of the spatial position x).
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where λ is a suitable scalar. The corresponding boundary problem with Dirichlet

boundary conditions is:

−4u(x) = λ
1

v(x)2
u(x) for x ∈ Ω (4.2a)

u(x) = 0 for x ∈ Γ (4.2b)

4.2.2 The Descriptor

Our idea is to use the first Nλ + 1 eigenvalues associated with the Helmholtz

equation (4.2) to build an RST invariant descriptor for the curve Γ (in the case

where v(x) = v = const) or for the image patch contained in the region Ω (if

we set2 v(x)2 = 1
Is(x)

, where Is(x) denotes the smoothed version of the image

intensity at point x). As explained in more detail in Appendix C all the eigen-

values associated with (4.2) are real and positive and they can be sorted in order

of increasing value: 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . with λk → ∞ as k → ∞. These

observations justify the following definition:

Definition 4.2.1 Let Γ be a Jordan curve and let λ1, . . . , λNλ+1 be the first Nλ+1

eigenvalues that solve (4.2). The corresponding Helmholtz Descriptor (HD) is

defined as:

F (Ω)
def
=

[
λ1

λ2

λ2

λ3
. . .

λNλ

λNλ+1

]T

∈ RNλ (4.3)

The invariance of the descriptor with respect to an RST transformation can be

understood by observing that a vibrating membrane will produce the same tones

when it is rotated and translated, and that a scaling will only affect their ampli-

tude. This intuition is formalized in the following lemma:

2The physical intuition behind this choice is that the membrane density at x is directly
proportional to the image intensity at the point x.
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Lemma 4.2.2 Consider the two Jordan curves Γ1 and Γ2 related by an RST

transformation:

Γ2 = {x2 ∈ R2 : there exists x1 ∈ Γ1 such that x2 = sRx1 + t}

where s ∈ R is the scaling factor, R ∈ SO(2) is a rotation matrix and t ∈ R2 is a

translation vector. Let also v2(x2) = v1(x1). Then F (Γ1) = F (Γ2).

Proof: The proof of this lemma follows from the definition of the Laplacian

in an orthogonal coordinate system, which is:

4 =
1

h1h2

[
∂

∂x1

(
h2

h1

∂

∂x1

)
+

∂

∂x2

(
h1

h2

∂

∂x2

)]
where h1 and h2 are the scale factors of the first fundamental form. It can be

easily verified that for a scaling and an arbitrary rotation we have h1 = h2 = s.

Therefore we can write 1
s24u2(x2) = 4u1(x1). Thus the eigenpairs that solve:

−4u1(x1) = λ
1

v1(x1)2
u1(x1) for x1 ∈ Ω1

u1(x1) = 0 for x1 ∈ Γ1

can be used to construct the solutions for:

−4u2(x2) = (s2λ)
1

v2(x2)2
u2(x2) for x2 ∈ Ω2

u2(x2) = 0 for x2 ∈ Γ2

by scaling the eigenvalues by s2 and by letting u2(sRx1 + t) = u1(x1). Since the

components of the descriptors are ratios of eigenvalues, the scaling factor vanishes

and the assertion holds true.
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4.2.3 Numerical Scheme

The second order finite difference scheme we used to solve (4.2) is a reasonable

compromise between accuracy and computational complexity. The step size of the

N ×N discretization mesh is calculated according to:

h =
maxx∈Γ ‖x−m(Ω)‖

∆
(4.6)

wherem(Ω) is the center of gravity of the region Ω (which will be defined formally

in Section 4.3) and ∆ is a parameter that defines the mesh resolution. The spatial

derivatives are approximated by the second order central difference formulae:

∂2u

∂x2
(x) ≈ u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2

∂2u

∂y2
(x) ≈ u(x, y + h)− 2u(x, y) + u(x, y − h)

h2

which provide the discretized version of (4.2a) that reads as:

−up+1,q + up−1,q + up,q+1 + up,q−1 − 4up,q

h2
= λ

1

v2
p,q

up,q

where 0 ≤ p ≤ N − 1 and 0 ≤ q ≤ N − 1 are the indices of the mesh points.

Under these assumptions, the solution for (4.2) is obtained by solving a generalized

eigenvalue problem:

Lu = λV u

where the linear operator L is given by the sparse symmetric matrix:

L = − 1

h2



A IN 0 . . . 0

IN A IN . . . 0

0 IN A . . . 0

...
...

...
. . .

...

0 0 0 . . . A


∈ RN2×N2

A =



−4 1 0 . . . 0

1 −4 1 . . . 0

0 1 −4 . . . 0

...
...

...
. . .

...

0 0 0 . . . −4


∈ RN×N
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Note that IN is the N×N identity matrix, the vector u ∈ RN2
is obtained by row

scanning the discretization grid so that: uNp+q = u(xp, yq) and V is a diagonal

matrix such that VNp+q = 1
v(xp,yq)2

. As we anticipated before, v(xp, yq)
2 is chosen to

be inversely proportional to the smoothed version of the image Is(xp, yq), which

is obtained via a convolution with an isotropic Gaussian kernel with standard

deviation σ (in our current implementation the standard deviation is set to be

equal to 2.5 pixels). This is done to ensure that v satisfies the required analytic

smoothness properties. The size of the problem can be reduced by removing the

entries of the vector u that correspond to the points outside of the domain Ω or

to the points on the boundary. This is equivalent to removing the corresponding

rows and columns in the matrix L and V : after the reduction the matrix L is no

more block tridiagonal (as shown in the sparsity pattern of Figure 4.3(b)) but it

still is diagonally dominant. In our implementation the eigenvalues/eigenvectors

are computed using the Fortran library ARPACK [66] (accessed through Matlab)

that takes advantage of the sparse and symmetric structure of L. To improve the

numerical stability of the algorithm we balance the matrices by scaling them, so

that ‖L‖∞ = ‖V ‖∞ = 1 and we solve the modified sparse eigenvalue problem:(
V − 1

2LV − 1
2

)
w = µw

where u = V − 1
2w and µ is the scaled eigenvalue. Figure 4.3(b) shows an example

of the matrix L associated with the region outlined by the green boundary in

Figure 4.3(a). Figure 4.3(c) displays the third eigenmode that solves (4.2). The

bumps on the eigenmode surface follow from the fact that the membrane density is

proportional to the image intensity. The computation of the Helmholtz Descriptor

(HD) in the non uniform case takes on average 1.5 seconds on a 2.8Ghz Pentium
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Figure 4.3: Figure (b) displays the sparsity pattern of the matrix L, i.e. it
shows a dot for each non zero entry of L. The matrix L is associated with the
image region defined by the green boundary in (a) (cropped from the painting
Persistence of Memory by Salvador Daĺı). The size of the matrix L is about
104 × 104 but only 4.8·104 elements are non zero. Figure (c) shows the third
eigenmode of the Helmholtz equation (4.2).

4 for ∆ = 30.

4.2.4 Comparing the Descriptors

As mentioned before, it has been theoretically proven that there exist different

curves that have the same spectrum. However this event is quite rare (where the

notion of “rare” can be formalized more precisely, see [45]) as the experiments

presented in Section 4.4 will confirm. Because of this, the similarity between the

descriptors is defined in terms of the weighted Euclidean:

d(F (Ω1),F (Ω2)) = ‖F (Ω1)− F (Ω2)‖W =

√√√√ N∑
k=1

wk [Fk(Ω1)− Fk(Ω2)]
2 (4.7)

where the weights are defined according to wk
def
= exp

(
k−1

Nλ−1
log ρ

)
. The parameter

ρ defines the ratio of the weight of the last component of the descriptor with

respect to the first one. Experimentally we found that ρ = 0.75 is a sensible choice.
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The rationale behind the introduction of a weighted distance is related to the

physical interpretation of the components of the descriptor: the coefficients with

larger indices are associated with the fast modes of vibration of the membrane.

These modes are more sensitive to perturbations of the shape of the curve and

therefore it is reasonable to weight them less when comparing two curve/regions

(in [141] some numerical simulations confirmed that the eigenvalues with larger

indices are those more affected by the morphological noise). On the other hand

the smallest eigenvalues of a matrix are those more affected by the finite precision

mathematical operations.

Remark 4.2.3 In general the task of studying analytically how the spectrum of a

region is affected by the perturbations of the boundary is a complex problem. Even

if this problem goes well beyond the scope of this chapter, we would like to mention

the approaches described in the classical book of Kato ([61], ch. 6, p. 423) and in

two recent papers by Noll [99] and by Ngo [96] that attempt to relate quantitatively

the perturbations of the domain boundary to the value of the eigenvalues. It is also

possible to approach the problem after the Helmholtz equation has been discretized,

by considering morphological perturbations that correspond to the removal of rows

and columns from L and V and evaluating the bounds on the eigenvalues defined

by the interlacing theorems thoroughly discussed in [53, 80].

4.3 Achieving Affine Invariance

The descriptors we have introduced in Section 4.2 are RST invariant. However

very often it is necessary to match curves or image regions in an affine invariant
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(a) (b)

Figure 4.4: An example of two image regions related by an affine transforma-
tion (cropped from the painting Persistence of Memory by Salvador Daĺı).

fashion. As an example, consider planar curves imaged from two different view-

points using a distant camera, where distant is with respect to the camera focal

length. In this case the perspective distortion can be approximated by an affine

transformation (see the examples in Figure 4.1 and Figure 4.4). We will describe

in detail a procedure that allows us to map a curve (or an image region) in a nor-

malized coordinate system where affine-related objects become congruent modulo

a geometric rotation (a discussion of related approaches can be found in [1] Chap-

ter 5, [118] and [139]). First we will consider the case where the content of the

region is uniform (uniform case) and then we will generalize the results to cases

where we take into consideration the intensity content (non uniform case).

4.3.1 Uniform Case

Let’s first introduce the following quantities:

• Let V (Ω)
def
=
∫

Ω
dx be the area of Ω, where dx is the infinitesimal area
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element.

• Let m(Ω)
def
= 1

V (Ω)

∫
Ω
x dx be the centroid of Ω.

• Let Σ(Ω)
def
= 1

V (Ω)

∫
Ω

[x−m(Ω)] [x−m(Ω)]T dx be the covariance of Ω.

Definition 4.3.1 Let Γ be a Jordan curve. The shape of Γ is a new Jordan curve

such that:

S(Γ)
def
=
{
s ∈ R2 : s = Σ(Ω)−

1
2 [x−m(Ω)] for x ∈ Γ

}
(4.8)

This definition is important because it allows us to relate affine-transformed

curves, as stated in the following theorem and illustrated in Figure 4.5.

Theorem 4.3.2 (Uniform Normalization) Let Γ1 and Γ2 be two Jordan curves

related by an affine transformation:

Γ2 =
{
x2 ∈ R2 : ∃x1 ∈ Γ1 such that x2 = Ax1 + b

}
where A ∈ R2×2 is a non-singular matrix and b ∈ R2. Then the shapes of Γ1 and

Γ2 are geometrically congruent via a 2-dimensional rotation.

Proof: Before beginning with the proof we want to emphasize the fact that

all the steps are not dependent on the dimension n of the space that hosts the

curve. Let Γ1 = ∂Ω1 and Γ2 = ∂Ω2. We want to show that the matrix:

R
def
= Σ(Ω1)

1
2AT Σ(Ω2)

− 1
2 (4.9)

establishes the congruence relation between S(Ω1) and S(Ω2). The first step is

verifying that (4.9) is a rotation matrix. To achieve this goal we first prove the

following identity:

Σ(Ω2) = AΣ(Ω1)A
T
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Since the relation between the area of Ω1 and Ω2 is:

V (Ω2) =

∫
Ω2

dx2 =

∫
Ω1

| det(A)| dx1 = | det(A)|V (Ω1)

we can write:

m(Ω2) =
1

V (Ω2)

∫
Ω2

x2 dx2

=
1

| det(A)|V (Ω1)

∫
Ω1

(Ax1 + b) | det(A)| dx1

= A
1

V (Ω1)

∫
Ω1

x1dx1 + b
1

V (Ω1)

∫
Ω1

dx1

= Am(Ω1) + b

and therefore:

Σ(Ω2) =
1

V (Ω2)

∫
Ω2

[x2 −m(Ω2)] [x2 −m(Ω2)]
T dx2

=
1

| det(A)|V (Ω1)

∫
Ω1

A [x1 −m(Ω1)] [x1 −m(Ω1)]
T AT | det(A)| dx1

= AΣ(Ω1)A
T

which proves the equality. To show that (4.9) is indeed a rotation matrix it is

enough to verify that:

RTR = Σ(Ω2)
− 1

2 AΣ(Ω1)
1
2 Σ(Ω1)

1
2AT︸ ︷︷ ︸

Σ(Ω2)

Σ(Ω2)
− 1

2 = I

The proof is concluded observing the following two facts:

• For any s1 ∈ S(Γ1) there exits s2 ∈ S(Γ2) such that s1 = Rs2.

To prove this statement note that if s1 ∈ S(Γ1), then there exists x1 ∈ Γ1

such that s1 = Σ(Ω1)
− 1

2 [x1 −m(Ω1)]. Now let x2 = Ax1 + b and s2 =
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Figure 4.5: The four plots on the left show the curve Γ1, its affine transfor-
mation Γ2 = AΓ1 + b and the corresponding curve shapes S(Γ1) and S(Γ2) in
the case where the content of the curve is uniform. The right plot illustrates
the congruency between S(Γ1) and S(Γ2). The displayed curves are extracted
from Images 4.4(a) and (b).

Σ(Ω2)
− 1

2 [x2 −m(Ω2)] ∈ S(Ω2): we want to show that s1 = Rs2. This

follows immediately from the chain of equalities:

s1 = Σ(Ω1)
− 1

2 [x1 −m(Ω1)]

= Σ(Ω1)
− 1

2A−1 [x2 −m(Ω2)]

= Σ(Ω1)
− 1

2A−1Σ(Ω2)
1
2︸ ︷︷ ︸

R−T =R

Σ(Ω2)
− 1

2 [x2 −m(Ω2)]

= RΣ(Ω2)
− 1

2 [x2 −m(Ω2)] = Rs2

• For any s2 ∈ S(Γ2) there exits s1 ∈ S(Γ1) such that s2 = R−1s1

This claim can be proven similarly to what we just did before.
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4.3.2 Non Uniform Case

Let I(x) be the intensity value of a single channel image at the location x; we

modify the quantities introduced in Section 4.3.1 as:

• Let V (Ω)
def
=
∫

Ω
I(x)dx be the weighted area of Ω, where dx is the infinites-

imal area element.

• Let m(Ω)
def
= 1

V (Ω)

∫
Ω
I(x)x dx be the weighted centroid of Ω.

• Let Σ(Ω)
def
= 1

V (Ω)

∫
Ω
I(x) [x−m(Ω)] [x−m(Ω)]T dx be the weighted co-

variance of Ω.

In this case Theorem 4.3.2 becomes:

Theorem 4.3.3 (Non Uniform Normalization) Let Γ1 and Γ2 be two Jordan

curves related by an affine transformation:

Γ2 =
{
x2 ∈ R2 : ∃x1 ∈ Γ1 such that x2 = Ax1 + b

}
where A ∈ R2×2 is a non-singular matrix and b ∈ R2. Moreover suppose that the

intensity pattern in Ω1 and Ω2 is related according to:

I2(x2) = I2(Ax1 + b) = I1(x1)

Then the shapes of Γ1 and Γ2 are geometrically congruent via a 2-dimensional

rotation.

Proof: The proof follows exactly the same lines of the proof of Theorem

4.3.2, since it is straightforward to show that:

• V (Ω2) = | det(A)|V (Ω1)
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Figure 4.6: The four plots on the left show the curve Γ1, its affine transfor-
mation Γ2 = AΓ1 + b and the corresponding curve shapes S(Γ1) and S(Γ2) in
the case where the content of the curve is uniform. The right plot illustrates
the congruency between S(Γ1) and S(Γ2). The displayed curves are extracted
from Images 4.4(a) and (b).

• m(Ω2) = Am(Ω1) + b

• Σ(Ω2) = AΣ(Ω1)A
T

also in the presence of the weighting factor related to the image intensity.

Figure 4.6 shows an example of the non uniform normalization procedure.

4.3.3 Coupling the Normalization Procedure with the Helmholtz

Descriptor

If we want to use the descriptors introduced in Section 4.2 in the context of

affine-invariant matching we just have to extract the shape of a curve Γ and then

calculate the RST invariant descriptors of S(Γ) (using or not the content of the

region). This two-step approach can be coupled with any RST invariant curve
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descriptor (such as the Zernike Moment Descriptors).

4.4 Experimental Results

The experimental results that we will present in this section are divided in two

groups. First we will test the performance of the Helmholtz descriptor using a

semi-synthetic dataset and then we will use the proposed descriptor to establish

matches between images of natural scenes.

4.4.1 Performance Evaluation on a Semi-Synthetic Data

Set

The dataset for the experiments described in this section has been extracted

from the Amsterdam Library of Object Images (ALOI, see [43]). We considered

250 frontal images of different objects and for each view we synthetically gener-

ated 9 other images by applying an homographic transformation that simulates

a change in the position of the camera. Each homography is generated following

the procedure explained in Section 3.3.2. The images are generated for values of α

uniformly distributed in the interval [0.65, 1.35]. Further, the image is rotated by

a random angle in [−π, π]. Figure 4.7 shows an example of the images generated

via this procedure. The objects are segmented using the masking information

included in the original ALOI dataset.

In the experiments described in this section, we will compare the performance

of the Helmholtz descriptor versus the Zernike Moment Descriptor, which has

been shown to perform very well in the context of shape matching and retrieval
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[133, 135]. Experimental comparisons of the uniform HD versus the Curvature

Scale Space Descriptor can be found in [141]. The performance of the descriptors

is evaluated using the precision-recall curve calculated (over the dataset described

previously) as follows. Each curve Γ (or region Ω) is used in turn as the query.

Let A(Γ, Nr) denote the set of Nr retrievals (based on the smallest distances (4.7)

from Γ in the descriptor space) and R(Γ) the set of 10 images in the dataset

relevant to Γ. The precision is defined as:

P (Γ, Nr)
def
=
|A(Γ, Nr) ∩R(Γ)|

Nr

and measures the proportion of items retrieved that are relevant. Similarly, the

recall is defined as:

C(Γ, Nr)
def
=
|A(Γ, Nr) ∩R(Γ)|

10

and measures the proportion of relevant items that are retrieved. Note that the

same quantities can be defined in the case where the query is a region Ω. The

notation |·| denotes cardinality. The precision recall curve is plotted by averaging

precision and recall over all Γ, for different values of Nr. On the plots, each marker

corresponds to a different value for Nr ranging from 1 to 20. Moreover dashed red

lines refer to the Zernike Moment Descriptor (ZMD), whereas continuous blue

lines refer to the HD.

Figure 4.8(a) compares the performance of the descriptors after the curves/regions

have been normalized using the uniform or non uniform normalization. Both the

descriptors have 36 components and are uniformly quantized using 8 bits. For

the HD the parameters are ∆ = 30, σ = 2.5 and ρ = 0.75. Both for the ZMD

and for the HD the performance is better if the regions are normalized using the
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Figure 4.7: A set of images synthesized using the homographies generated
using the method described in Section 3.3.2 plus an arbitrary rotation.
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Figure 4.8: Figure (a) compares the performance of the descriptor in the
presence of uniform or non uniform normalization. Figure (b) compares the
performance of the uniform HD vs. the non uniform HD. In both experiments
the descriptors have 36 components and are uniformly quantized using 8 bits.
For the HD the parameters are ∆ = 30, σ = 2.5 and ρ = 0.75.
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Figure 4.9: Figure (a) shows the behavior of the non uniform HD for different
resolutions of the discretization mesh parameterized by ∆. Figure (b) compares
the performance of the ZMD versus the non uniform HD for different lengths
of the descriptor. The parameters for the HD are σ = 2.5 and ρ = 0.75.
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Figure 4.10: Figure (a) displays the precision recall curves for the ZMD and
for the non uniform HD while varying the number of bits used to quantize the
descriptor components. The parameters for the HD are σ = 2.5 and ρ = 0.75.
Figure (b) compares the ZMD and the non uniform HD when the dataset is
generated using an affine distortion model for the images.
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non uniform procedure described in Section 4.3.2. This can be simply explained

observing that the dataset contains several objects that have a similar shape but

a different and distinctive image content. The non uniform HD seems to be less

affected by the type of normalization used. This can be understood by observing

that the descriptor combines the information of the shape with the information

of the content of the considered region. Figure 4.8(b) compares the performance

of the uniform HD vs. the non uniform HD. The parameters of the descriptors

are the same as in the previous experiment. The precision recall curves confirm

the intuition that the non uniform Helmholtz descriptor captures the intensity

information contained inside the region and that this has a beneficial impact on

the overall performance of the approach. Quite surprisingly the performance of

the non uniform HD is essentially equivalent to the performance of the ZMD.

We believe that this is due to the fact that the numerical scheme used to solve

the Helmholtz equation can be refined and improved. We will elaborate more

on this claim at the end of this section. Figure 4.9(a) shows the behavior of the

non uniform HD for different resolutions of the discretization mesh parameterized

by ∆ (see Equation (4.6)). As before, the remaining parameters for the HD are

σ = 2.5 and ρ = 0.75 with the descriptors coefficients quantized using 8 bits. As

it was pointed out in [141], the results indicate that the descriptor is reasonably

stable for values of ∆ ≥ 30. The experiment illustrated in Figure 4.9(b) compares

the performance of the ZMD versus the non uniform HD for different lengths of

the descriptor. For both of them the performance fluctuations are rather limited.

However we can observe a drop in performance for the HD for Nλ = 24. This

might indicate that the components of the Helmholtz descriptor with larger in-
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dices bring more information than the corresponding ones for the ZMD. Figure

4.10(a) displays the precision recall curves for the ZMD and for the non uniform

HD while varying the number of bits used to quantize the descriptor components.

The ZMD presents larger fluctuations than the HD: we hypothesize that this

behavior is related to the fact that the coefficients of the Zernike descriptors cover

a larger dynamic range than the ratios of the eigenvalues of the Laplacian and

hence they are more affected by quantization issues.

From these experiments we conclude that the non uniform Helmholtz descrip-

tor provides a performance (measured in terms of precision recall) that is com-

parable to the performance obtained by the Zernike Moment Descriptor, which

can be considered one of the state of the art descriptors for curve/region descrip-

tion, matching and retrieval [133]. We believe that the numerical method used to

compute the solutions of the Helmholtz equation can be greatly improved with

an immediate impact on the performances of the HD. This opinion is mainly

supported by the observation that the HD provides a joint description of shape

and content. The normalization procedure, that can compensate the distortion

introduced by an homographic transformation only up to a first order of approx-

imation is also a critical step in the overall procedure. A visual inspection of

the eigenmodes of the normalized regions indicates that perturbations due to a

non satisfactory normalization may produce completely different Helmoholtz de-

scriptors. Figure 4.10(b) compares the ZMD and the non uniform HD when the

dataset is generated using an affine distortion model for the images (and there-

fore the normalization procedure carries out its task with no approximations): as

expected the results obtained using the non uniform Helmholtz descriptors are
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superior to those obtained using the Zernike descriptors. Regarding the problem

of isospectrality introduced in Section 4.2, a manual inspection of a sample set of

mismatched curves/regions seems to confirm the intuition that with real imagery

the generation of identical spectrums from different curves/regions is an unlikely

event. As a concluding remark we want to point out that there exists a tradeoff

between the distinctiveness and the robustness provided by the descriptors. In

the context of image registration, where we would like to establish matches be-

tween images, we would like to avoid situations where the distance between the

descriptors of different (but visually similar) curves is small enough to produce a

mismatch. On the other hand, a certain degree of robustness is needed to com-

pensate for the approximations introduced by the normalization procedure. Both

these two aspects will be experimentally explored in greater detail in the next

section.

4.4.2 Performance Evaluation on Real Images

The performance of the descriptors has been tested on a set of pairs of real

images, representing outdoor and indoor scenes. Every image pair displays the

same scene acquired under different points of view. The first stage of the process-

ing consists in finding in each image a set of candidate curves for matching. To

accomplish this task we used the level set decomposition of the intensity values

of the image, which are known to enjoy several important invariance properties

[73]. We observed that for our purposes a good strategy is to slice the intensity

profile at two levels, one large and one small. This way it is possible to identify

dark regions as well as bright regions. Moreover the size of the extracted regions
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is large enough so that the intensity content is non uniform. As pointed out in

the previous section, this is crucial for the generation of distinctive descriptors

in the presence of curves that have very similar shapes. After the Helmholtz de-

scriptors are calculated for each curve/region, the matching is performed using

the weighted Euclidean distance (4.7) (with ρ = 0.75). In Figures 4.11 to 4.14 we

show the results of the curve matching procedure. Figure 4.11 (a) and (b) show

that the matching using the HD is facilitated if the detected regions are large

enough. More specifically, Region 1 has a round shape that is present elsewhere

in the image (e.g. the other eye of the puppet or Region 9 in image (b)). However

its distinctive intensity content is likely to be captured by the Helmholtz descrip-

tor. Similar considerations can be extended to the Regions 1, 11 and 15 displayed

in Figure 4.12. In particular Region 1 includes the edges of the inside border of

the letter “o”, making such a region distinguishable from the remaining two. In

Figure 4.13, Regions 1, 4 and 5 have similar shapes but we may still argue that

the information contained in the intensity pattern can be a relevant to the final

matching result. Similar considerations hold for the harbor scene in Figure 4.14.

As a final remark, we would like to suggest how this approach could be used to

bootstrap the estimation of the mappings (such as homographies or fundamen-

tal matrices) that relate the geometry of 3D scenes acquired from points of view

separated by a wide base line.
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Figure 4.11: Results of the matching procedure for the Graffiti scene. In
all the examples the HD descriptor is composed of 32 components quantized
using 8 bits and ∆ = 30. The numbers with white background (green re-
gion boundaries) identify curve/regions correctly matched, while those with
red background (red region boundaries) correspond to mismatches.
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Figure 4.12: Results of the matching procedure for the Books scene. See the
caption of Figure 4.11 for the experimental conditions and the typographical
conventions.
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Figure 4.13: Results of the matching procedure for the LA street scene. See the
caption of Figure 4.11 for the experimental conditions and the typographical
conventions.
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Figure 4.14: Results of the matching procedure for the Harbor scene. See the
caption of Figure 4.11 for the experimental conditions and the typographical
conventions.
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4.5 Conclusions and Future Work

In this chapter we presented a curve/region descriptor that is based on the

solution of the Helmholtz equation. This descriptor has a strong physical char-

acterization, since it is related to the modes of vibration of a membrane shaped

as the considered region and with a density that is proportional to the region

intensity. Together with the descriptor we presented a normalization procedure

that is capable of extracting the shape of a curve/region. More precisely, curves

(or image regions) are mapped to a normalized coordinate system where affine-

related objects become congruent modulo a geometric rotation. The performance

of the descriptors has been tested both on a semi-synthetic dataset and on real

images and it has been compared with one of the state of the art descriptors,

the Zernike moment descriptor. The results of the experiments show that the

HD performs well in the context of similarity based curve/region retrieval and

curve/region matching. Moreover the normalization procedure proved to be an

important tool to compensate for the geometric distortions present in images ac-

quired from different points of view. Both the descriptor and the normalization

procedure combine intimately and in an original way the information regarding

the shape of the object with the information carried by its visual appearance.

The initial studies that have been presented in this chapter open a number

of interesting research perspectives. First of all the calculation of the descriptor

would greatly benefit from advanced numerical methods [41, 30, 48, 52] that could

solve the Helmholtz equation with an higher degree of accuracy and possibly faster

(it is known that finite difference schemes may introduce spurious modes and that

there exists a dependence between the grid resolution and the largest index of the
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eigenpair that can be computed). We also believe in the importance of quantita-

tively characterizing the influence that the perturbations on the boundaries of the

curves have on the coefficients of the descriptors or equivalently the sensitivity of

the HD with respect to morphological perturbations. Another interesting research

perspective consists understanding the semantics of the descriptors, i.e. how they

relate to the visual properties of the curve/regions [32]. We would also like to em-

phasize the fact that the theory that supports both the normalization procedure

and the calculation of the modes of vibration of a membrane is independent of

the dimensionality of the considered objects and could be generalized to deal with

regions extracted from three dimensional imagery (such as CAT images). Finally

we are interested in region detectors that are able to identify image portions that

have a rich intensity content and that present a high degree of repeatability in the

presence of perspective distortions. We believe that the curves obtained starting

from the level set decomposition of the intensity surface of an image [73] could be

a good input for the Helmholtz descriptor.
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Chapter 5

RANSAC Stabilization

“A probability space is a triple (Ω,F , P ).”

A. Kolmogorov

“Probability is the ratio of the number of favorable outcomes

to the number of possible outcomes.”

P. Zuliani

Given the need to estimate the parameters of (multiple) geometric or photometric

models in the presence of a large number of outliers, we develop a robustifica-

tion framework that improves the results obtained using RANSAC. The novel

contributions of this chapter are:

• The introduction of a stabilization framework that improves the quality of

estimates obtained using RANSAC in the presence of large uncertainties of

the noise scale and multiple instances of the model (see Section 5.3).
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• The introduction of a pseudo-distance to quantify the dissimilarity between

geometric transformations (see Section 5.3).

• The reduction of the problem of grouping similar models to the problem of

identifying the largest maximal clique in a graph (see Section 5.3).

• The validation of the stabilization framework by means of extensive experi-

ments using both synthetic and real data (see Section 5.4).

5.1 Introduction

The RANSAC algorithm (RANdom Sample And Consensus ) was first intro-

duced by Fischler and Bolles [35] as a method to estimate the parameters of a

certain model in the presence of large amounts of outliers (the percentage of out-

liers can be larger then 50%, which is commonly assumed to be a practical limit

in many other statistical methods [55, 110, 79, 120]).

RANSAC has been widely used in the computer vision and image processing

community for many different purposes and several modifications have been pro-

posed [128, 20, 97, 131, 126, 21, 142] to improve the speed of the algorithm, the

robustness and accuracy of the solution and to decrease the dependency from user

defined constants. However, despite these various modifications, the RANSAC

algorithm is basically composed of two steps that are repeated in an iterative

fashion (hypothesize-and-test framework). First Minimal Sample Sets (MSS) are

randomly selected from the input dataset and the model parameters are computed

using only the elements of the MSS. The cardinality of the MSS is the smallest

sufficient to determine the model parameters (as opposed to other approaches,
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such as for example least squares, where the parameters are estimated using all

the data available with appropriate weights). In the second step RANSAC checks

which elements of the full dataset are consistent with the model instantiated with

the parameters estimated in the first step.1 The set of such elements is called Con-

sensus Set (CS) . RANSAC terminates when the probability of finding a better

consensus set drops below a certain threshold.

Much of the attention that has been devoted to RANSAC aimed at improving

its performance in many different ways. In MLESAC [128] Torr et al. evalu-

ate the quality of the CSs calculating their likelihood. Chum et al. proposed a

randomized version of RANSAC [20] to reduce the computational burden to iden-

tify a good CS. Chum also proposed to guide the sampling procedure if some a

priori information regarding the data distribution is known (PROSAC [21]). A

similar attempt was pursued by Tordoff et al. (Guided-MLESAC [126]). Other

researchers tried to cope with difficult situations where multiple model instances

are present and the noise scale is not known (see the work by Wang and Suter

[131] and the multiRANSAC extension described in [142]). In [97] Nistér proposed

a paradigm called Preemptive RANSAC that allows real time robust estimation

of the structure of a scene and of the motion of the camera.

In our work we are interested in reducing the bias and improving the accuracy

of the RANSAC estimate when we do not have precise information regarding the

noise scale and when multiple model instances are present in the original dataset.

This scenario arises frequently when we want to register the planar structures that

are present in an image pair.

1If an existing model is supported by few data points the algorithm can miss it, especially
when the noise scale is overestimated.
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Figure 5.1: Figure (a) shows an uncorrect fitting of four lines. Figure (b)
shows an uncorrect fitting of planar homographies: the shape and color of
the markers identifies set of points that fit the same homography. Note that
markers belonging to the same group fit homographies that are not consistent
with the structure of the scene.

5.1.1 The Problem of the Noise Scale

As mentioned before, the notion of “goodness” for a CS depends on how well

its elements fit the instantiated model (even though departures from this paradigm

can be found in the MINPRAN estimator [119]). But to identify a CS we first need

to define a threshold that distinguishes inliers from outliers, (or, in other words, we

need to know the noise scale). If this threshold is too small we risk to select only

some of the true inliers. On the other hand, if such threshold is too large we may

include data points that actually are outliers or pseudo-outliers (i.e. data points

which are inliers for a different model) . In both cases the estimate of the model

parameters are likely to be biased. Things may become even worse when multiple

instances of a model are present in the data: in this case we have to cope both

with true outliers as well as with pseudo outliers. As noted in [142] the inaccurate

inlier detection for the initial (or subsequent) parameter estimation contributes

heavily to the instability of the estimates of the parameters for the remaining

models. Figure 5.1 shows two examples that support the previous claim.
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5.2 Preliminaries

To facilitate the discussion that follows, it is convenient to introduce a suitable

formalism to describe the steps for the estimation of the model parameters and for

the construction of the Consensus Set (CS). As usual we will denote vectors with

boldface letters and the superscript (h) will indicate the hth iteration. The symbol x̂

indicates the estimated value of quantity x. The input dataset which is composed

of N elements is indicated by D = {d1, . . . ,dN} and we will indicate a Minimal

Sample Set (MSS) with the letter s. Let θ ({d1, . . . ,dh}) be the parameter vector

estimated using the set of data {d1, . . . ,dh}, where h ≥ k and k is the cardinality

of the MSS.2 The manifoldM is defined as:

M(θ)
def
=
{
d ∈ Rd : fM(d;θ) = 0

}
where θ is a parameter vector and fM is a function whose zero level set contains

all the points that fit the model instantiated with a given parameter vector. We

define the error associated with the datum d with respect to a manifoldM(θ) as

the distance from d toM(θ):

e(d,M(θ))
def
= min

d′∈M(θ)
dist(d,d′)

where dist(·, ·) is an appropriate distance function. Using this error metric we

define the CS as:

S (θ)
def
= {d ∈ D : e(d,M(θ)) ≤ δ} (5.1)

where δ is a threshold which can either be fixed by the user or estimated auto-

matically [131]. In practical applications we are interested in relating the value

2Suppose we want to estimate a line: in this case the cardinality of the MSS is 2, since at
least two distinct points are needed to uniquely define a line.
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of δ to the statistics of the noise that affects the data. Consider the special case

where the distance function is the Euclidean norm so that we can write:

e(d,M(θ)) = min
d′∈M(θ)

√√√√ n∑
i=1

(di − d′i)2 =

√√√√ n∑
i=1

(di − d∗i )2

and suppose the datum d is affected by Gaussian noise η ∼ N (0, σηI) so that

η = d − d∗. We want to calculate the value of δ that bounds, with a given

probability Pinlier, the error generated by a true inlier contaminated with Gaussian

noise. More formally we want to find the value δ such that:

P [e(d,M(θ)) ≤ δ] = Pinlier (5.2)

Following [51], p. 118, we can write the following chain of equations:

P [e(d,M(θ)) ≤ δ] = P

[
n∑

i=1

η2
i ≤ δ2

]
= P

[
n∑

i=1

(
ηi

ση

)2

≤ δ2

σ2
η

]

and since ηi/ση ∼ N (0, 1), the random variable
∑n

i=1

(
ηi

ση

)2

has a χn distribution.

Hence:

δ =
√
σ2

ηF
−1
χn

(Pinlier) (5.3)

where F−1
χn

is the inverse cumulative distribution function associated with a χn

random variable. At this point we want to emphasize how critical is the choice

of the noise threshold. First we may have some uncertainties regarding the noise

statistics (often we don’t know the probability distribution of the error, and even

when it is reasonable to assume a Gaussian distribution we may lack a reliable

estimate of the standard deviation). Secondly the error threshold depends on the

probability Pinlier. Too large values of Pinlier will produce a large threshold with

the risk of including some outliers as well. On the other hand, too small values
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of Pinlier will generate a value for δ which is too small, and possibly some inliers

will be discarded.

5.2.1 RANSAC Overview

A pictorial representation of the RANSAC fundamental iteration together with

the notation just introduced is shown in Figure 5.2. As mentioned before, the

RANSAC algorithm is composed of two steps that are repeated in an iterative

fashion (hypothesize-and-test framework). First a MSS s(h) is selected from the

input dataset and the model parameters θ(h) are computed using only the elements

of the selected MSS. Then, in the second step, RANSAC checks which elements

in the dataset D are consistent with the model instantiated with the estimated

parameters and, if it is the case, it updates the current best CS S∗ (usually the

CS with the largest cardinality). The algorithm terminates when the probability

of finding a better CS drops below a certain threshold. In the next paragraphs we

will discuss how to estimate the number of iterations that RANSAC is supposed

to perform.

How many iterations?

Let q be the probability of sampling from the datasetD a MSS s that produces

an accurate estimate of the model parameters (henceforth such an s will be called

stable MSS). Consequently the probability of picking a non stable MSS (i.e. a

MSS that produces a biased estimate of the true model parameter vector) is 1−q.

If we construct h different MSSs, then the probability that all of them are non

stable is (1− q)h (this quantity tends to zero for h going to infinity). We would
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Figure 5.2: Pictorial representation of the fundamental RANSAC iteration.

like to pick h (i.e. the number of iterations) large enough so that the probability

(1− q)h is smaller or equal than a certain probability threshold ε (often called

alarm rate), i.e. (1− q)h ≤ ε. The previous relation can be inverted so that we

write:

h ≥
⌈

log ε

log (1− q)

⌉
(5.4)

where dxe denotes the smallest integer larger than x. Therefore we can set:

T̂iter =

⌈
log ε

log (1− q)

⌉
(5.5)

Constructing the MSSs and Calculating q

If we imagine that the inliers inside the dataset D are noise free, then any MSS

entirely composed of inliers will generate the true value of the parameter vector.3

If all the elements in the dataset have the same probability of being selected, then

3As long as we disregard numerical approximations and we pick the noise threshold δ to be
an arbitrarily small positive number.
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the probability of obtaining a MSS composed only of inliers is:

q =

(
NI

k

)(
N
k

) =
NI !(N − k)!
N !(NI − k)!

=
k−1∏
i=0

NI − i
N − i

(5.6)

where NI is the total number of inliers. Unfortunately, to compute q we should

know NI which is generally not known a priori. However it is easy to verify

that for any N̂I ≤ NI we have q(N̂I) ≤ q(NI) and consequently (1− q(NI))
h ≥(

1− q(N̂I)
)h

(where we made explicit the dependency of q on the number of

inliers). Therefore we can estimate the maximum number of iterations using the

cardinality of the largest set of inliers found so far (call this N̂I), which can be

regarded as a conservative estimate of NI . Hence, the iteration threshold can be

fixed to:

T̂iter =

 log ε

log
(
1− q(N̂I)

)
 (5.7)

We began this paragraph under the assumption that the inliers are noise free:

clearly this is not a realistic situation in real life applications: certain MSSs,

even when composed only by inliers, can produce biased estimates of the model

parameters, as shown in the examples in Figure 5.3. To cope with this problem

we need to construct MSSs that satisfy some specific constraints, for example

regarding the spatial distribution of their elements [60] or the numerical stability

of the estimates they produce. As an example, consider the problem of estimating

an homography via the DLT algorithm ([51], p. 88). If we pick four points that

approximately belong to a line, then the linear system whose solution defines the

homography estimate is poorly conditioned: small amounts of noise can drastically

bias the estimate (see Figure 5.3(b)).
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(a) (b)

Figure 5.3: Examples of unstable MSSs. (a) Even though the points composing
the unstable MSS are within the noise threshold δ (which defines the plane
band contained within the dashed lines parallel to the black thick line) they
produce a parameter estimate that is biased (red thick line). (b) The red
markers identify a MSS of corresponding features (green markers) that belong
to a planar surface (the second image is omitted) but are almost collinear:
small noise perturbations will cause the homography estimate to be biased.

5.2.2 The Distance Between Two Models

Before presenting the robustification procedure, we want to define a non nega-

tive scalar value that measures the “distance” between two models (in other words

we want to answer quantitatively questions such as: “How similar are two lines?”

or “How different are two homographies?”). Suppose we have two sets of data

D1 ⊆ D and D2 ⊆ D and let θ(D1) and θ(D2) be the parameters of the models

estimated using these two data sets. We define the pseudo distance between the

model instantiated with the parameter vector θ(D1) and the model instantiated
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with the parameter vector θ(D1) to be:

pseudo-dist(θ(D1),θ(D2))
def
=

1

2

[
1

|D2|
∑
d∈D2

e(d,M(θ(D1))) +
1

|D1|
∑
d∈D1

e(d,M(θ(D2)))

]
(5.8)

(where |D| indicates the cardinality of the set D). Even though (5.8) is non

negative and symmetric it is not a distance function: in fact (5.8) can be equal to

zero only if D1 ≡ D2 is a MSS. Moreover the concept of triangle inequality does

not have a clear interpretation and in general it does not seem to hold.

5.3 The Robustification Procedure

The robustification procedure operates on the output of RANSAC and is com-

posed of three steps: the Minimal Sample Set (MSS) voting procedure, the con-

struction and processing of the relationship matrix and finally the parameter es-

timation via robust statistics methods [55, 110, 79, 120]. The first step is used to

identify which Minimal Sample Sets (MSS) formed from the initial set of inliers

selected by RANSAC instantiate models that are not likely to happen by chance.

The second step is used to increase the robustness of the method in the presence

of multiple models (since we want to identify only one model) and finally the

last step will provide a robust estimate of the model parameters together with an

estimate of the noise scale. In the following subsections we will describe in greater

detail each of the previous steps.

To make our description clearer we will focus on the problem of estimating a

line parameterized as θ1x+ θ2y+ θ3 = 0 under the constraint that ‖θ‖ = 1. More
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Figure 5.4: Image (a) shows the sketch of two lines and image (b) shows the
dataset that will be used as our toy problem. Out of 1000 points 150 belong to
the true lines (crosses) and they are corrupted with Gaussian noise with zero
mean and standard deviation σ = 10−2 (squares).

specifically we will consider the dataset shown in Figure 5.4(b), obtained from

the sketch represented in Figure 5.4(a). Out of 1000 points uniformly distributed

in the plane region [−1, 1]× [−1, 1], the inlier set is composed of 150 points, and

each inlier is perturbed by zero mean Gaussian noise with standard deviation

ση = 10−2.

5.3.1 Step 1: The MSS Voting Procedure

To motivate the MSS voting procedure consider the set D̂I formed by the

elements classified as inliers by RANSAC (which are shown as red circles in Figure

5.6(a)) using a noise scale five times larger than the true one (i.e. σ̂η = 5 · 10−2

with Pinlier = 0.9). It can be seen that the data points belonging to different

models and several outliers are lumped together: this undesirable effect is likely
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to bias the estimate of the model parameters. This observation is valid in general,

despite the considered model and the outlier distribution. The procedure that

we will describe in the following is likely to mitigate this problem, by identifying

the dominant models in a given set of data and by discarding the outliers (or in

other words retaining the inliers and the pseudo-outliers and discarding the true

outliers).

Consider Ns distinct MSSs s1, . . . , sNs constructed within the set D̂I and the

corresponding parameter vectors θ(s1), . . . ,θ(sNs). With a little abuse of notation

we define en
i = e(d,M(θ(si))) to be the nth smallest error produced by an element

d ∈ D̂I and by the model instantiated with the parameter vector θ(si). A detail

of the histogram distribution of the 10th smallest error for our example is shown

in Figure 5.6(b). The width h of the histogram bins is calculated following the

rule by Freedman and Diaconis (which is summarized in [56]):

h = 2 IQR(
{
en
1 , . . . , e

n
Ns

}
) N

1
3

where IQR returns the interquartile range (the 75th percentile minus the 25th

percentile) and N denotes the number of data.

Thresholding the Histogram

The MSSs that contribute to the initial portion of the histogram can be re-

garded as representatives of structures that are unlikely to happen by chance. To

make this statement more precise consider the following situation. Let ρ be the

percentage of contamination of the set D̂I , so that the number of outliers amounts

to ρ|D̂I | (and consequently the number of inliers is (1 − ρ)|D̂I |). Moreover let’s

assume that the manifold errors produced by the outliers are uniformly distributed
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in the interval [−δ, δ] (where δ is given by (5.3)). As usual, the inlier errors are

assumed to be normally distributed with standard deviation ση. Therefore the

expected number of inliers and outliers that will produce an error in the interval

[−δ̄, δ̄] (where δ̄ ≤ δ) is given by:

NI(δ̄) = P [e(d,M(θ)) ≤ δ̄] (1− ρ)|D̂I |

NO(δ̄) =
δ̄

δ
ρ|D̂I |

In the case of lines, where the cardinality of a MSS is 2, the number of MSSs

that are generated only by the inliers is:

Ns,I(δ̄) =
1

2
NI(δ̄)(NI(δ̄)− 1)

and the number of the MSSs contaminated by the presence of at least one outlier

is:

Ns,O(δ̄) =
1

2
NO(δ̄)(NO(δ̄)− 1)︸ ︷︷ ︸

two outliers

+ NI(δ̄)NO(δ̄)︸ ︷︷ ︸
one inlier and one outlier

Figure 5.5(a) shows the curves parameterized by δ̄ that displays the ratio:

Ns(δ̄)

Ns(δ)
=
Ns,I(δ̄) +Ns,O(δ̄)(|D̂I |

2

)
versus the ratio:

Ns,I(δ̄)

Ns,O(δ̄)

for different values of ρ. This curve can be used to better understand the struc-

ture of the cumulative histogram of the nth sorted error to select a meaningful

threshold. The MSSs that compose the initial part of the cumulative histogram

are likely to be mostly generated by inliers. Hence, by selecting these MSSs we
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ensure that the ratio between the number of outlier free MSSs and the number of

outlier contaminated MSSs is sufficiently large. A comparison of the theoretical

curve versus the curve obtained from a real cumulative histogram is shown in

Figure 5.5(b). Note that the real curve tends to stay below the theoretical curve:

we believe that this happens because our initial hypothesis is not fully satisfied

(the inlier error distribution is Gaussian only if the initial parameter estimate

used to compute the errors is very close to the true parameter value). We select

the threshold Te to be the value for which the cumulative sum of the histogram

of the nth error contains at least 5% of the total number of MSSs. From Figure

5.5(a) it can be seen that for this value the ratio between outlier free and outlier

contaminated MSSs is larger than one for contamination percentages up to 70%.

On the other hand we do not want to consider a percentage of the cumulative

histogram that is too small: in this case certain configurations of outliers could

hide the true model.

All the MSSs for which:

min
1≤j≤Ns

en
j ≤ en

i ≤ Te

are selected as representative of “interesting” models. In our example the red

lines in Figure 5.6(b) show these thresholds superimposed on the error histogram.

Figure 5.7(a) shows the selected MSSs by means of a green segment connecting the

two points that form the MSS: the two models that have been lumped together by

RANSAC have been identified and the real outliers have been discarded. Finally

a comment regarding the number Ns of MSSs that are generated. The total

number of possible MSSs with cardinality k that can be obtained from D̂I is

Ns =
(|D̂I |

k

)
. Of course this number can soon become extremely large: to cope
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Figure 5.5: Plot (a) displays the ratio between outlier free MSSs and outlier
contaminated MSSs (i.e. Ns(δ̄)

Ns(δ)
) versus the ratio Ns,I(δ̄)

Ns,O(δ̄)
for different values of

the contamination ρ. Plot (b) compares one of the theoretical curves (solid
blue line) with the curve (red dashed line) obtained experimentally under the
same conditions (percentage of contamination and number of points).

with this problem we uniformly subsample the set of all possible combinations of

the MSSs so that Ns ≤ 104.

5.3.2 Step 2: The Relationship Matrix

At this stage we have a set of MSSs that instantiate the dominant model

(or models) that are present in the initial dataset D̂I . We would like to group

together the models that are “similar” to each other and for this purpose we use

the pseudo distance (5.8). More specifically we define the relationship matrix to

be a symmetric matrix whose entries are given by:

Rh,k =


pseudo-dist(θ(sh),θ(sk)) if h 6= k,

0 otherwise.

(5.10)
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Figure 5.6: In (a) the red circles represent the inliers that have been identified
by RANSAC. The error threshold was calculated using (5.3) and assuming
σ̂η = 5 · 10−2 and Pinlier = 0.90. Figure (b) shows the histogram of the 10th

error associated with the parameter vectors estimated from 104 MSSs formed
within the set of inliers found by RANSAC. The red lines indicate the portion
of the histogram that corresponds to “interesting” models.

where sh and sk are MSSs selected by the voting procedure described before.

The relationship matrix for our example is shown in Figure 5.7(b), where brighter

colors indicate smaller values. To select a threshold value to distinguish between

models that can be considered equivalent from models that are distinct we resort to

the histogram of the values of the upper triangular part of R (diagonal excluded).

The value of the pseudo-distance TR which corresponds to the first “relevant”

valley after the first “relevant” peak is used to group together the equivalent

models. The rationale behind this idea is that in the presence of multiple models

the histogram will exhibit a multimodal structure: the first mode (the one that

peaks for smaller values of the pseudo distance) accounts for the pseudo distances

between equivalent models, all the other modes (if any) account for the pseudo
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Figure 5.7: In (a) the green segments correspond to the point pairs (i.e. the
MSSs) that were selected in the MSS voting procedure. Note that they identify
the dominant models that were lumped together by RANSAC including the
inliers present between the two lines. Figure (b) shows the relationship matrix
R. Brighter colors indicate model pairs that are similar to each other.
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distances between different models. This behavior is clearly shown in Figure

5.8(a).

Identifying the Histogram Valley

A histogram can be thought as an estimate of the probability density func-

tion that generates a set of data. More generally a probability density function

can be conveniently estimated using kernel based methods (also known in the

pattern recognition community as Parzen windows techniques [31]). In the one

dimensional case, the kernel density estimator has the following expression:

f̂(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
(5.11)

where xi are the data samples, h is the bandwidth and K is a bounded function

with compact support that satisfies the following constraints:∫
R
K(x) dx = 1 lim

x→∞
xK(x) = 0

∫
R
x K(x) dx = 0

∫
R
x2 K(x) dx = c

In general the quality of a kernel is measured by the integral of the mean of the

squared error between the true density and its estimate. The kernel that minimizes

an asymptotic approximation of this quantity is the Epanechnikov kernel:

K(x) =


3
4
(1− x2) if x2 < 1,

0 otherwise.

Another possible choice is the Gaussian kernel, that does not have differentiability

problems (such as the Epanechnikov kernel at the boundaries of its support). Its
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expression is:

K(x) =
1√
2π

exp(−x
2

2
)

However note that such kernel has infinite support (on the contrary the Epanech-

nikov kernel has finite support).

To estimate the histogram threshold we first perform a gradient ascent to

identify the histogram peak, followed by a gradient descent to identify the next

valley. During this process we check that the ratio between the height of the valley

and of the peak of the histogram is small enough; this is to avoid spurious valleys

that are not produced by the presence of different models. Our approach can be

regarded as a simplified version of the mean shift algorithm [24]. In more detail,

at the lth step, the distribution f̂ can be approximated via a Taylor expansion

about the point x(l) as:

f̂(x(l+1)) ≈ f̂(x(l)) +
∂f̂

∂x
(x(l))(x(l+1) − x(l))

Since:

f̂(x(l+1))− f̂(x(l)) ≈ ∂f̂

∂x
(x(l))(x(l+1) − x(l))

in order to decrease or increase the value of f̂ we update the current position

according to:

x(l+1) = x(l) + α sign

(
∂f̂

∂x
(x(l))

)
where α defines the size of the step (negative for a descent or positive for an

ascent). The value of α is reduced whenever the sign of the function variation

changes. The derivative of the f̂ can be easily calculated from (5.11); for the
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Gaussian kernel its expression is:

∂f̂

∂x
(x) = − 1

Nh

N∑
i=1

x− xi

h
K

(
x− xi

h

)
If the number of points is very large we can speed up the computation by dropping

the terms for which K
(

x−xi

h

)
≈ 0 (i.e. the points for which x−xi

h
is large4). The

procedure to identify a stationary point (that includes either a local maximum

or a local minimum) of the probability density function f̂ is formally described

in Algorithm 1. The function TERMINATION is used to stop the loop when the

variation of the position of the stationary point or the value of the probability

density function or the step size drop under a certain threshold.

Grouping Equivalent Models

The new matrix RT obtained by thresholding the relationship matrix R is

shown in Figure 5.8(b). This new binary matrix can be interpreted as the adja-

cency matrix associated with a simple undirected graph G(V,E) whose vertices

correspond to the MSSs selected by the MSS voting procedure and the edges rep-

resent connections between MSSs who instantiate models that can be considered

equivalent. It follows immediately that identifying the largest subset of MSSs

that originate equivalent models corresponds to finding the maximal clique5 of

the graph G with the largest cardinality. This in an NP-hard problem [10, 25]

that can be solved using trust region heuristics in O(|V |3) [16]: this method has

been experimentally shown to be exact on small graphs and very efficient on

4As an example, for x = 7 we have that exp(−x2

2 ) ≈ 2.2 · 10−11 which is negligible for most
applications.

5A clique is a subset Q of V such that any two vertices of Q are adjacent. It is called maximal
if there is no other vertex in the graph connected with all the vertices of Q.
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Algorithm 1 Identification of a Stationary Point of the Probability Density Func-

tion.
FindStationaryPoint(x(0), h, mode)

1 f̂ (0) ← EstimatePDF(K, x(0))

2 l← 1

3 if mode = ASCEND

4 then α← h

5 else α← −h

6 repeat

7 ∂f̂
∂x

(x(l−1))← EstimatePDFDerivative(K, x(l−1))

8 xnew ← x(l−1) + α sign
(

∂f̂
∂x

(x(l−1))
)

9 f̂new ← EstimatePDF(K, xnew)

10 if (mode = ASCEND and f̂new < f (l−1)) or

11 (mode = DESCEND and f̂new > f (l−1))

12 then α← 0.5 α

13 else x(l) ← xnew

14 f (l) ← f̂new

15 l← l + 1

16 until TERMINATION(x(l), x(l−1), f̂ (l), f̂ (l−1), α)

17 return
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Figure 5.8: The histogram in Figure (a) shows the model distance distribution
(for the upper triangular part of R). Note the bimodal nature of the histogram
due to the presence of multiple distinct models. The red line indicates the
threshold that is chosen in correspondence of the first valley of the histogram
after the first peak. The corresponding thresholded relationship matrix is dis-
played in Figure (b).

various maximum clique problem instances. Figure 5.9(a) shows the MSSs asso-

ciated with the largest maximum clique for the considered example: as expected

the “cliqued” MSSs contain points that all belong to the same model instance.

Henceforth we will indicate the data belonging to the largest maximal clique as

DC =
{
dC

1 , . . . ,d
C
NC

}
.

The approach we just described bears a certain resemblance to the spectral

factorization methods introduced for clustering and grouping purposes [102, 95].

The main idea behind these methods is to calculate the eigenvector corresponding

to the largest eigenvalue of the relationship matrix. Its dominant non zero com-

ponents can be used to directly identify the elements that belong to the largest

group. One of the problems of this approach is the selection of a threshold for
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Figure 5.9: In (a) the green segments correspond to the point pairs (i.e. the
MSSs) that were selected by identifying the largest maximal clique of the
relationship matrix. Figure (b) compares the initial RANSAC estimate versus
the robustified estimate obtained using the Lorentzian M-estimator.
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the components of the eigenvector when the groups are not well separated. This

problem worsens when multiple clusters of similar dimensions are present in the

data. The second step of the robustification directly addresses these problems

(which are likely to affect the data obtained by the voting procedure) and reduces

the risk of lumping together distinct models. Note also that Pavan et al. [101, 100]

to cope with similar difficulties introduced a graph theoretic framework where the

grouping process is solved identifying the dominant set in a graph (which can

be though as an extension of the maximal clique when the edges connecting the

graph nodes are weighted).

5.3.3 Step 3: Parameter Estimation via Robust Statistics

Methods

At this point we have a set of data that are considered inliers for a certain

model. However we want to increase the robustness of our method further so that

we can cope with situations where at the end of the second step we still have

some data that could bias our estimate. We achieve this goal first by robustly

estimating the noise scale, and then by re-estimating the model parameters via

an M-estimator.

Consider an initial estimate θC of the parameter vector obtained from the data

forming the largest maximum clique detected in Step 2 and let ei = e(dC
i ,M(θC))

be the corresponding errors. A popular robust noise scale estimator [110, 120] is

the sample median:

σ
def
= 1.4826

(
1 +

5

|DC | − p

)√
medi ei
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where p is the dimension of the parameter space (in our example p = 2 because

the parameter vector is constrained to have unit norm) and med is the median

function. Such an estimator is bounded when the data include less than 50%

of outliers. In our method we will use a variant called MAD which takes into

consideration the fact that the data points may not be centered [109, 120]:

σ∗
def
= 1.4826 medi |ei −medj ej| (5.13)

The median and MAD estimators have breakdown points of 50% and both meth-

ods are biased for multiple-mode cases even when the data contains less than 50%

outliers. However this event is unlikely to happen thanks to the analysis of the

relationship matrix carried out in Step 2. Therefore the robustified set of inliers

is defined as:

S∗
def
= {d ∈ DI : e(d,M(θC)) ≤ 3σ∗} (5.14)

The coefficient 3 is selected based on the assumption that the error distribution

of the inliers is Gaussian.

Finally, using the elements in S∗, we will re-estimate the model parameters

using the robust estimator [55, 120] that is introduced in the reminder of this

section. Suppose that the error e(d,M(θ)) is a random variable described by the

probability density function p. We define the likelihood of the estimated set of

inliers to be:

LM(S∗,θ) =
∏
d∈S∗

p(e(d,M(θ)))

and consequently the log-likelihood as:

LM(S∗,θ) =
∑
d∈S∗

log p(e(d,M(θ))) = −
∑
d∈S∗

ρ (e(d,M(θ)))
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where ρ(·) = − log(·). The larger is the likelihood (or the log-likelihood) the more

likely are the errors to be described by the probability density function p(·). The

M-estimate of θ is defined as:

θ̂
def
= argmax

θ
LM(S∗,θ) = argmin

θ

∑
d∈S∗

ρ (e(d,M(θ))) (5.15)

where ρ (the negative logarithm of the error probability distribution function) is

called estimator function. If the error distribution is Gaussian, with zero mean

and standard deviation σ, then:

pM(d,θ) =
1

Z
exp

(
−1

2

e(d,M(θ))2

σ2

)
where Z is an appropriate normalization factor. Consequently we can write:

ρ (e(d,M(θ))) = − logZ − 1

2

e(d,M(θ))2

σ2

If we drop the terms that do not depend on θ we have:

θ̂ = argmin
θ

∑
d∈S∗

e(d,M(θ))2

which shows the well known fact that classical least squares produces the maxi-

mum likelihood estimate of a vector in the presence of Gaussian noise. But what

happens if the error distribution is not Gaussian? To answer this question we re-

call the concept of breakdown point for an estimator. This quantity indicates the

fraction of the data that can be arbitrarily far from the model manifold without

compromising the parameter estimate. Least square estimators ρ(x) = x2 have a

0% breakdown point, since a single outlier can cause the parameter estimate to

deviate arbitrarily from its real value. This can be understood by observing the
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behavior of the influence function ψ, which is the derivative of the estimator func-

tion and, as the name suggests, determines the influence of a datum on the value

of the parameter estimate [136]. In the least square case it is equal to ψ(x) = 2x.

Such a function increases linearly with no bounds and so does the influence of the

outliers. To gain robustness an estimator should give “less importance” to errors

whose magnitude is much larger than expected. This happens when the influence

function either diverges at a slow rate or saturates or redescends. Interestingly

enough such a behavior is deeply connected with the choice of an error probabil-

ity distribution function that has heavier tails than a Gaussian. As an example,

consider the Cauchy or Lorentzian distribution:

p(e(d,M(θ))) =
1

Z
· 1

1 + 1
2

(
e(d,M(θ))

σ

)2

(where Z is a normalization factor) which is compared with the Gaussian distribu-

tion in Figure 5.10(a): its tails contribute to the probability distribution more that

those of a Gaussian. The corresponding M-estimator and its influence function

have the following expressions:

ρ(x) = log

(
1 +

1

2

(x
σ

)2
)

(5.16)

ψ(x) =
2x

2σ2 + x2
(5.17)

The influence function ψ(x) redescends after reaching an extremum point at x =

±
√

2σ and asymptotically tends to zero (see Figure 5.10(b)). To carry out the re-

estimation of the parameters we use a Lorentzian M-estimator. Note that we are

not claiming that the correct modeling of the error is obtained assuming a Cauchy

distribution: it is an heuristic choice that, in the light of the previous observations
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Figure 5.10: The plots in (a) compare a Gaussian distribution to a Cauchy
distribution. Note how (for the same value of the parameter σ) the tails of the
Gaussian distribution decay much faster that the tails of the Cauchy distribu-
tion. The plots in (b) display the Lorentzian estimator (blue) and its influence
function (green). Note the redescending behavior of ψ.

regarding the tails of the distributions, has been shown to be appropriate in many

situations.

To minimize the negative log-likelihood (5.15) we utilize a subspace trust

region algorithm based on the interior-reflective Newton method described in

[18, 9, 11]. The scaling for the estimator is chosen to be equal to 2.3849σ∗ that, as

explained in [136], allows one to achieve 95% of asymptotic efficiency for a Gaus-

sian distribution with standard deviation σ∗ (see [136]). The final line estimate

for our example is shown in figure 5.9(b).
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5.4 The Robustification Procedure for Generic

Models

In this paragraph we will discuss how the three steps of the robustification pro-

cedure should to be tailored when we want to estimate the parameters of models

that are more complicated than a 2D line (in particular, we will consider the task

of estimating planar homographies ([51], p. 87). It is worth remarking that the

robustification procedure is similar in spirit to the refinement step that is carried

out to improve the initial numerical solution of a (possibly ill conditioned) linear

system. In our case RANSAC produces the initial estimate of the parameters (or,

equivalently, of the set of inliers) and the robustification procedure refines such

estimate.

5.4.1 Robustification for Complex Models

The complexity of a model is related to the number of its parameters or, almost

equivalently, to the minimum number of data necessary to estimate the parameters

(i.e. the cardinality of the Minimal Sample Set (MSS)). As we mentioned before,

the total number of possible MSSs with cardinality k that can be obtained from

D̂I is Ns =
(|D̂I |

k

)
. This number can soon become extremely large (the cardinality

of a MSS to estimate an homography is 4). One way to cope with this problem

is to subsample the set of all possible combinations of the MSSs and to avoid

those that are unstable (see Section 5.2.1). In the case of homographies, this can

be accomplished by randomly generating 4 reference points R1, . . . , R4 and by

forming a MSS that contains the elements inD that are the closest to the reference
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Figure 5.11: The sampling rule to construct stable MSSs for the estimation
of planar homographies. The black square position is defined by the point R0

and the position of the reference points R1, . . . , R4 is obtained by perturbing
uniformly the corners of the black square (allowed locations are within the red
dashed squares). The geometry of the sampling scheme is specified by the two
parameters L and l that in general are functions of the image resolution and
of the size of the planar structures we are interested to detect.

points (see Figure 5.11). The parameters L and l should be set according to the

resolution of the image and to the size of the planar structures we are interested to

detect. Experimental results showed that the error magnitude variation between

the set of inliers and the set of outliers tends to be smoother when we are dealing

with models that are more complicated than just a line, hence it is appropriate

to consider the histogram distribution of the nth smallest error with n > 10 (in

the case of homographies we choose n = 20). Finally, we still select the threshold

Te to be the value for which the cumulative sum of the histogram of the nth error

contains at least 5% of the total number of MSSs. Even though the analysis

carried out in Section 5.3.1 was specific for a line model, we believe that the

constraint to obtain stable MSSs compensates for the growth of the space of the
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possible MSSs configurations.

The second and third step of the robustification procedure remain almost the

same; however some extra care is required for the estimation of the histogram

bandwidth (it is important to check that the Freedman and Diaconis rule produces

meaningful values and is not affected by a few samples that produce very large

values of the nth error).

5.4.2 Handling Multiple Models

To handle multiple models (or different instances of the same model) it has

been suggested to sequentially apply RANSAC and to remove the inliers from

the dataset as each model instance is detected [130, 60] (sequential RANSAC).

However, as mentioned in Section 5.1.1, inaccurate inlier detection for the initial

(or subsequent) parameter estimation contributes heavily to the instability of the

estimates of the parameters for the remaining models [142]. As we will show ex-

perimentally in Section 6.1.2, a sequential approach will greatly benefit by letting

the robustifiaction procedure follow RANSAC after a model has been detected.

However a problem arises: should we remove the data identified as inliers after

Step 2 (cliqued inliers) or after Step 3 (i.e. after the noise standard deviation has

been estimated via (5.13))? We believe that the answer is application dependent:

if we want to reduce the risk of neglecting points that actually belong to a given

model we should remove the inliers that are identified at the end of Step 3. On

the other hand, if we are concerned about false positives (i.e. points that actually

do not fit accurately the model but whose influence is still relevant in the robust

estimation framework) we should consider for removal the “cliqued” inliers at the
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end of Step 2.

5.5 Experimental Results

5.5.1 Line Detection Experiment

The goal of this experiment is to study the effect of the stabilization proce-

dure on the estimation of the parameters in the presence of a large uncertainty

on the noise scale. To this purpose we will evaluate the results obtained from

RANSAC and from the stabilization procedure applied to RANSAC’s results. We

will consider a line on the plane parameterized as θ1x+θ2y+θ3 = 0 under the con-

straint that ‖θ‖ = 1. We will consider four situations where the number of inliers

(points belonging to the line whose coordinates are affected by Gaussian noise

with standard deviation ση) is respectively NI = 200, 150, 100, 50 points. The

final dataset is composed of N = 1000 points and is obtained by adding to the

inliers NO = N −NI outliers uniformly distributed in the square [−1, 1]× [−1, 1].

For every value of NI we will generate 10 different problem instances and for each

problem instance we will run the algorithm 50 times for 5 different values of the

initial estimate of the noise scale: σ̂η = 9ση, 6ση, 3ση, ση, 0.5ση. The results will be

averaged over the entire set of experiments for each value of NI and of σ̂η. For the

sake of visualization of the experimental results, we will consider an equivalent

parameter representation for the line, given by the spherical coordinates of the

vector θ (recalling that ‖θ‖ = 1):

α = arctan
θ2

θ1
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β = arccos θ3

The estimation error E is defined with respect to the ground truth value of each

parameter (e.g. Eα = |α̂ − α|, where the hat indicates the estimated quantity).

To avoid cases where RANSAC in the first place missed completely the line, we

consider only the experiments that produced values for Eα and Eβ that are less

than 0.1 radians.

The results of the experiments are shown in Figures 5.12, 5.13, 5.14 and 5.15.

The plots in (a) display the mean (µEα and µEβ
) of the estimation error of the

parameters, whereas the plots in (b) show the standard deviation of the estimation

error (σEα and σEβ
). Both the mean and the standard deviation are plotted versus

the initial estimate of the noise scale (which is expressed in terms of multiples of

the true noise standard deviation ση). The red triangle-marked line represents

the results obtained from RANSAC (without robustification), the green square-

marked line the results obtained by estimating the parameters using least squares

applied to the Minimal Sample Sets (MSS) identified at the end of the second step

of the stabilization procedure and the blue circle-marked line the results at the end

of the whole robustification procedure. The percentage that is associated with the

markers in plots (a) indicates how many experiments have been discarded because

the error E was greater than 0.1 radians (each point is calculated averaging 50 runs

of the algorithms for 10 different problem instances, for a total of 500 experiments).

When the percentage is omitted none of the experiments has been discarded.

The experiments show that the robustification procedure greatly reduces the

bias of the parameter estimates and the bias standard deviation especially when

the noise scale is considerably overestimated. Moreover, for a given noise scale,
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Figure 5.12: The plots in (a) display the mean (µEα and µEβ
) of the esti-

mation error of the parameters, whereas the plots in (b) show the standard
deviation of the estimation error (σEα and σEβ

). Both the mean and the stan-
dard deviation are plotted versus the initial estimate of the noise scale (which
is expressed in terms of multiples of the true noise standard deviation ση).
The red triangle-marked line represents the results obtained from RANSAC
(without robustification), the green square-marked line the results obtained by
estimating the parameters using least squares applied to the MSSs identified
at the end of the second step of the stabilization procedure and the blue cir-
cle-marked line the results at the end of the whole robustification procedure.
In this experiment the number of the inliers was NI = 200.
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Figure 5.13: See Figure 5.12 for a description of the plots. In this experiment
the number of the inliers was NI = 150.
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Figure 5.14: See Figure 5.12 for a description of the plots. The percentage
that is associated with the markers in plots (a) indicates how many experiments
have been discarded because the error E was greater than 0.1 radians (each
point is calculated averaging 50 runs of the algorithms for 10 different problem
instances, for a total of 500 experiments). When the percentage is omitted
none of the experiments has been discarded. In this experiment the number of
the inliers was NI = 100.
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Figure 5.15: See Figure 5.12 for a description of the plots. In this experiment
the number of the inliers was NI = 50.
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the benefits of the robustification procedure are more relevant when the number

of the inliers is smaller. The robustification procedure performance degrades for

values of the noise scale that are close to the ground truth. From the graphs

it follows that it is actually convenient to overestimate the noise scale provided

that the initial set of inliers contains a sufficiently large subset of elements that

actually belong to the true model.

5.5.2 Line Intersection Experiment

The goal of this experiment is to study the effect of the stabilization procedure

on the discrimination of “close” models in the presence of a large uncertainty

on the noise scale. To this purpose we will compare two sets of results. The

first ones are obtained from the recursive application of RANSAC to the initial

dataset followed by the removal of the inliers after a model has been identified.

The second results are obtained using the same approach with the only relevant

difference that RANSAC is followed by the robustification procedure. The dataset

is composed of two lines that intersect forming an angle φ that in our experiments

is either 9◦ or 6◦ (the smaller is φ the closer are the models). We considered a

number of inliers for each line which is either 100 or 75 points. The final dataset

is composed of N = 1000 points adding to the inliers NO = N − NI outliers

uniformly distributed in the square [−1, 1] × [−1, 1]. An example of the dataset

we consider in the experiments is given in Figure 5.16.

The results of the experiments are shown in Figures 5.17, 5.18, 5.19 and 5.18.

The plots in (a) display the mean (µEα and µEβ
) of the estimation error of the

parameters averaged over the two models, whereas the plots in (b) show the stan-
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Figure 5.16: An example of the dataset used for the line intersection exper-
iment. Each line contains 100 points and they intersect forming an angle of
9◦.

dard deviation of the estimation error (σEα and σEβ
, again averaged over the two

models). Both the mean and the standard deviation are plotted versus the initial

estimate of the noise scale (which is expressed in terms of multiples of the true

noise standard deviation ση). The red square-marked line represents the results

obtained from the sequential application of RANSAC (without robustification),

the blue circle-marked line the results obtained from the sequential application

of RANSAC (with robustification). Also in this experiment the percentage that

is associated with the markers in plots (a) indicates how many experiments have

been discarded because the error E was greater than 0.1 radians (each point is

calculated averaging 50 runs of the algorithms for 10 different problem instances,

for a total of 500 experiments). When the percentage is omitted none of the

experiments has been discarded.

The experiments confirm the benefits that are obtained by applying the robus-
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Figure 5.17: The plots in (a) display the mean (µEα and µEβ
) of the estima-

tion error of the parameters averaged over the two models, whereas the plots
in (b) show the standard deviation of the estimation error (σEα and σEβ

, again
averaged over the two models). Both the mean and the standard deviation
are plotted versus the initial estimate of the noise scale (which is expressed in
terms of multiples of the true noise standard deviation ση). The red square–
marked line represents the results obtained from the sequential application of
RANSAC (without robustification), the blue circle-marked line the results ob-
tained from the sequential application of RANSAC (with robustification). In
this experiment the number of the inliers for each line was NI = 100 and the
angle between the lines was φ = 9◦.
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Figure 5.18: See Figure 5.17 for a description of the plots. In this experiment
the number of the inliers for each line was NI = 75 and the angle between the
lines was φ = 9◦.
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Figure 5.19: See Figure 5.17 for a description of the plots. In this experiment
the number of the inliers for each line was NI = 100 and the angle between the
lines was φ = 6◦.
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Figure 5.20: See Figure 5.17 for a description of the plots. In this experiment
the number of the inliers for each line was NI = 75 and the angle between the
lines was φ = 6◦.
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tification procedure to the estimates obtained from RANSAC: similarly to what

happened in the line detection experiments, as long as the noise scale is overes-

timated, the robustification procedure greatly reduces the bias of the parameter

estimates and the bias standard deviation.

5.5.3 Multiple Homographies Experiment

This experiment is similar in spirit to the experiment described in Section

5.5.2. In this case we want to study how the robustification procedure performs

in the presence of multiple instances of more complicated models. To this purpose,

we will consider the planar homographies ([51], p. 87) induced by the checkerboard

patterns displayed in Figure 5.21. The use of checkerboard patterns was meant

to facilitate the task of the feature tracker, so that we could obtain a reasonably

dense and uniform distribution of point features over the planar portions of the

image. On the other hand, the checkerboards were deliberately arranged in a

challenging way, so that the angle formed by the plane normals is relatively small

and the structures are spatially close to one another.

Since we do not know the ground truth for the parameters, we will evaluate

the performance of the algorithm in terms of its capability to group together point

features that undergo the same motion (motion segmentation). Let’s indicate with

DI,i the set of inliers relative to the ith homography and with D̂I,i the set of inliers

determined by the sequential application of RANSAC at the ith step (followed or

not by the robustification procedure). First we will identify the index pair that

corresponds to the two sets that have the largest number of elements in common.
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More precisely, D̂I,i∗(j) is associated with DI,j if:

i∗(j) = argmax
1≤i≤W

|D̂I,i ∩DI,j|
|DI,j|

where W is the total number of models. Then for 1 ≤ j ≤ W we will define the

percentage of correctly detected inliers as:

Cj =
|D̂I,i∗(j) ∩DI,j|
|DI,j|

100 (5.19)

and the percentage of wrong inliers as:

Bj =

(
1−
|D̂I,i∗(j) ∩DI,j|
|D̂I,i∗(j)|

)
100 (5.20)

Note that the denominators of the two expressions are different: this is because

in expression (5.19) we want to measure what percentage of the “true” inliers are

correctly identified, whereas in (5.20) we measure the percentage of points that

have been associated with the wrong planar region.6 When D̂I,i∗(j) ≡ DI,j we

have that Cj = 100% and Bj = 0%.

The experiments have been carried out averaging the results of 50 runs of the

algorithm on two checkerboard sequences and the results are displayed in Figures

5.22 and 5.23. In both experiments the MSS sampling was guided by the pro-

cedure illustrated in Figure 5.11 (we set L = 20 pixels and l = 10 pixels). For

the sequential RANSAC without robustification procedure we studied the perfor-

mance of the algorithm for σ̂η = 0.25, 0.5, 1, 1.5 pixels. When the robustification

procedure was enabled we considered the following values for the noise standard

deviation: σ̂η = 1, 2, 3, 4, 5 pixels. We choose different intervals for σ̂η because

6It may happen that some points fit a certain homography even if they do not belong to the
portion of the image that induced such homography. However we consider this situation to have
a negligible impact on the evaluation of the overall performance of the algorithm.
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Figure 5.21: An example of the dataset used for the homography detection
experiment. There are four homographies induced by the feature points gen-
erated by the checkerboard patterns. Features belonging to the same planar
region are displayed with markers with the same shape and color.

large values of the noise standard deviation will not produce meaningful results

if the robustification procedure is not enabled (as shown by the plots in Figures

5.22(b) and 5.23(b), RANSAC performs very poorly when σ̂η becomes larger or

equal than 1).

From the experimental results we observe that sequential RANSAC with no

robustification is very sensitive to the selection of the noise threshold. On the other

hand, the robustification procedure makes the results more stable across a larger

set of values for the noise standard deviation. This behavior was anticipated by the

results obtained in the synthetic experiments, and also the fact that overestimating

the noise scale produces better results. Moreover the experiments support the

claim made at the end of Section 5.4: to obtain larger values of Cj it is advisable

to remove the inliers identified at the end of Step 3 and to reduce the value of Bj

it is better to remove the inliers identified at the end of Step 2.
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Figure 5.22: Experimental results for the segmentation of the coplanar point
features in the first Checkerboards image pair. Plot (a) shows the mean value
of Cj and plot (b) shows the mean value of Bj for 1 ≤ j ≤ 4 for different
values of the noise scale. The red triangle-marked line displays the results
obtained applying sequentially RANSAC not followed by the robustification
procedure. The green square-marked line displays the results obtained applying
sequentially RANSAC followed by the robustification procedure and with the
removal of the “cliqued” inliers, whereas the blue circle-marked line is obtained
removing the inliers identified using the noise scale estimate obtained in the
third step of the robustification procedure (see (5.13)).
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Figure 5.23: Experimental results for the segmentation of the coplanar point
features in the second Checkerboards image pair. See Figure 5.22 for the ex-
planation of the plots.
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5.6 Conclusions and Future Work

In this chapter we presented an algorithm that is able to improve the unbi-

asedness of the parameter estimates obtained from RANSAC, especially in cases

where there is a large uncertainty regarding the standard deviation of the noise

that contaminates the data and multiple model instances are present.

As described in Section 5.3, the robustification procedure is composed of three

steps. First a Minimal Sample Set (MSS) voting procedure aims at identifying the

MSSs that produce parameter estimates that are unlikely to happen by chance.

Then, in the second step, the MSSs that instantiate different models are grouped

together. This is done by introducing a new pseudo distance measure for model

similarity (5.8) and by reducing the model clustering problem to the problem of

identifying the maximum clique of a graph. Finally, in the third step, robust esti-

mators are used to both estimate the noise standard deviation and the parameters

of the models.

As discussed in Section 5.4, the procedure generalizes quite straightforwardly

for models of different complexity. However we believe that the selection of the

histogram threshold in the first step of the robustification procedure deserves

further investigation. In particular we would like to study how the Helmholtz

principle and the concept of meaningfulness (which have been intensively studied

by Desolneux, Lisani et al. [73, 27] and have been applied to several image anal-

ysis problems) could help in automatically analyzing the structure of the error

histogram.

We have shown that the robustification procedure improves the estimates of

the homographies that relate planar structures in image pairs. However we are
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aware that the procedure should be tested on larger sets of images (containing pla-

nar structures). This is to verify the performance of the robustification framework

when the distribution of the point features is non isotropic and the impact of the

camera distortions is not negligible. More generally, we advocate a thorough study

of the identifiability and distinguishability of the models that describe the geo-

metric transformations that are induced by camera motions in image registration

scenarios.
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Chapter 6

Applications

“What is the tangible output?”

B. S. Manjunath

This chapter contains an overview of the algorithms developed in the previous

chapters integrated into a registration and mosaicking system. Using the frame-

work developed in Chapter 2, we introduce the concept of characteristic structure

of a point neighborhood and show how it can be used to improve the detection of

matching points between image pairs related by large scale variations. We then

devote our attention to the development of a set of techniques to obtain a seamless

mosaic of the registered images. The contributions contained in this chapter can

be summarized as follows:

• We apply the framework based on condition theory to identify the charac-

teristic structure of a point neighborhood and show how this can be used

to establish matches between images related by large scale variations (see

Section 6.1).
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• We explore the possibility of using indexing and dimensionality reduction

techniques to speed the computation of tentative image correspondences

(see Section 6.2.1).

• We introduce a novel robust equalization procedure to correct the photo-

metric appearance of two images that are to be fused together (see Section

6.2.2).

• We present a physically motivated algorithm to calculate the best stitching

line between registered images (see Section 6.2.3).

6.1 Point Neighborhood Characteristic Structure

Detection

Many early vision tasks are performed by processing the intensity information

in the neighborhood of an image point. Examples of these tasks include the

detection of reference or tie points, the construction of robust descriptors [92, 39,

50, 98, 106, 116, 112, 5, 59, 87, 63, 129, 74] for applications such as tracking and

correspondence, image identification and retrieval. To develop algorithms that

behave consistently despite changes in the viewing conditions such as translations,

rotations, scalings or perspective distortions, it is crucial to automatically identify

the characteristic structure of the neighborhood of an image point. For example,

given a corresponding point pair in two images related by rotation and scaling,

the corresponding point neighborhoods should be rotated and scaled by the same

amount. Lowe [74] recently proposed a point detector robust with respect to
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relevant image projective transformations. Kadir et al. introduced in [59] the

concept of image saliency and used it to identify the characteristic scale about

an image point. Baumberg [5] and Mikolajczyk et al. [87] presented an iterative

procedure to detect point neighborhoods despite the affine distortions of the image.

Both approaches largely draw from the image scale space theory (mainly developed

by Florack [36] and Lindeberg [70, 71]) to identify the characteristic structure

of the neighborhood of a point. One of the most important ideas proposed by

Lindeberg is the principle for automatic scale selection (see [71], p. 83):

In the absence of other evidence, assume that a scale level, at which

some (possibly non-linear) combination of normalized derivatives as-

sumes a local maximum over scales, can be treated as reflecting a

characteristic length of a corresponding structure in the data.

In the literature several derivative based functions have been proposed to identify

the characteristic scale of an image [85], such as the gradient magnitude, the

image Laplacian, the difference of Gaussians and the Harris function. In this

section, we will propose as evidence of the characteristic structure of a point

neighborhood the local minima of a function that measures the computational

stability of the neighborhood itself (or, more intuitively, how much the intensity

pattern in the neighborhood preserves its structure under the effect of noise).

As foreseen by Lindeberg, such a function is expressed in terms of a nonlinear

combination of the derivatives of the image intensities. One interesting observation

about our formulation is that it supports the principle proposed by Lindeberg

within a mathematical framework and with no need for any heuristics. In Section

6.1.1 we shall show how suitable combinations of image derivatives are indeed
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fundamental evidences that reveal the characteristic structure of a (circular) point

neighborhood.

This section is organized as follows: Section 6.1.1 will specialize and extend

the results described in Chapter 2 to identify the characteristic radius of a circular

neighborhood. The experimental results and the applications of this method will

be presented in Section 6.1.2 and some concluding remarks will be presented in

Section 6.3.

6.1.1 Detecting the Characteristic Structure

The definition of the condition number in Section 2.4.1 is the fundamental

building block for the principle we propose to reveal the characteristic structure

of a point neighborhood. This can be stated as follows:

The intensity pattern of a generalized image in a neighborhood Ω(x)

reflects the characteristic T -structure of the image about x if the con-

dition number KTθ,x
(Ω(x)) is minimized for local perturbations of the

neighborhood itself.

Note that the notion of characteristic neighborhood is intimately related to the

geometric transformation Tθ,x that is chosen to model the effects of the noise. We

can give a formal definition of the T -characteristic neighborhood as follows:

Definition 6.1.1 The T -characteristic neighborhood of a generalized image I

about a point x is defined as:

Ω̂(x)
def
= argmin

δΩ
K̂Tθ,x

(Ω(x) + δΩ) (6.1)

where δΩ represents a local perturbation of the neighborhood.
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To translate the previous principle into a computational algorithm, we need

to specify how the neighborhood is parameterized and the functional form of

the geometric transformation that models the effect of the noise. These two

choices represent a tradeoff between complexity and accuracy: neighborhoods

with many degrees of freedom and transformations described by many parame-

ters can model precisely the effects of the noise but they are difficult to handle

and do not lead to efficient implementations. For the time being we will fo-

cus our attention on circular neighborhoods that can be simply parameterized as

Ωr(x) = {y : ‖x− y‖ ≤ r} where r represents the radius of the neighborhood.

The transformation we will consider is intended to model the perturbations pro-

duced by the noise in the scaling, rotation and translation of the intensity pattern

of an ordinary image (n = 2):

Tθ,x(y) = x+

 θ3 −θ4

θ4 θ3

 (y − x) +

 θ1

θ2

 (6.2)

Intuitively one would expect the quantity that measures the stability of a

given neighborhood to be invariant with respect to a certain class of geometric

transformations, such as those that are used to model the influence of the noise. In

general this fact does not follow from the algebraic properties of the Generalized

Gradient Matrix (GGM), as extensively discussed in 2.5.1 and in Example 2.5.3,

but this difficulty can be overcome by mapping the neighborhood Ω(x) onto a

normalized neighborhood.
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Some Numerical and Computational Considerations

To compute the condition number (B.1) we need to decide which norm has

to be used. Some of the consequences of this choice have been explored (for

slightly different purposes) in [140, 64] and discussed in Chapter 2 in relation

to the Spectral Generalized Corner Detector Functions (SGCDF). Here we will

analyze two alternatives, outlining their advantages and disadvantages.

The first option is to let q →∞. It follows immediately that ‖M‖∞,Schatten =

limq→∞ ‖M‖q,Schatten is equal to the largest singular value ofM , i.e. σ1(M). Conse-

quently, since the first min{h, k} singular values of the pseudo inverse of a matrix

M are the reciprocal of the singular values of M , the condition number computed

via the ∞-Schatten norm is given by:

K̂Tθ,x
= max

1≤i≤p
σi(A

†) = max
1≤i≤p

1

σi(A)
=

1

min1≤i≤p σi(A)
=

1

σp(A)

(where A is the GGM and p = 4 for the transformation (6.2)). This norm

measures the maximum distortion produced by the noise in the intensity pattern

in Ω(x). The worst scenario happens when the noise “tweaks” the singular vector

corresponding to σp, i.e. when uT
i η = 0 for every i 6= p and uT

p η = ‖η‖ (where ui

denotes the ith left singular vector of A and vi denotes the ith right singular vector).

In fact, as it follows from equation (2.20) in the proof of Theorem 2.4.2, we can

write that ∆θ = −A†η = −
(∑p

i=1
1
σi
viu

T
i

)
η ∝ 1

σp
vp, i.e. the effect of the noise

is maximally amplified along the affine space θ + 〈vp〉 in the parameter space. If

we make the assumption that the components of the vector η are i. i. d. Gaussian

variables, then η ∼ N (0, σ2
ηI). Since linear transformations of jointly Gaussian

vectors are still jointly Gaussian vectors and A†
(
A†
)T

= (ATA)−1, then from
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∆θ = −A†η it follows that ∆θ ∼ N
(
0, σ2

η(A
TA)−1

)
. This result is consistent

with the observation that on average the perturbation of the parameters is zero

and justifies the choice of defining the condition number (2.14) in terms of the

supremum of the ratio between ‖∆θ‖ and ‖η‖.

The second option is to let q → 0. As shown in Theorem 2.5.8, we can write:

lim
q→0

1
q
√
p
‖K̂Tθ,x

(Ω(x))‖q,Schatten =
1

det(ATA)
1
p

(6.3)

This observation has a crucial importance to alleviate the computational burden

associated with the calculation of the condition number (B.1) for the geometric

transformation (6.2). In fact its value can be simply obtained by raising the de-

terminant of a 4 × 4 symmetric matrix to the power −1/p. Identity (6.3) makes

it possible to compute a dense map of the condition number for different values

of the neighborhood radius r, in a way that resembles the pyramidal approach

described in [74]. The right hand side of equation (6.3) is deeply connected with

the corner detector proposed by Rohr (and compared in [107] with other detec-

tors): maximizing the determinant of ATA is equivalent to minimize the condition

number and therefore it allows one to identify the characteristic dimension of the

neighborhood.

The Algorithm: Design Issues and Practical Implementation

We will now describe some of the practical issues that arise in the implemen-

tation of the ideas discussed before. Recall that the ultimate goal is to find points

of local minimum for the condition number (B.1).

In our implementation the neighborhood Ωr(x) (of radius r) is warped on a

unit circle sampled with resolution ∆ (see Figure 2.6). The image derivatives
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are computed convolving the image with the derivatives of Gaussian kernels, as

suggested in [36, 70]. The weighting function that we used to compute (2.17) is a

raised cosine that only smooths the intensities values at the boundaries of Ωr(x).

We opted for this function rather than for a traditional Gaussian to guarantee that

the points inside the region Ωr(x) are equally weighted. The analytical expression

of w is given by:

w(yi − x) =


1, for ‖yi − x‖ ≤ r − δ

1
2
cos
[

π
2

(
‖yi−x‖

δ
+ 1− r

δ

)]
+ 1

2
, for r − δ < ‖yi − x‖ < r + δ

0 for ‖yi − x‖ ≥ r + δ

where δ denotes the transition band.

The condition number is calculated for different values of the neighborhood

radius. The radii sequence is constructed in such a way that the ratio between two

consecutive values of r is always equal to ρ (i.e. r(w) = ρwr̄ where −W ≤ w ≤ W

and r̄ is a reference radius). The choice of the values forW and ρ is task dependent.

For example, suppose we have two images where one is a scaled version of the

other and we want to detect the radius of the characteristic neighborhood for two

corresponding points. Then W and ρ should be selected to ensure a minimum

overlap between the radii intervals for a given scaling factor s > 1. From Figure

6.1(a) it can be inferred that the overlap percentage between two radii intervals

is:

Overlap Percentage =
Minimum Overlap

Radii Interval Length
=

ρW r̄ − ρ−W sr̄

sr̄ (ρW − ρ−W )
=

ρ2W − s
s (ρ2W − 1)

(6.4)

This function is plotted in Figure 6.1(b) for ρ = 1.05 and 1 ≤ W ≤ 22: if the
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Figure 6.1: (a) This image illustrates pictorially the overlapping (showed in
green) between the radii intervals (thick red continuous and dashed lines) for
two scaled images I and I ′. (b) The plot shows how the overlapping percentage
varies as a function of the image scaling for a fixed value of ρ and different values
of W . As expected, for a fixed W , the smaller the scaling factor the larger the
overlap percentage.

scaling factor is s ≈ 2.0 then for W = 22 the overlap percentage is about 45%.

Since we can detect the same characteristic dimension for two scaled versions of

the neighborhood only if the condition number has a minimum in the overlapping

interval, then W and ρ should be chosen according to the expected scaling factor

between the images. A common way to tackle this problem is to have an initial

estimate of r̄′ = sr̄ (analogously to what is done in [86]). Figure 6.2 shows an

example of the condition number curve for two corresponding points of an image

that has been scaled by a factor s = 2.0. As far as the speed of the proposed

scale detector is concerned, our research-oriented implementation takes about 0.09

seconds to compute 45 values of the condition number for a given image point on

a 2.4GHz Pentium 4.
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Figure 6.2: (a) The point x is indicated by the (red) dot pointed by the thick
arrow. (b) The inverse of the condition number for the original image and its
scaled version (q = 0, ∆ = 40). The ratio between the points of maximum
is 55.72

28.14 ≈ 2.0. The fluctuations in the overlapping intervals of 1/K̂Tθ,x
are

consequences of discretization and numerical approximation. The solid curve
is the smoothed version of the original dashed curve.

Finally an important remark regarding the numerical stability of K̂Tθ,x
. As

discussed before, the estimate of the condition number is a function of the singular

values of the matrix A(Ω(x)), which are affected by the perturbations of the

matrix coefficients (see [53], p. 419). In practice we observed that the singular

values of A (and hence K̂Tθ,x
) are noticeably affected by the orientation of the

discretization grid used to warp the region Ω(x) on the unit circle (especially

when the resolution of the discretization grid is small). To alleviate this problem

we align the discretization grid for each value of r to the direction of the average

intensity gradient of the image region Ω(x) computed over all the image channels.

The condition curves are also smoothed with a Gaussian low pass filter that limits

the occurrence of spurious maxima.
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6.1.2 Experimental Results

In this section we carry out a set of experiments to validate our approach

to detect the characteristic radius of a point neighborhood. Our results will be

compared with the scale detection method based on the local maxima of the im-

age Laplacian that in [85] was shown to give the best results. However, before

presenting the quantitative results, we would like to give a qualitative proof of

concept for our approach by identifying the characteristic radii for a set of cor-

responding points manually picked for two image pairs related by a scaling (see

Figure 6.3). The characteristic radii correspond to the minimum value attained

by the 0-Schatten norm condition number for values of r in the interval [6.8, 58.5]

pixels (in this experiment ρ = 1.05). The neighborhood dimensions appear to be

consistent with the structure of the intensity they enclose: the intensity pattern

reveals the position, the orientation and the scale despite the possible perturba-

tions introduced by the noise.

Synthetic Experiments

Starting from 7 different natural images whose dimensions are 800× 600 pix-

els, (6 of them are shown in Figure 3.1) we synthesized for each one of them a

set of 8 new images related to the original ones via an arbitrary rotation and

a scaling (logaritmically spaced in the interval [1, 4]). We detected a set of Np

points (about 103) in the original image using the Shi-Tomasi detector [116] and

we generated the corresponding point pairs using the transformation that relates

the original image to each new synthesized version. The characteristic neigh-

borhood of every point was calculated using both the algorithm outlined in Sec-
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Figure 6.3: These two figures show the characteristic neighborhoods (repre-
sented by bright circles) identified by the algorithm described in Section 6.1.1
for a set of points chosen manually (c = 0, ∆ = 40). Qualitatively, the dimen-
sion of the neighborhoods varies consistently with the scale of the image and
it defines a distinctive region whose orientation, translation and scale can be
easily identified despite the perturbations due to the noise. The low resolution
image of the bottom pair generates multiple characteristic radii for each point;
however the smaller ones match the radii identified in the higher resolution
version of the same image (as shown by the dashed lines).
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tion 6.1.1 (Condition Number Detector (CND)) and the algorithm based on the

image Laplacian that associates the characteristic radii to the local maxima of

L(Ω(x)) =
∑
y∈Ω(x)w(y − x)

∣∣∣∑m
j=1

∑n
i=1

∂2Ij

∂y2
i
(y)
∣∣∣ (Laplacian Detector (LD)).

For each corresponding point pair we computed a measure that quantifies the

relative discrepancy between the true scaling and the estimated scaling according

to:

Ei
def
= min

1≤k≤Nr

1≤h≤N ′
r

1

s

∣∣∣∣∣s− r
(h)
i

r
′(k)
i

∣∣∣∣∣ (6.5)

where Nr (respectively N ′
r) indicates the number of characteristic radii ri (respec-

tively r′i) detected for the point xi (respectively x′i). In our experiments we choose

Nr = N ′
r = 2 (only the smallest two minima of the CND were considered, or, in

the case of the LD, the best two maxima). For each image set we plotted the

percentage of points whose error (6.5) was less than 5, 10 and 15 percent versus

the scaling. All the experiments were carried out using gray level images and the

following parameters: ρ = 1.05, W = 22 and r̄ = 20. As far as the CND/LD

were concerned, we set c = 0 and ∆ = 20.

The results of the experiments are summarized in Figures 6.4(a, b) and 6.5(a).

Each curve plots the percentage of points with a relative error (6.5) less or equal

than the percentage threshold TE versus the image scaling factor. Over the set of

considered images, the CND (continuous line) performs consistently better than

the LD (dashed line). This observation remains valid also in the presence of

Gaussian perturbations of the position of the point x (see Figure 6.4(b)) and of

Gaussian perturbations of the image intensity (see Figure 6.5(a)). In the noise free

experiment the CND did not detect a characteristic scale for 12% of the points,

whereas the LD for 8% of the points (the percentages are averaged over all the
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Figure 6.4: Figure (a) compares the performance of the CND versus the LD
for different values of TE . Figure (b) compares the performance of the CND
versus the LD for TE = 10% and different perturbations of the point position
x.
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Figure 6.5: Figure (a) compares the performance of the CND versus the LD
for different perturbations of the image intensity. Figure (b) compares the
performance of the CND versus the LD over a set of real images related by
transformations that can be approximated by a rotation, a translation and a
scaling. All the curves are drawn for TE = 10%.
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scales).

Real Imagery Experiments

Figure 6.5(b) displays the performance of the detectors on three groups of

natural images (namely Bark, Boat and UCSB), where each group contains six

views related by a known homography that can be approximated with a rotation, a

translation and a scaling. The performance of the CND is overall still better than

the LD’s one, even though a lot of factors that were not modeled in the synthetic

experiments (such as projective distortions and non rigid scene changes) tend to

reduce the differences between the detectors. We hypothesize that the different

performances for the considered image sequences can be explained as follows. The

Bark images (for which the difference between the detectors is more evident) are

accurately related by a Rotation Scaling and Translation (RST) transformation

and closely reflect the experimental conditions of the synthetic experiments. The

manmade structures that characterize the UCSB sequence tend to facilitate the

job of the detectors and consequently to reduce the differences in their perfor-

mances (especially for larger scalings). Finally we identify the Boat sequence as

the most challenging one, since the RST model is a just crude approximation of

the transformation that relates the images. Small changes in the camera position

originate projective effects that are not always captured by a simple RST model.

Moreover the objects composing the scene do not always satisfy the rigid motion

constraints. The effects induced by the RST approximation become non negli-

gible at larger scalings, when the performance of the detectors decreases at the

same rate.
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Figures 6.6 and 6.7 show some examples of point correspondences that fit an

homographic model between images related by large scalings. The point descrip-

tors are calculated over the characteristic neighborhoods. In the top image, the

color of the lines connecting the corresponding points indicates the fitting error:

red indicates larger errors, green smaller errors. The bottom image displays the

quality of the alignment: red or blue areas in the overlapping portion of the images

indicate the presence of alignment errors, whereas levels of gray indicates that the

alignment is accurate.

6.1.3 Comments

We presented a theoretical framework to detect the characteristic structure of

a point neighborhood. Our theory, whose foundations where laid in Chapter 2, is

general, in the sense that it applies to multichannel images whose spatial dimen-

sion can be greater than 2. During our experiments we noticed that our approach

did not benefit much from the use of multiple channels, at least for natural im-

ages, where the RGB channels are highly correlated. This is consistent with the

experimental results obtained in Chapter 3. However we believe that considering

the information of multiple channels could become crucial when dealing with im-

ages acquired using multiple sensors (where the channels are highly uncorrelated).

The condition number based detector performs consistently better than the state

of the art scale detector based on the signature of the image Laplacian. Our fu-

ture work aims at extending our algorithm within the proposed framework, by

considering affine transformations to model the effect of noise and the geometric

relations between the images. We believe that such an extension could provide a
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Figure 6.6: The top images display the point correspondences fitting an homo-
graphic model between two images of the Bark sequence related by an approxi-
mate scaling s = 2.4. The color of the lines connecting the corresponding points
indicates the fitting error: red indicates larger errors, green smaller errors. The
bottom image displays the quality of the alignment: red or blue areas in the
overlapping portion of the images indicate the presence of alignment errors,
whereas levels of gray indicates that the alignment is accurate.
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Figure 6.7: The images show the correspondences fitting an homographic
model between two images of the Boat sequence related by an approximate
scaling s = 2.2. Note the registration artifacts due to non rigid motions in the
scene. See the caption of Figure 6.6 for more details regarding the meaning of
the images.
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principled method for region adaptation algorithms that limits the need to resort

to empirical and heuristic considerations.

6.2 Image Registration and Mosaicking

In the last few years the quest for robust and efficient algorithms to register

several images to the same coordinate system and to create large seamless pho-

tomosaics has prompted an intensive research that has been summarized in some

remarkable papers [122, 13, 94] and has originated a few commercial applications

[82, 84, 83, 28, 17, 104, 34, 22]. In this section we will describe how the frame-

works developed in the previous chapters can be integrated in a simple registration

system and we will develop a set of tools to obtain seamless mosaicks.

6.2.1 Estimating the Transformation Between Images

As mentioned in the introduction, image registration is the process of aligning

two or more images to a coordinate system that is coherent with the three dimen-

sional structure of the scene. There are several transformations that can be used

to model the geometric distortion that relates an image pair, such as translations,

scalings, rotations, affine and projective mappings. Scene depth discontinuities

and self occlusions complicate the task of registering together a set of images,

since in general is not possible to obtain a result that is completely coherent with

the 3D structure of the scene without explicitly or implicitly estimating its 3D

geometry [51, 78]. On the other hand there are several situations where, under

relatively mild assumptions, it is still possible to align the images so that the 3D
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structure of the scene is well approximated. In particular if the camera is far

from the imaged objects (where far is relative to the camera focal length) and

the scene is essentially planar (so that the depth discontinuities are small with

respect to the average distance of the scene from the camera optical center), then

an homographic model can describe faithfully the mapping between images. An

homography is a non singular linear transformation in the projective space and

it can be estimated via the DLT algorithm ([51], p. 88) starting from a set of

point correspondences on the camera image plane (the cameras do not need to be

calibrated beforehand). The problem of estimating homographies is understood

very well and the DLT algorithm can be easily embedded in a RANSAC frame-

work that allows one to deal with large quantities of outliers or pseudo outliers,

as discussed in Chapter 5. In this section we will focus our attention on how to

establish correspondences among the feature points detected using the methods

discussed in Chapter 2.

Establishing Tentative Correspondences

Tentative correspondences between an image pair are established by finding

those point pairs whose descriptor distance is minimal. An extensive survey of

descriptors constructed processing the intensity information in the neighborhoods

of the points can be found in [88].

In our current system we use the same descriptor introduced by Lowe [74]

within the SIFT framework. Using the methods described in Chapter 2 and in

Section 6.1.1 we can associate with each point x a characteristic circular neighbor-

hood Ωr(x) (where r denotes the characteristic radius). The dominant gradient
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direction obtained from equation (2.32) defines the orientation φ of the neigh-

borhood. Using this information we create the N2
H square patches as shown in

Figure 6.8(a). For each patch we construct the histogram Hi that describes the

angular distribution (quantized in Nbins bins) of the image gradients weighted

by their magnitude. Such histograms capture the rough spatial structure of the

patch. The gradient values (that are obtained by convolving the image patch

with the derivatives of Gaussian filters) are sampled on a lattice composed of

N2
s points uniformly distributed over the patches. To improve the robustness of

the descriptor in presence of misalignments or projective image distortions, the

gradient magnitudes are modulated by a Gaussian weighting function (see Figure

6.8(b)). Further, the histograms are smoothed by convolving them with a Gaus-

sian low pass filter and normalized so that the vector formed with their entries

has a unitary Euclidean norm. The components whose value is larger than TH are

finally clamped to TH . The final descriptor is formed concatenating the resulting

histograms:

F (Ωr(x)) =

[
H̄1 . . . H̄NH

]T

(6.6)

where H̄i indicates the histogram constructed for the ith patch after weighting,

smoothing and clamping. Table 6.1 shows the values of the parameters used

in our implementation; it follows that the final descriptor has N2
HNbins = 128

components.

A correspondence is established when the distance between the descriptors is

the minimum among all the possible pairings of points belonging to the image I

and to the image I ′. If not accurately designed, the search of the nearest neighbors

can rapidly become computationally very intense, since it requires the evaluation
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Figure 6.8: Figure (a) shows the arrangement of the square patches that
are used to compute the histogram that compose the descriptor. In this case
NH = 4 and Ns = 4. Figure (b) shows how the samples are weighted to improve
the descriptor robustness in presence of region misalignments or projective
distortions; the larger and brighter is the square marker associated with each
sample, the higher is the corresponding weight.

of NPN
′
P Euclidean distances between 128 dimensional vectors, where NP and

N ′
P are the number of feature points computed respectively in I and I ′ (typical

values are in the order of thousands). We mitigated this problem by resorting to

dimensionality reduction and kd-tree based indexing.

• Dimensionality Reduction. We reduce the dimensionality of the descrip-

tors (6.6) by applying the principal component analysis (PCA). The PCA

covariance matrix is computed using 3289 descriptors obtained from natural

images. Figure 6.9 shows the first 12 principal components that are used to

carry out the projection. In our system we reduced the dimensionality of

the descriptors to 32 components.

• kd-tree Based Indexing. The purpose of kd-tree structures [91] is to
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Parameter Description Symbol Value Units

Neighborhood radius r N. A. pixels
Number of histograms per edge NH 4 N. A.
Number of samples per patch edge Ns 4 N. A.
Number of histogram bins Nbins 8 N. A.
Standard deviation of the overall weight σW

2
3

r
Standard deviation of the differentiation filter σD

1
9

r
Standard deviation of the smoothing filter σS 1 bins
Components threshold TH 0.2 N. A.

Table 6.1: Summary of the parameters used to implement the descriptors used
in the SIFT framework and described in Section 6.2.1.

decompose the descriptor space into a set of relatively small number of cells

containing only a few descriptors (or, equivalently, only a few feature points).

Hence a kd-tree data structure provides a fast way to identify the nearest

neighbor of a query and consequently to establish a point match even when

the search space has a large dimensionality. This happens by traversing the

tree from the root to the leaves until the cell containing the nearest neighbor

is identified. The process is completed by scanning all the descriptors in the

cell to identify the one closest to the query.1 Note that this approach bears

a resemblance to the work by Beis et al. [7].

Refining the Correspondences

The tentative set of image correspondences usually contains a large number of

mismatches. This may happen for several different reasons such as:

• bad detection of the point neighborhoods,

1For our system we used the kd-tree implementation by S. Michael [81].
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Figure 6.9: The first 12 principal components that define the basis of the low
dimensional subspace onto which the descriptors are projected.

• presence of photometric and geometric perturbations that deeply modify the

image structure,

• repeating intensity patterns,

• loss of distinctiveness of the descriptors due to the dimensionality reduction

• erroneous detection of the nearest neighbor descriptor using the kd-tree

based indexing.

Even if the RANSAC framework is capable of handling large quantities of outliers,

the number of iterations (and consequently the time) needed to identify the largest

consensus set is roughly inversely proportional to the percentage of inliers. To see

this consider equation (5.6), that returns the probability of obtaining a minimal
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sample set composed only of inliers (rewritten here for sake of convenience):

q =

(
NP,I

k

)(
NP

k

) ≈ (NP,I

NP

)k

whereNP,I indicates the good correspondences out of the total number of tentative

matches NI . Recalling that for x→ 0 we can approximate log(1 + x) with x, the

number of iterations (5.7) becomes approximately:⌈
−
(
NP

NP,I

)k

log ε

⌉
One way to reduce the number of iterations is to limit the search space for the

minimal sample sets (analogously to what was proposed in [130], [60]). This can be

achieved by biasing the probability of selecting the element composing a Minimal

Sample Set (MSS). In our implementation the probability of selecting the pair

(xi,x
′
i) as an element of the MSS is given by:

pi =
1

Z
exp

(
−1

2

d2
i

σ2
dist

)
(6.7)

where di
def
= dist(F (Ωr(xi)),F (Ω′

r′(x
′
i))) is the distance between the descriptors

and Z is a normalization factor that ensures that the probabilities sum to one.

The scaling factor σdist is determined so that the ratio between the probability of

selecting the pair whose descriptors have the smallest distance and the probability

of selecting the pair whose descriptors have the largest distance is equal to ρdist.

In formulæ, if we let Dmin
def
= mini di and Dmax

def
= maxi di, we can write:

σ2
dist =

D2
min −D2

max

2 log ρ

In our implementation we set ρdist = 10−4. Moreover we limit the search for

the elements that form the MSSs to those corresponding point whose probability
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Parameter Description Symbol Value Units

False Alarm Rate (5.4) ε 10−3 N. A.
MSS bias probability ratio ρdist 10−4 N. A.
Point position noise ση 2 pixels
Inlier probability (5.2) Pinlier 0.9 N. A.
Probability threshold TP 0.10 N. A.

Table 6.2: Summary of the RANSAC parameters to identify the point corre-
spondences satisfying an homographic transformation.

(6.7) is larger than TP maxi pi. The other parameters used within the RANSAC

framework are tabulated in Table 6.2.

The combination of robust descriptors and robust estimation methods enables

us to establish image correspondences between pairs that are related by large

geometric distortions even if the model used to describe the camera motion is

very approximate. Some examples of registration in presence of large scaling

between images are shown in Figures 6.6 and 6.7. Figures 6.10 and 6.11 show a

couple of examples where the registration of the dominant planar structure of the

scene is successfully achieved in presence of large perspective distortions.

6.2.2 Robust Image Equalization

In order to construct photorealistic mosaics it is often necessary to correct

the photometric appearance of the images that are to be fused together. In real

life scenarios, brightness and contrast changes occur unavoidably because of the

image formation process and may be originated by several different and concurrent

factors. Some of them are:

• changes of the intensity and of the radiance properties of the light sources,
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(a) (b)
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Figure 6.10: The images show the registration of the facade of a building seen
from different viewpoints (the house of James Joyce in via S. Nicolò, Sonne,
Trieste, Italy). Note that even if the original images are quite noisy and there is
strong projective distortion, our registration procedure is able to find 241 point
correspondences and the final alignment obtained via a planar homography is
very accurate.
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Figure 6.11: The images show the registration of the facade of a Graffiti scene
seen from different viewpoints. Note that even if there is strong projective
distortion, our registration procedure is able to find 78 point correspondences
and the final alignment obtained via a planar homography is very accurate.
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(a) (b) (c)

Figure 6.12: Images (a) and (b) show a pair of images to be mosaicked that
are non equalized. The resulting mosaic is shown in image (c). The red arrow
shows a detail near the stitching line where the different photometric properties
of the images become very evident.

• changes of the mutual position between the light source and the surface of

the objects composing the scene,

• nonlinearities of the sensor response to the incident light.

An example of a photometric variation is illustrated in Figure 6.12. The images

(a) and (b) are acquired modifying the camera sensor properties and this results in

a different visual appearance that becomes very noticeable (see the detail pointed

by the red arrow in Figure 6.12(c)) when the two images are juxtaposed to create

a mosaic2 even though the scene structure is consistent. To compensate for this

undesirable effect we want to estimate a photometric transformation that relates

the intensity value of each channel of the images that are to be mosaicked together.

In the literature several approaches have been proposed to model photometric

variations in context such as: feature detection [129], feature tracking [116, 125, 57]

and area based registration [2, 4]. The main difference between our approach and

2The stitching curve is calculated using the method that will be described in Section 6.2.3.
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the previous methods is that we want to achieve a global photometric compensation

whereas the previous methods compensate the photometric distortion locally. In

some ways our approach resembles the gain compensation procedure introduced

by Brown [13]. The intensity value of each point on the camera image plane is

a function of the portion of light coming from the source that is reflected by the

object surface and is described via the Bidirectional Reflectance Distribution Func-

tion (BRDF, see [40] p. 60 and [77]). The general form of this function is usually

very complex but it can be greatly simplified under the following assumptions:

• surfaces do not fluoresce or emit light,

• the object surface is Lambertian.3

• the light source and the cameras are far from the object surface,

• the object surface is approximately planar,

If we also take into consideration the photometric transformations induced by

automatic gain control of the CCD amplifier, we can relate the image intensity

via the simple affine model:

I ′(x′) = aI(x) + b

Since our goal is to create mosaics that are as realistic as possible, we choose

to work in the YUV color space, that models the human color perception more

faithfully than the usual RGB model. In our algorithm we will also use an affine

3A surface is Lambertian if the incident light is scattered so that the apparent brightness
of the surface remains the same regardless of the observer’s angle of view. For this reason
Lambertian surfaces are also called ideal diffuse surfaces.
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relation to model the distortion of the chrominance components of the image. The

overall model is described by the following set of equations:

Y ′(x′i) = aY Y (xi) + bY (6.8)

U ′(x′i) = aUU(xi) + bU (6.9)

V ′(x′i) = aV V (xi) + bV (6.10)

Given the demanding simplifying assumptions used to derive this model and the

fact that the scene may be not completely rigid (in the sense that objects may

appear or disappear in the overlapping portion of the images), it is necessary to

estimate the parameters of the equations (6.8), (6.9) and (6.10) in a robust fashion

using a paradigm capable of handling large quantities of outliers. Once again we

resort to RANSAC [35].

The implementation of the algorithm is quite straightforward, but there are a

few issues that require special care.

• Aliasing. Consider the limit situation where we want to equalize two

checkerboard images where the intensity alternates from black to white ev-

ery other pixel. Suppose that the images are related by a simple translation:

a registration misalignment of just one pixel will cause the algorithm to map

the intensity of black pixels into the intensity of white pixels and viceversa.

Even though in real life scenarios such a case would be quite pathological, we

guard against analogous situations by performing a low pass filtering of the

images before the sampling to construct the MSSs. This prevents abrupt

intensity variations to bias the estimates of the transformation parameters,

even in the presence of small registration errors.
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• Intensity Saturation. During the image acquisition process, the camera

sensor may saturate, for example in presence of specular reflections. If the

reflections are located in corresponding areas of the images, RANSAC may

identify the largest consensus set with a group of saturated pixels and conse-

quently the affine transformation becomes simply the identity. To mitigate

this problem we discard from the space of the valid MSSs all those sets

containing pixels whose luminance is larger than 0.95 and smaller than 0.05

(given that the luminance is normalized between 0 and 1).

• Computational Complexity. To reduce the computational burden asso-

ciated with the identification of the consensus set it is advisable to subsample

the overlapping area of the images Ωoverlap (see Figure 6.15(c)).

The examples in Figures 6.18(b), 6.13 and 6.14 illustrate the results obtaining

applying the robust equalization technique. The noise threshold to discriminate

inliers from outliers was set to 2.5 · 10−3 (the dynamic range of the YUV channels

is [0, 1]).

6.2.3 Image Stitching

Consider two images I and I ′ that are registered to the same coordinate system

and let Ωoverlap denote the region where the two images overlap. Our goal is to

develop a fast algorithm to identify the best stitching curve in Ωoverlap that will

allow us to juxtapose I and I ′ producing a seamless mosaic. Figure 6.15 illustrates

pictorially the problem.
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Figure 6.13: The figure displays the mosaic result obtained from two views
of Bryce Canyon (image courtesy of G. Pau) without robust equalization (top
image) and with robust equalization (bottom image). The stitching curve is
obtained using the algorithm described in Section 6.2.3. Note how the photo-
metric stitching artifacts are greatly reduced in the bottom mosaic.
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Figure 6.14: The figure displays the mosaic result obtained from two views of
the Grand Circle (image courtesy of G. Pau) without robust equalization (top
image) and with robust equalization (bottom image). The stitching curve is
obtained using the algorithm described in Section 6.2.3. Note how the photo-
metric stitching artifacts are greatly reduced in the bottom mosaic.
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Figure 6.15: The images in (a) and (b) are to be registered with respect to
the same coordinate systems. The overlapping region after the registration is
displayed in (c). Our goal is to find a simple curve that connects xin to xfin

so that the seam between image (a) and image (b) is as little noticeable as
possible.

Constructing the Stitching Curves

In order to fix the ideas, in our discussion we will refer to the image pair

displayed in Figure 6.15. Our goal is to find a curve that connects the points xin

and xfin in such a way that the seam between the images (a) and (b) is as little

noticeable as possible.4 In the next paragraph we will try to formalize this idea.

Suppose that I and I ′ are aligned with respect to the same coordinate system.

We can define the intensity error function for each point in the overlapping area

as:

E(x)
def
= (Gσ ∗ ‖I − I ′w‖) (x)

where x ∈ Ωoverlap, Gσ is a Gaussian smoothing kernel and I ′w denotes the warped

version of image I ′ (so that I ′w(x) = I(x)). Let’s also consider a simple curve

4In general the overlapping area between two registered images can be as complicated as a
convex polygon with six sides if the original images are rectangular and are warped according
to a “physically meaningful” planar homography. However such cases can be treated rather
straightforwardly as extensions of the basic situation illustrated in Figure 6.15.
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that connects the points xin and xfin:

γxin,xfin
: [0, 1] → Ωoverlap

s 7→ γ(s)

such that s is its arclength parametrization, γxin,xfin
(0) = xin, and γxin,xfin

(1) =

xfin. Then the intensity error function integrated along such a curve can be

expressed as:

C(γxin,xfin
)

def
=

∫ 1

0

f(E(γxin,xfin
(s))) ds (6.11)

where f is an appropriate continuous and monotonically decreasing function (of

the intensity error). We can define the minimum cumulative stitching cost at x

as the minimum cost (6.11) achievable among all the simple curves that connect

xin to x:

U(x)
def
= min

γxin,x

C(γxin,x) (6.12)

Then the optimal stitching curve is the curve that minimizes the minimum cumu-

lative stitching cost at xfin, i.e. :

γ∗xin,xfin

def
= argmin

γxin,x

C(γxin,xfin
)

As extensively discussed in [23, 29], the solution of (6.12) satisfies the Eikonal

equation:

‖∇U(x)‖ = f(E(x)) (6.13)

Equation (6.13) describes the propagation of a wave front with speed 1
f(E(x))

at

each point x neglecting reflections. Hence, the optimal stitching curve corresponds

to the path traversed by a wave that propagates starting from the point xin till the

point xfin in the least amount of time. From these considerations it follows that
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Figure 6.16: Brighter colors indicate the points in Ωoverlap for the images (a)
and (b) displayed if Figure 6.15 where the propagation speed of the wave front
is faster. The green path corresponds to the optimal stitching curve γ∗xin,xfin

.

we shall design f so that the wave propagates quickly through areas where the

error is small and slowly where the error is large. This can be obtained choosing:

f(E) =
1

1− 2
π

arctan
(
α E−Emin

Emax−Emin

) (6.14)

where Emax and Emin are respectively the maximum and minimum value of E over

Ωoverlap and α is a positive scalar that regulates the rate at which the speed goes

to zero when the error becomes larger. Such parameter can be set by imposing

that the minimum value of the propagation speed is ρ ∈ [0, 1] times the maximum

speed:

α = tan
π

2
(1− ρ)

In our implementation we set ρ = 10−3. Figure 6.16 shows the speed map in

the overlapping area (for the images in Figure 6.15) calculated using the robustly

equalized intensities of the images. Note how the function (6.14) rapidly saturates

to prevent the stitching curve to traverse locations with large intensity errors.
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Figure 6.17: The the value of U(x) over the overlapping area for the images in
Figure 6.15. Brighter colors indicate that the time needed to the wave front to
propagate from xin to x is larger. The green path corresponds to the optimal
stitching curve γ∗xin,xfin

.

The Algorithm

The stitching algorithm is composed of two steps: first the solution of the

Eikonal equation (6.13) is computed for each x in Ωoverlap using the fast marching

algorithm [115] and then the stitching curve γ∗xin,xfin
is computed.

The fast marching method allows us to compute the solution of the Eikonal

equation (6.13) in O(N log2N) steps, where N is the number of pixels that com-

pose the overlapping area Ωoverlap.
5 Figure 6.17 displays the value of U(x):

brighter colors indicate that the time needed for the wave front to propagate

from xin to x is larger.

In order to determine the best stitching curve between xin and xfin, we finally

need to descend on the surface U(x) from xfin to xin. The descent path is unique,

since it can be shown that U has a convex structure: starting from any point x and

following the gradient descent direction we will always reach xin (as explained in

5In our application we used the fast marching implementation by G. Peyré [103].
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Image 1

Image 2

(a) (b)

Figure 6.18: Figure (a) shows the partition of the overlapping area induced by
the stitching curve. Image (b) shows the final result obtained juxtaposing the
robustly equalized source images (see Figure 6.15(a) and (b)) along the optimal
stitching curve. Compare Image (b) with Image 6.12(c).

[29], U has only one local minimum that, because of the convexity, coincides with

the global minimum U(xin) = 0). The stitching curve can be simply constructed

via a steepest gradient descent. Such a procedure can be further simplified given

the discrete structure of the images: the position of the point x ∈ γ∗xin,xfin
is

updated by looking at its 8 connected neighbors and by moving towards the

neighboring point for which U has the smallest value. The best stitching curve

for the example shown in Figure 6.15 is the green curve superimposed on Figures

6.16 and 6.17. The final result of the stitching procedure can be seen in Figure

6.18.

Remark 6.2.1 A final note regarding the possibility of solving the best stitching

curve problem using Dijkstra’s algorithm [25]. This algorithm solves the mini-

mum cost path problem in a weighted graph and has the same complexity of the

224



Applications Chapter 6

fast marching method (i.e. O(N log2N), where N is the number of pixels in the

overlapping area Ωoverlap). In order to use such an algorithm to find the best

stitching curve, one should consider the image as an oriented graph where each

pixel is a node, and the adjacent vertices are formed by the 4 (or 8) neighboring

pixels. However, as pointed out in [29], such an approach would suffer from the so

called metrication error: different curves are produced by different choices of the

pixel connectivity and such paths are not invariant with respect to simple image

transformations such as rotations. An approach based on Dijkstra’s algorithm was

proposed by Davis [26].

Improving the Stitching: Wavelet Based Blending

Even if the stitching curve is guaranteed to find the minimum error path to

juxtapose two images, it is not given for granted that the seam will be perceptually

non noticeable. The first approach to fuse seamlessly two images dates back to

1983, when Burt and Adelson [14] developed a method using splines to blend

the subband coefficients obtained via a multiresolution Laplacian decomposition

of the images. This seminal work paved the way for other approaches based

on more general wavelet decompositions of the images [69, 54, 121, 13]. More

recently Zomet, Levin, Peleg, and Weiss proposed a stitching framework called

GIST that works in the gradient domain of the image [67, 138]. In general GIST

seem to produce consistently good results, even though it is computationally quite

demanding. As far as the other stitching algorithms are concerned (including

feathering and the approaches based on wavelet decompositions of the images)

the authors noted that “each stitching algorithm works better for some images
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and worse for others”.

In our system we used a wavelet based blending approach scheme the image

subbands corresponding to the horizontal (H), vertical (V) and diagonal (D) de-

tails are fused about the stitching line using a raised cosine weight. Let dmax be

the semiwidth of the blending band (note that it remains constant for all the levels

of the wavelet decomposition) and let x(l) be closest the point to y on the stitching

curve at level l. For the sake of notation we will indicate with the subscript 1

the quantities relative to the first image and with the subscript 2 the quantities

relative to the second image after warping. Then we can define the weighting

function:

W
(l)
i (y) =



1, for ‖y − x(l)‖ > dmax and y ∈ Ω
(l)
i

−1
2
cos
[

π
2

(
‖y−x(l)‖

dmax
+ 1
)]

+ 1
2
, for ‖y − x(l)‖ ≤ dmax and y ∈ Ω

(l)
i

1
2
cos
[

π
2

(
‖y−x(l)‖

dmax
+ 1
)]

+ 1
2
, for ‖y − x(l)‖ ≤ dmax and y ∈ Ω

(l)
j

0, for ‖y − x(l)‖ > dmax and y ∈ Ω
(l)
j

where 1 ≤ i, j ≤ 2 and i 6= j. Note that on the stitching line the resulting signal

is given by the average of the original signals. If A indicates the approximation

signal and S ∈ {A,H, V,D}, then the images are combined at each level according

to:

I
(l)
S,blended(y) = W

(l)
1 (y)I

(l)
1,S(y) +W

(l)
2 (y)I

(l)
2,S(y)

Figure 6.19 shows an example of the blending procedure. The equalization pro-

cedure is not able to compensate for the photometric distortion and the seam

between the images is very evident. However the blending procedure is able to

produce a seamless mosaic of the two images. On the technical side, we carried

226



Applications Chapter 6

out a 3 level decomposition of the images using compactly supported biorthog-

onal spline wavelets (the same used in JPEG2000) and the blending band has a

semiwidth of 16 pixels.

6.2.4 Registration and Mosaic Examples

To give an idea of the practical computational complexity of our system we

consider a pair of images whose resolution is 800 × 600 and overlap for about

50% of the area of the images. Our current research-oriented implementation

running on Pentium 4 3.40GHz is able to extract and label about 3000 tie points

of the images in about 1.5 seconds (C and C++ implementation). The prelimi-

nary correspondences are established in about 3 seconds (hybrid Matlab, C and

C++ implementation for the dimensionality reduction and kd-tree based nearest

neighbor search). Finally 236 matches that fit an homographic model are found

in 3 seconds (the RANSAC algorithm is once again an hybrid implementation in

Matlab, C and C++).

The effectiveness of the image registration and mosaicking system is proven

by the examples shown in Figure 6.20, Figure 6.21 and 6.22.

6.3 Conclusions

In this chapter we have applied the framework based on condition theory to

identify the characteristic structure of a point neighborhood and showed how this

can be used to establish matches between images related by large scale variations.

We have also studied, designed and implemented the fundamental modules that
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Figure 6.19: The equalization procedure described in Section 6.2.2 is not able
to compensate for the photometric distortion and the seam between the images
is very evident (top image). However the blending procedure is able to produce
a seamless mosaic of the two images (bottom image).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.21: The images (a) to (f) of the Cathedral of Our Lady of Amiens
are registered to form the seamless mosaic in image (g) using the techniques
developed in this thesis (image courtesy of J. Nieuwenhuijse, copyright by New
House Internet Services BV, www.ptgui.com). Image (g) has been manually
cropped to remove the black areas generated during the mosaicking process
due to lack of visual information.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (l)

(m)

Figure 6.22: The confocal images (a) to (l) of a 3-day detached mouse retina
(tissue is stained with bromodeoxyuridine) are registered to form the seam-
less mosaic in image (m) using the techniques developed in this thesis (image
courtesy of Dr. S. K. Fisher, Dr. G. Lewis and Dr. M. Verardo).
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register together images in order to produce seamless mosaics (see Figure 1.2).

Once again this was done trying to limit the need to resort to empirical consid-

eration by casting the problems in well defined mathematical frameworks. The

effectiveness of the resulting modules has been shown by accurately registering

and mosaicking images coming from very different domains minimizing the need

for parameter tuning and manual intervention.
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Conclusions and Future Work

“Io veggio ben che già mai non si sazia

nostro intelletto, se ’l ver non lo illustra

di fuor dal qual nessun vero si spazia.1”

Dante

The dominant leitmotif of this dissertation was the development of principled

and general mathematical frameworks that allowed us to design a set of modules

composing an image registration and mosaicking system. Within these frameworks

we were able to tackle a multitude of problems without necessarily resorting to

empirical and heuristic considerations. At the same time, our tools enabled us to

understand and quantify the tradeoffs between speed, efficiency robustness and

accuracy.

1Well I perceive that never sated is
Our intellect unless the Truth illume it,
Beyond which nothing true expands itself.

from Paradiso IV, 124–126, translation by H. W. Longfellow
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However much remains to be done in order to address the issues that emerged

in the course of our investigations. For the sake of discussion we will consider two

sets of open problems that we plan to study in the future.

7.1 Low Level Open Problems

In this section we will discuss the issues that stem from the theoretical analysis

presented in this dissertation.

Condition Theory for Other Image Analysis Tasks

As mentioned in Chapter 2 and as discussed in the example developed in

Appendix B, the results obtained from condition theory are applicable in domains

other than point feature detection, when it is necessary to quantify the effect of

noise on the estimation of certain quantities. One of the main difficulties is to

develop useful and meaningful models that lead to expression of the condition

number which are practically computable. Consider for example the notion of

T -characteristic neighborhood that was introduced in (6.1):

Ω̂(x)
def
= argmin

δΩ
K̂Tθ,x

(Ω(x) + δΩ)

Setting up a gradient descent method to identify the characteristic neighborhood

is not trivial, not only because of the computational and analytical complexity

associated with the calculation of the descent direction, but also because the de-

tector response surface is likely to exhibit many local minima. In recent years the

numerical analysis community has developed methods to obtain reasonable esti-

mates of the condition number requiring little computational efforts [65] which

234



Conclusions and Future Work Chapter 7

would allow one to explore more exhaustively the space of the admissible neigh-

borhood configurations. We believe that these contributions can be transferred to

several image analysis tasks like the estimation of T -characteristic neighborhood

mentioned above. In this connection, we note how that the the algorithms pro-

posed by Baumberg in [5] and Mikolajczyk et al. in [86] aim at solving a problem

that shares many commonalities with the task mentioned above, the main differ-

ence being the way the neighborhood is parameterized and the quantity that is

optimized. The extension of our approach to more complex geometric transfor-

mation within a gradient descent framework is a challenging research topic that

is worth pursuing to tackle the problem of establishing wide baseline correspon-

dences between images in a more principled manner.

Feature Point Localization

Some aspects regarding the localization properties of corner detectors have

been studied by Rohr et al. [107], who introduced analytical models of graylevel

corners. Even if these models provide some interesting insights regarding the

accuracy properties of a corner detector, they could hardly account for all the

possible cases that arise when dealing with real images. Lucchese et al. [75] used

saddle points obtained from the gradient normal matrix to detect the corners of

a checkerboard pattern with high subpixel accuracy. Unfortunately such an ap-

proach does not generalize straightforwardly to generic intensity patterns. Torr

proposed in [127] to achieve subpixel accuracy by fitting a quadratic surface to

the detector response calculated at the nine pixels around a feature point. How-

ever this approach introduces a systematic bias, since the surface fitting happens
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minimizing an algebraic distance (instead of a geometric distance) and therefore is

not invariant with respect to common geometric transformations. It is our belief

that the discrete representation of an image imposes intrinsic limitations regarding

the localization accuracy that can be achieved by a corner detector. Identifying

these theoretical bounds is a crucial step in applications where the position of the

feature points serves as the input to complex algorithms where accuracy is non

negotiable.

Multidimensional Extensions

The theoretical analysis presented in Chapter 2 and Chapter 4 generalize in-

dependently from the dimensionality of the signals. This is in general not true as

far as the computational issues are concerned.

When analyzing the Spectral Generalized Corner Detector Functions (SGCDF)

we introduced some results that can be used to reduce the detector computational

complexity in higher dimensional scenarios such as those arising when processing

3D images (like tomographic images or videos where the third dimension is asso-

ciated with time). We plan to investigate how the results discussed in Chapter

2 can improve the practical design of low complexity detectors. We want also

to investigate if there exist image domains where the information contained in

different channels could improve the detector performance.

The curve descriptors introduced in Chapter 4 also generalize to spatial do-

mains whose dimension is greater than 2. However the computational complexity

grows exponentially and it is necessary to consider alternative methods to solve

the Helmholtz equation. Much remains to be done to understand how the de-
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scriptors are affected by geometric perturbations of the domain and if they can be

used to robustly label both local neighborhoods or 3D domains to establish point

correspondences.

Non Rigid Registration

In this dissertation we considered global geometric transformations to register

images. This means that the same set of parameters is used to model the relation

some geometric transformation between the overlapping portions of the images.

However there are situations where such an approach is not applicable, because

the images that are to be register are subject to deformations that can only be

represented locally in closed form. Several techniques have been developed to

perform nonrigid registration starting from images that are roughly aligned, es-

pecially for medical applications [47]. However the problem of wide baseline non

rigid or locally rigid registration it is still open. We are interested in exploring

bottom-up approaches where the images that are to be registered are initially

decomposed in smaller tiles that are first put in correspondence and then locally

registered to one another. Such as approach can benefit from the fast and robust

estimation methods that we studied in this dissertation, so that it is possible to

cope with the presence of outliers, i.e. portions of images that do not match.

7.2 System Level Open Problems

In this section we will discuss some of the challenges that arise designing an

image registration system that is capable to deal with large quantities of images
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using limited computational resources and minimizing the need for human inter-

vention.

Registration Refinement Procedures

Nowadays it is reasonable to expect that the images that are to be registered

and mosaicked have a high resolution (i.e. their dimensions are in the order of

thousand square pixels). In this case the refinement process is guided by the

desire of exploiting the additional (high resolution) information without compro-

mising the performance of the algorithms. We strongly believe that the methods

discussed in the previous chapters can be used to bootstrap the search for im-

age correspondences, possibly within a pyramidal framework where the feature

locations are propagated and refined across the pyramid levels. We foresee that

robust area based template matching methods [2] could be used to perform such

refinement. We also advocate for extensive experiments and for a thorough the-

oretical analysis to quantify the improved accuracy of the final registration when

using high resolution images.

Local Photometric Compensation

In Section 6.2.2 we developed a method to robustly equalize the intensity of the

mosaicked images over their overlapping area. To achieve this goal, we assumed

that the intensity transformation is the same for all the pixels in the overlapping

portion of the images. We believe that such an assumption could be be too sim-

plistic in certain scenarios and therefore more complex models might be required.

The first extension that we would like to introduce involves the derivation of an
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intensity transformation that depends on a more accurate study of the BRDF

function so that the position of the pixels is also taken into consideration.

Constructing Minimum Distortion Panoramas

In this dissertation we focused on the registration of image pairs. However

in many situations required to register a whole set of images (call this set I) in

order to produce large mosaics which are frequently called panoramic views or

panoramas. One immediately recognizes that the complexity of detecting corre-

spondences between all the images that are to be registered is quadratic in the

number of the images and therefore any naive approach becomes computation-

ally expensive as soon as the cardinality of I is large. For a numerical example

suppose that we are able to register two images in 10 seconds. If I contains 10

images then the processing of all the possible pairs takes about 9 minutes. To

improve the performance of the system we plan to use two approaches. First we

plan to develop a pair rejection criterion based on the results of the preliminary

nearest neighbors matchings. We expect that the distances of the descriptors of

the preliminary matched points follows distinctive distributions when the images

actually overlap and when they do not.

If we consider a graph whose vertices are the images to be registered and whose

edges represent the transformation between images, then the forest of spanning

trees of such a graph describes the set of mosaics that can be obtained from I.

Two vertices of the graph are adjacent if and only if it is possible to establish

a transformation between the two images. If we associate to each edge a weight

that is proportional to the distortion that is necessary to register the connected
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images (perhaps using the model distance introduced in Section 5.2.2), then the

forest of minimum spanning trees will return the set of mosaics that are obtained

minimizing the total warping distortion.

2.5D Registration

When multiple images are to be registered together, the final mosaic depends

on the image that is chosen as reference view. As mentioned before, one way to

choose the reference view is to identify which is the minimum distortion panorama.

On the other hand, if for example we are interested in creating a mosaic out of

a video sequence, varying dynamically the reference view will result in a “spatio-

temporal mosaic”, i.e. a video where each frame consist of a mosaic produced with

a different reference view. Such a temporally varying mosaic could be useful to

enhance the perception of depth discontinuities that could otherwise be lost in a

static scenario.

Automatic Quality Assessment of Registration

To the best of our knowledge, there is almost no work that aims at assessing

automatically the quality of the registration. We believe that this task has a great

importance everywhere the accuracy of the registration is an issue. A simple com-

parison of the image intensities is usually not enough, since the presence of local

outliers due to object motions, specularties, saturations, depth discontinuities,

occlusions may cause erroneous evaluations of the quality of the registration. We

believe that local approaches based on robust comparisons of the intensities in

the neighborhoods of the corresponding points are likely to produce more reliable
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and consistent results.
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Appendix A

Some Useful Analytical Results

“Brevissimus quisque dilucidissimus est.1”

Cicero

A.1 Some Useful Inequalities

Lemma A.1.1 (Norm Inclusion) Let x∗ = x∗
[

1 . . . 1
]T ∈ Rp. Then for

any x ∈ Rp such that ‖x‖q = ‖x∗‖q we have that ‖x‖1 ≤ ‖x∗‖1.

Proof: The finite form of the Jensen’s inequality ([49], p. 83) states that for
any real continuous convex function φ we have:

φ

(∑p
j=1 xj

p

)
≤
∑p

j=1 φ(xj)

p
(A.1)

If we consider the convex function φ(x) = xq, then (A.1) reads as:(∑p
j=1 xj

p

)q

≤
∑p

j=1 x
q
j

p

or equivalently:

‖x‖1 =

p∑
j=1

xj ≤ p

(∑p
j=1 x

q
j

p

) 1
q

= p1− 1
q ‖x‖q

By assumption ‖x‖q = ‖x∗‖q = p
1
qx∗ and therefore the lemma is proved once we

observe that we can write ‖x‖1 ≤ px∗ = ‖x∗‖1.
1The briefer, the clearer.
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A.2 Some Linear Algebra Facts

The results contained in this section are analyzed in greater details in [44, 53,
80]. Here we will provide a list of some basic results that have been tailored for
the proofs and the applications described in the previous chapters.

A.2.1 Matrix Norms

Let’s first introduce the vector q-norm defined for q ≥ 1:

‖x‖q
def
=

(∑
i

|xi|q
) 1

q

(A.2)

When q is omitted it is assumed to be equal to 2 (Euclidean norm). Vector q-
norms are convex functions. Definition (A.2) allows one to define the induced
matrix q-norm as:

‖A‖q
def
= sup

x6=0

‖Ax‖q
‖x‖q

(A.3)

It can be shown that ‖A‖2 = σmax(A), where σmax(A) is the maximum singular
value of the matrix A. The Schatten matrix q-norm is defined as:

‖A‖S,q
def
=

(∑
i

σi(A)q

) 1
q

(A.4)

where σi(A) is the ith singular value of the matrix A. Note that ‖A‖S,∞ =
limq→∞ ‖A‖S,q = σmax(A), i.e. the ∞-Schatten norm coincides with the matrix
spectral norm. The Schatten q-norm is a unitarily invariant norm.

A.2.2 Spectral Properties of Symmetric Matrices

Lemma A.2.1 Consider a matrix A ∈ Rm×n with m ≥ n. The squared singular
values of A coincide with the eigenvalues of ATA.

Proof: Consider the SVD decomposition A = UΣV T . Then, because of the
orthogonality of U , the following chain of equations hold:

ATA =
(
UΣV T

)T
UΣV T = V ΣT ΣV T

The claim is proved observing that ΣΣT = diag{σ2
1, . . . , σ

2
n}.
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Lemma A.2.2 Consider a full rank matrix A ∈ Rm×n with m ≥ n. Then:

‖A†‖22 =
1

λmin(ATA)

where λmin(ATA) indicates the smallest eigenvalue of ATA.

Proof: For any matrix M we have ‖M‖22 = λmax(MMT ), where λmax(MMT )
is the largest eigenvalue of MMT . Therefore:

‖(ATA)−1AT‖22 = λmax((A
TA)−1ATA(ATA)−1) = λmax((A

TA)−1) =
1

λmin(ATA)

Lemma A.2.3 Let P ∈ Rn×n be an orthogonal projection matrix that orthogo-
nally projects the point x ∈ Rn onto the nP < n dimensional space generated by
the orthonormal basis v1, . . . ,vnP

. Then if we extend the basis v1, . . . ,vnP
to span

the entire space Rn, then singular value decomposition of P is:

P =
[
V u1 . . . un−nP

] [ InP
0

0 0

]
V T

uT
1
...

uT
n−nP

 (A.5)

where V =
[
v1 . . . vnP

]
Proof: The matrix associated with the orthogonal projection onto the col-

umn space of V is P = V V T , which can be rewritten as:

P =
[
V u1 . . . un−nP

] [ InP
0

0 0

]
V T

uT
1
...

uT
n−nP


The SVD decomposition being unique, the assertion holds true.

A.2.3 Interlacing Properties of the Singular Values

Theorem A.2.4 Let A ∈ Rm×p be an arbitrary matrix and A
(l)
c ∈ Rm×p−l be

the matrix obtained by deleting any l columns of A. If m ≥ p − l, then for any
1 ≤ i ≤ p− l:

σi ≥ σ
(l)
c,i ≥ σi+l (A.6)
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Figure A.1: The interlacing of the singular values of a generic matrix as a
consequence of repeated column removal. The number in parenthesis indicates
the number of columns that have been removed.
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Figure A.2: The interlacing of the singular values of a generic matrix as a
consequence of repeated row removal. The number in parenthesis indicates the
number of rows that have been removed.

Let A
(l)
r ∈ Rm−l×p be the matrix obtained by deleting any l rows of A. If m− l > p

then for any 1 ≤ i ≤ p− l:
σi ≥ σ

(l)
r,i ≥ σi+l (A.7)

Proof: The fundamental form of the interlacing theorem (see [53], p. 419)

says that when any of the columns of A are removed to generate the matrix A
(1)
c ,

the singular values interlace according to:

σ1 ≥ σc,1 ≥ σ2 ≥ σc,2 ≥ . . . ≥ σp−1 ≥ σc,p−1 ≥ σp

When the process of removing columns is iterated, the singular values are arranged
as shown in Figure A.1. This establishes the first part of the theorem. On the
other hand, when any of the rows of A are removed to generate the matrix A

(1)
r ,
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the singular values interlace according to:

σ1 ≥ σr,1 ≥ σ2 ≥ σr,2 ≥ . . . ≥ σp ≥ σr,p

and the arrangement depicted in Figure A.1 validates the second claim of the
theorem.

A.2.4 Fast Diagonalization of Symmetric 2× 2 Matrices

Consider a real symmetric matrix A =

[
a b
b c

]
. We want to diagonalize A

using the least number of operations, so that:

A =

[
C −S
S C

] [
λ1 0
0 λ2

] [
C S
−S C

]
where C = cos θ and S = sin θ. The eigenvalues can be computed first defining:

α = a+ c

β = (a− c)2

γ = 4b2

δ =
√
β + γ

and then letting:
λ1 = 0.5(α− δ)

λ2 = 0.5(α+ δ)

for a total number of 5 additions, 5 multiplications and the extraction of a square
root. Finally the angle θ that defines the eigenvectors univocally (modulo a re-
flection about the origin) can be obtained as:

θ = arctan
λ1 − a
b

A.3 Some Optimization Facts

In this section we will present some optimization results that turn out to be
useful for the theory developed in the previous chapters. An extensive treatment
of optimization theory can be found in [9, 76].
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Theorem A.3.1 (Lagrange Multipliers Necessary Conditions) Let x∗ be
a local minimum for f : Rp → R subject to the equality constraints:

h(x) = 0

where h : Rp → Rm. Suppose the Jacobian Jh(x∗) is full rank (i.e. the gradients
of the constraints at x∗ are linearly independent). Let’s consider the Lagrangian
function:

L(x,γ) = f(x) + γTh(x)

Then there exist a unique Lagrange multiplier vector γ∗ such that:

∇xL(x∗,γ∗) = 0

Theorem A.3.2 (Karush-Kuhn-Tucker Necessary Conditions) Let x∗ be
a local minimum for f : Rp → R subject to the equality constraints:

h(x) = 0

where h : Rp → Rm and to the inequality constraints:

g(x) ≤ 0

where g : Rp → Rr and the inequality operator is applied component-wise. Suppose
f , h and g are continuously differentiable and define the Lagrangian function to
be:

L(x,γ, δ) = f(x) + γTh(x) + δTg(x)

Then there exist unique Lagrange multipliers vectors γ∗ and δ∗ such that:

∇xL(x∗,γ∗, δ∗) = 0

δ ≥ 0

δj = 0 if the jth constraint is inactive, i.e. gj(x
∗) < 0

Lemma A.3.3 Consider the function f : Rp → R:

f(x) =

p∏
j=1

xj − α

(
p∑

j=1

xj

)p

such that α < 1
pp . Then x∗ = c

p

[
1 . . . 1

]T ∈ Rp maximizes f under the

constraints x > 0 (where, as usual, the inequality applies to the components of the
vector x) and h(x) = ‖x‖q − c for every q ≥ 1, c > 0.
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Proof: We start showing that the lemma holds in the case q = 1 ignoring
the constraint x > 0 (which will be imposed a posteriori at the end of the proof).
To apply Theorem A.3.2 we need to convert this problem into a minimization
problem. Thus we will consider f ′ = −f and define the Lagrangian associated
with this problem as:

L(x, δ) = f ′(x) + δ [h((x))− c]

Since ‖x‖1 =
∑p

j=1 xj, the first order necessary condition yields:

∂L

∂xi

(x, δ) = S − P

xi

+ δ = 0

where S = αp
(∑p

j=1 xj

)p−1

and P =
∏p

j=1 xj. Therefore we obtain the following

set of equations:

(S + δ)x1 = P
...

...

(S + δ)xp = P

which imply that all the components of x∗ are equal, i.e. x∗1 = . . . = x∗p = x∗.
Let’s first consider the case where the constraint is inactive, i.e. h(x∗) < 0 in

which case δ∗ = 0. Then we obtain the equation x∗ = P
S

= x∗p

αppx∗p−1 = x∗

αpp that is
satisfied if and only if x∗ = 0.

Now let’s study the case where the constraint is active. This is equivalent
to requiring that x∗ = c

p
and consequently S = αpcp−1 and P = cp

pp . Hence we

have δ = P
x∗
− S = pcp−1

(
1
pp − α

)
. Since the hypothesis of the lemma state that

1
pp − α > 0, we conclude that δ > 0.

From the previous discussion it follows that the only point that satisfies the

necessary conditions and whose components are strictly positive is x∗ = c
p

[
1 . . . 1

]T
.

Therefore f ′(x) ≥ f ′(x∗) for any point x inside the volume V determined by the
constraints ‖x‖1 ≤ ‖x∗‖1 = c and x > 0.

The fact that the lemma holds also when q > 1 follows directly from Lemma
A.1.1. In fact any point x such that ‖x‖q = ‖x∗‖q is contained in the volume V
and tangent to ‖x‖1 = c at x∗. Hence f ′ is still minimized at x∗.
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Appendix B

Condition Theory for Curve
Landmarks Detection

“The same equations have the same solutions.”

R. P. Feynman

We believe that the condition theory based framework that we used to study
the corner detectors in Chapter 2 has many potential applications in the image
analysis domain. In this appendix we will show how it can be used to detect curve
landmarks.

B.1 The Model

We first define formally a planar curve.

Definition B.1.1 Let I be an interval of real numbers; then a planar curve is a
continuous mapping γ : I → R2. The curve γ is said to be simple if it is injective.
If I = [sin, sfin] is a closed bounded interval and γ(sin) = γ(sfin) then the curve
is closed. Curves such that γ(s1) 6= γ(s2) if s1 6= s2 for all s1, s2 ∈ I (except
possibly the case where s1 = sin and s2 = sfin) are called simple. A simple closed
curve is also called a Jordan curve.

Hereafter will study the sensitivity of Jordan curves following the same line of
thought presented in Section 2.4.1. The expression for a curve perturbed by noise
is given by:

γ̃(s)
def
= γ(s) + η (B.1)

We choose to model the effect of the noise by two transformations that operate on
the curve neighborhood described by the image of the curve parameter interval
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ω(s0) ⊆ I. The first one is parameterized by the pT dimensional vector θ = θ+∆θ
and describes the geometric distortion of the curve:

γ(s) 7→ Tθ+∆θ,γ0
(γ(s)) (B.2)

where Tθ,γ0 : γ(s) ⊆ R2 → R2 and θ represents the identity in the parameter
space (i.e. Tθ,γ0

(γ(s)) = γ(s)) and γ(s0) = γ0. The second transformation,

parameterized by the pS dimensional vector ψ = ψ + ∆ψ, models the effect of
the noise on the parameterizations of the curve:

γ(s) 7→ γ(Sψ+∆ψ,s0
(s)) (B.3)

where Sψ,s0 : I ⊆ R → R and, as before, we indicate with ψ the identity in the
parameter space (i.e. Sψ,s0

(s) = s). Hence the perturbed version of the curve can
be written as:

γ̃(s) = Tθ+∆θ,γ0
(γ(Sψ+∆ψ,s0

(s))) (B.4)

Following the definition 2.4.1, we measure the sensitivity of a curve neighborhood
ω(s0) ⊆ I using the notion of differential condition number introduced in (2.2.2).

Definition B.1.2 The condition number associated with the curve neighborhood
ω(s0) with respect to the transformations Tθ,γ0 and Sψ,s0 is defined as:

KTθ,s0
(ω(s0)) = lim

δ→0
sup
‖η‖≤δ

‖∆ζ‖
‖η‖

(B.5)

where ζ =
[
θT ψT

]T
and γ(s0) = γ0.

The following theorem is similar to Theorem 2.4.2 since it provides a computable
expression to estimate the condition number.

Theorem B.1.3 If Tθ,γ0 is affine, then the first order estimate of the condition
number (B.5) is given by:

K̂Tθ,γ0
,Sψ,s0

(ω(s0)) = ‖A† (ω(s0)) ‖ (B.6)

where † denotes the pseudo inverse of the matrix:

A (ω(s0))
def
=

 A(y1)
...

A(yN)

 ∈ R2N×pT +pS (B.7)
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which is formed by the N sub-matrices:

A(si)
def
= w(si − s0)

[
JθTθ,γ0

(γ(Sψ,s0
(si))) Jsγ(Sψ,s0

(s))∇ψSψ,s0
(si)

]
(B.8)

obtained from a set of N points that sample the neighborhood ω(s0). The scalar
function w(si − s0) denotes the weight associated with the point si.

Proof: The proof proceeds along the same lines as the proof of Theorem .
Also in this case we use the Taylor expansion to simplify the expression for the
curve perturbation (B.4). The result expressed by equation (B.8) is a matter of
straightforward differentiation, after noticing that JθTθ,γ0

(γ(Sψ,s0
)) = I2.

This theorem allows us to extend naturally the definition of Spectral Generalized
Corner Detector Functions (SGCDF) introduced in Section 2.5. Note that in this
context a corner is actually a landmark on the curve.

B.2 An Example

Consider the Jordan curve represented in Figure B.1(a). Assume that the curve
is parameterized by arc length and that it is represented by NP = 103 equally
spaced samples {γ(s1), . . . ,γ(sNP

)}. Moreover suppose that the neighborhood
ω(s0) is composed of the points {s0 − r∆s, . . . , s0 + r∆s}, where ∆s = si+1 − si.
In our numerical example we choose r = 16 (which means that we are focusing
on curve neighborhoods whose length amounts to 3.3% of the total curve length).
In our experiments we considered three types of geometric transformation that,
mutatis mutandis, are defined in (2.45), (2.46) and (2.47). We choose to model
the effect of noise on the curve parameterizations by a simple affine function:
Sψ,s0(s) = s0 + ψ1(s − s0) + ψ0. The curve landmarks are identified calculating
the response of the generalized Noble-Förstner (harmonic mean) detector:

fNF (ω(s0))
def
=


1PpT +pS

i=1
1

σi(A)2

if σi(A) 6= 0 for every i,

0 otherwise.
(B.9)

Figures B.1(b), B.1(c) and B.1(d) show the response of the detector (B.9)
corresponding to a translational, Rotation Scaling and Translation (RST) and
affine geometric transformation. Green colors indicate large responses whereas
red colors indicate small responses. As one may expected from the discussion in
Section 2.4, the detector response is larger where the structure of the curve is
less affected by the geometric and parametric distortions discussed above. This
is particularly evident for neighborhoods containing the corners formed at the
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Translation

(a) (b)
RST Affine

(c) (d)

Figure B.1: Figures (b), (c) and (d) show the response of the detector (B.9)
corresponding to a translational, RST and affine geometric transformation for
the curve in (a). Green colors indicate large detector responses whereas red
colors indicate small detector responses.
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center of the cross: if the effect of the noise is modeled via translations, then the
structure of the curve corresponding to ω(s0) remains distinguishable. However,
when the noise is allowed to affect the scale of the curve (RST transformation)
or the local axis skew (affine) the value of the detector becomes much smaller. In
a curve matching context the neighborhoods that maintain a distinctive structure
in presence of local translations become non distinguishable in presence of local
scalings or affine transformations.
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Appendix C

Some Analytical Properties of the
Helmholtz Equation

“I’m pickin’ up good vibrations.”

Beach Boys

Consider1 the boundary problem with Dirichlet conditions (4.2) rewritten here for
sake of convenience:

−4u(x) = λ
1

v(x)2
u(x) for x ∈ Ω

u(x) = 0 for x ∈ Γ

One trivial solution for this problem is u(x) ≡ 0 everywhere. We are interested in
the nontrivial solutions of this problem, which can be proven to exist for a wide
class of regions Ω for discrete values of the parameter λ and for v > 0. Such
solution are in the form of a countable set of pairs of eigenvalues/eigenfunction,
i.e. (λk, uk). The next lemmas will show that such eigenpairs have the following
properties:

• the eigenfunctions are orthogonal

• the eigenvalues are real and the eigenfunctions can be chosen to be real.

• the eigenvalues are positive

1For a more thorough treatment of the results presented in this appendix we refer the reader
to the texts by Weinberger [132], Carrier et al. [19] and Evans et al. [33].
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Lemma C.0.1 Let (λk, uk) and (λl, ul) be two eigenpairs that solve equation
(4.2). Then:

〈uk|ul〉 1
v2
∝ δkl

where δkl is the Kronecker delta and the notation 〈·|·〉 denotes the weighted inner
product on Ω: 〈f |g〉w =

∫
Ω
w(x)f(x)g(x) dx.

Proof: Consider the pair of equations:

−4uk = λk
1

v2
uk (C.2a)

−4ul = λl
1

v2
ul (C.2b)

and multiply both sides of (C.2a) by ul and of (C.2b) by uk. If we subtract both
members and we integrate over Ω we obtain:∫

Ω

(ul4uk − uk4ul) dx = (λl − λk)

∫
Ω

1

v2
ukul dx (C.3)

The left hand side can be rewritten using Green’s second identitity as:∫
Ω

(ul4uk − uk4ul) dx =

∫
Γ

(
ul
∂uk

∂n
− uk

∂ul

∂n

)
dx

where n denotes the normal at the boundary. Since uk and ul are identically equal
to zero on the boundary, the left hand side of (C.3) must vanish. Consequently,
since λl 6= λk, the proof is concluded observing that the right hand side of (C.3)
yields: ∫

Ω

1

v2
ukul dx = 〈uk|ul〉 1

v2
= 0

Lemma C.0.2 The eigenvalues that satisfy the equation (4.2) are real and the
corresponding eigenfunctions can be chosen to be real.

Proof: We will proof that the eigenvalues are real by contradiction. Let
λ ∈ C and let u be the corresponding eigenfunction (not identically equal to zero)
that solves (4.2). It is straightforward to verify that the complex conjugates of
the eigenpairs will also satisfy (4.2). Hence, letting (λk, uk) = (λ, u) and (λl, ul) =
(λ∗, u∗) and following the same steps of the proof of Lemma C.0.1 we conclude
that: ∫

Ω

1

v2
uu∗ dx =

∫
Ω

1

v2
|u|2 dx = 0 (C.4)
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It follows immediately that (C.4) is satisfied only if u ≡ 0, which contradicts the
hypothesis. Hence λ ∈ R. Now suppose there exists a complex eigenfunction
corresponding to λ: u = v+ jw. Clearly both u and w satisfy (4.2), hence we can
always choose a real eigenfunction.

Lemma C.0.3 The eigenvalues that satisfy the equation (4.2) are positive.

Proof: If we multiply both members of equation 4uk = −λk
1
v2uk by uk and

we integrate over the region Ω we obtain:∫
Ω

uk4uk dx = −λk

∫
Ω

1

v2
u2

k dx

Applying Green’s first identity to the left hand side we obtain:∫
Ω

uk4uk dx =

∫
Γ

uk
∂uk

∂n
dx−

∫
Ω

‖∇uk‖2 dx

Since uk is identically equal to zero on the boundary we can write:

λk

∫
Ω

1

v2
u2

k dx =

∫
Ω

‖∇uk‖2 dx

The proof is concluded observing that λk can be expressed in terms of the ratio
of two positive quantities.
We conclude this appendix listing a few other important facts.

• The eigenvalues can be sorted in order of increasing value: 0 < λ1 ≤ λ2 ≤
λ3 ≤ . . . with λk →∞ as k →∞

• For a given eigenvalue λk there is a finite number of linearly independent
eigenfunctions (such number is called the multiplicity of λk).

• The first (or principal eigenvalue) has multiplicity 1 and does not change
sign over Ω.

• The normalized real eigenfunctions uk form an orthonormal basis of L2(Ω),
where the normalization is such that

∫
Ω

1
v2uk dx = 1

• If the region Ω is not bounded it may happen that the set of eigenpairs is
no longer discrete.
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List of Acronyms

Condition Number Based (CNB)

Said of a spectral generalized corner detector function that is related to the

condition number of a point neighborhood.

Condition Number Detector (CND)

An algorithm to detect the characteristic scale of a point neighborhood based

on the signature of the condition number.

Consensus Set (CS)

The set of data that fit a certain model within a given tolerance.

Generalized Corner Detector Function (GCDF)

A scalar function that returns the quality of the neighborhood of a general-

ized image for matching/tracking purposes.

Helmholtz Descriptor (HD)

A curve/region descriptor based on the modes of vibration of an elastic

membrane.
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Generalized Gradient Matrix (GGM)

The matrix that describes the local properties of a point of a generalized

image

Laplacian Detector (LD)

An algorithm to detect the characteristic scale of a point neighborhood based

on the signature of the image Laplacian.

Minimal Sample Set (MSS)

The smallest set of data necessary to estimate the parameters of a certain

model (e.g. the MSS to estimate the parameters of a line has cardinality 2).

Rotation Scaling and Translation (RST)

A geometric transformation that describes a rotation, a scaling and a trans-

lation.

Spectral Generalized Corner Detector Function (SGCDF)

A generalized corner detector function that depends solely on the spectral

properties of the generalized gradient matrix.

Zernike Moment Descriptor (ZMD)

A curve/region descriptor expanding the domain indicator function on the

Zernike moments.
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