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Abstract

In this paper we present a new physically motivated curve/region descriptor based on the solution of Helmholtz’s equation. The
descriptor we propose satisfies the six principles set by MPEG-7: it has a good retrieval accuracy, it is compact, it can be applied in gen-
eral contests, it has a reasonable computational complexity, it is rotation and scale invariant and provides an hierarchical representation
of the curve from coarse to fine. In addition to these properties, the descriptor can be generalized in order to take into account also the
intensity content of the image region defined by the curve. The construction of the descriptor can be coupled with a preprocessing step
that enables us to describe a curve in an affine invariant fashion. The performance of our approach has been tested in the contest of affine
invariant curve and region matching, both within a controlled experimental setup and also using real images. The experiments show that
the proposed approach compares favorably to the state of the art curve/region descriptors.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The quest for efficient curve and region descriptors has
been one of the leading themes in the image analysis com-
munity. In general, good descriptors should be invariant
under an appropriate class of geometric transformations
(like, for example, rotation-scaling-translation or affine),
robust in presence of noise, efficient to compute and easy
to compare. Zhang et al. [33] classified the curve descrip-
tion approaches into two groups: contour-based and
region-based methods. Each of these groups is further sub-
divided into two subgroups containing global or structural

approaches. Some of the recently proposed descriptors fall
in the contour-based category, as the curvature scale space

(CSS) descriptor [22] (which has been standardized within
the MPEG-7 framework) and the shape context matrices

[2]. Some others belong to the class of region-based

methods, like the descriptors based on moments (geometric
[8], Zernike, also standardized within the MPEG-7 frame-
work, and Legendre [29]), on region frequency representa-

tions (Fourier descriptors [32]), on the medial axis

transform [23] and on shock graphs [27]. Recently Gorelick
et al. exploited the properties of the Poisson equation to
characterize shapes and to derive a set of features that
can serve as descriptors [12].

We are interested in a descriptor that can be used in the
context of image registration where we will focus on image
features defined by Jordan curves (i.e. curves that are
closed and do not cross themselves) in order to establish
image matches. Such matching should happen in an affine
invariant fashion, so that perspective distortions can be
handled robustly. The approaches mentioned before either
do not always satisfy the MPEG-7 requirements or they are
not completely suitable to establish affine invariant match-
es between curves. The computation of the CSS descriptors
is quite demanding, the algorithm converges slowly if the
curve is very complex (i.e. the curve presents many points
with large curvature) and depends on some empirical
parameters that need to be fine tuned. The comparison of
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CSS descriptors is not simple. Shape context matrices pro-
vide local curve descriptors that are not very compact
(since they consist of the coefficients of a matrix) and their
comparison is not very fast. Moment invariants of higher
orders do not have a clear physical interpretation and the
matching procedure requires a normalization process to
compensate for the different dynamic range of the moments
of different orders. However recently Zhang et al. [31]
experimentally showed that Fourier descriptors and Zer-
nike moment descriptors perform better than the CSS
descriptors. Shock graphs are very suitable in scenarios
where the similarity between curves is defined in terms of
structure, but are not the ideal solution if the notion of
equivalence is defined within the class of some specific geo-
metric transformation. Moreover the computational com-
plexity for extracting these descriptors and matching
them is quite high. Finally note that, with the exception
of moments, it is not straightforward to extend the descrip-
tors listed above in order to represent also the intensity pat-
tern inside the curve. For an extensive quantitative
comparison of region descriptors that explicitly take into
account the intensity pattern within the region, the interest-
ed reader should refer to the survey by Mikolajczyk et al.
[21].

The goal of this paper is to develop a curve descriptor
that satisfies the six principles set by MPEG-7 and a few
other important requirements, such as being rotation-scal-
ing-translation (RST) invariant, having a clear physical
interpretation and being capable to take into consideration
the intensity content of a closed contour (when the curve
identifies an image region). The descriptor we propose is
novel in the sense that it combines intimately both the
information regarding the shape of a region and its inten-
sity content.

This paper is structured as follows. Section 2 introduces
the Helmholtz descriptor, it discusses its analytical proper-
ties and presents the numerical scheme used to compute the
descriptor. Section 3 will describe a preprocessing step that
aims at extracting the shape of a curve in order to obtain an
affine invariant matching algorithm. In Section 4 we will

show some experimental results and we will evaluate the
performance of the descriptors. Finally the conclusions
are presented in Section 5.

2. The descriptor

In 1966 the mathematician M. Kac published his
famous paper entitled ‘‘Can One Hear the Shape of a
Drum?’’ [16]. Kac was interested in understanding whether
the knowledge of the modes of vibration a drum was suffi-
cient for univocally inferring its geometric structure. The
problem posed by Kac can be related to the problem of
constructing curve or region descriptors. In fact, if we
imagine that the curve we want to label defines the contour
of a drum, it is reasonable to think that the spectrum of
such curve (in terms of modes of vibration) could be an
appealing descriptor, given the fact that it can be easily
made RST invariant and has a strong physical character-
ization. Moreover the intensity inside the image region
defined by the curve can be used to model the physical
properties of the membrane so that the modes of vibration
are related not only to the structure of the boundary but
also to the region content. With this in mind, the answer
to Kac’s question becomes crucial, i.e. we would like to
have the normal modes of vibration of a drum to identify
univocally its geometry (so that we can establish a bijection
between the space of the Jordan curves modulo a given
transformation and the curve descriptors).

The problem posed by Kac remained unsolved until
1992 when the mathematicians C.S. Gordon, D.L. Webb
and S. Wolpert proposed a pair of isospectral drums hav-
ing the same area and perimeter but different contours.
In other words ‘‘One Cannot Hear the Shape of a Drum’’
[3,5,11] (see Fig. 1 for some examples of isospectral drums).
Even though for our purposes this fact is unfortunate, since
it implies that there may exist curves that are not related by
an RST transformation and nonetheless have the same
spectrum (i.e. possibly the same descriptor), the experi-
ments presented in Section 4 will show how this problem
has a limited impact in real life scenarios. Note that an

Fig. 1. (a) (courtesy of Dr. T. Driscoll) The first four eigenmodes of an isospectral domain. (b) (courtesy of Dr. Buser, Dr. Conway, Dr. Doyle and Dr.
Semmler) Another example of an isospectral domain.
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application of the Laplace operator (deeply connected to
the spectral properties of a closed region) in the context
of image processing and computer vision has also been
explored by Saito [26].

In the following subsections we will describe in detail the
proposed curve descriptor and the numerical scheme used
to compute it.

2.1. The Helmholtz equation

Let C be a Jordan curve corresponding to the boundary
of X, an open subset of R2. The vibration of the membrane
of a drum whose contour is defined by C is expressed by the
function wðx; tÞ : X� R! R which solves the wave
equation

Dwðx; tÞ � 1

vðxÞ2
o

2w
ot2
ðx; tÞ ¼ 0

where D denotes the Laplacian operator, t indicates time
and m(x) > 0 indicates the phase velocity of the membrane.1

This equation can be solved via separation of variables,
assuming that w can be decomposed into a spatial part
and into a temporal part according to w(x,t) = u(x)q(t). It
can be shown that the spatial part solves the Helmholtz
equation, i.e. the elliptic partial differential equation:

DuðxÞ þ k
1

vðxÞ2
uðxÞ ¼ 0 ð1Þ

where k is a suitable scalar. The corresponding boundary
problem with Dirichlet boundary conditions is:

� DuðxÞ ¼ k
1

vðxÞ2
uðxÞ for x 2 X ð2aÞ

uðxÞ ¼ 0 for x 2 C ð2bÞ

2.2. The descriptor

Our idea is to use the first Nk + 1 eigenvalues associated
to the Helmholtz Eq. (2) to build an RST-invariant descrip-
tor for the curve C (in the case where m(x) = m = const) or
for the image patch contained in the region X (if we set2

mðxÞ2 ¼ 1
IsðxÞ, where Is(x) denotes the smoothed version of

the image intensity at point x). As explained in more detail
in Appendix A all the eigenvalues associated to (2) are real
and positive and can be sorted in order of increasing value:
0 < k1 6 k2 6 k3 6 � � � with kk fi1 as k fi1. These
observations justify the following definition:

Definition 2.1. Let C be a Jordan curve and let
k1; . . . ; kNkþ1 be the first Nk + 1 eigenvalues that solve (2).

The correspondent Helmholtz descriptor (HD) is defined
as:

FðCÞ ¼def k1

k2

k2

k3
� � � kNk

kNkþ1

h iT
2 RNk ð3Þ

The invariance of the descriptor with respect to an RST
transformation can be understood observing that a vibrat-
ing membrane will produce the same tones when it is rotated
and translated, and that a scaling will only affect their
amplitude. This intuition is formalized in the following
lemma:

Lemma 2.2. Consider the two Jordan curves C1 and C2 relat-

ed by an RST transformation:

C2 ¼ fx2 2 R2 : there exists x1 2 C1 such that x2

¼ sRx1 þ tg

where s 2 R the scaling factor, R 2 SO (2) is a rotation ma-

trix and t 2 R2 is a translation vector. Let also

m2(x2) = m1(x1). Then F(C1) = F(C2).

Proof. To proof of this lemma follows from the definition
of the Laplacian in an orthogonal coordinate system,
which is:

D ¼ 1

h1h2

o

ox1

h2

h1

o

ox1

� �
þ o

ox2

h1

h2

o

ox2

� �� �

where h1 and h2 are the scale factors of the first funda-
mental form. It can be easily verified that for a scaling
s and an arbitrary rotation we have h1 = h2 = s. There-
fore we can write 1

s2 Du2ðx2Þ ¼ Du1ðx1Þ. Thus the eigen-
pairs that solve:

� Du1ðx1Þ ¼ k
1

m1ðx1Þ2
u1ðx1Þ for x1 2 X1

u1ðx1Þ ¼ 0 for x1 2 C1

can be used to construct the solutions for:

� Du2ðx2Þ ¼ ðs2kÞ 1

m2ðx2Þ2
u2ðx2Þ for x2 2 X2

u2ðx2Þ ¼ 0 for x2 2 C2

by scaling the eigenvalues by s2 and by letting
u2(sRx1 + t) = u1(x1). Since the components of the descrip-
tors are ratios of eigenvalues, the scaling factor vanishes
and the assertion holds true. h

2.3. Numerical scheme

The second order finite difference scheme we used to
solve (2) is a reasonable compromise between accuracy
and computational complexity. The step size of the N · N

discretization mesh is calculated according to

h ¼
max
x2C
kx�mðXÞk

D
ð6Þ

1 For a real membrane the phase velocity is proportional to
ffiffiffiffiffiffiffi

T
rðxÞ

q
, where

T denotes the membrane tension (expressed in Newtons over meters) and
r the membrane density (expressed in kilograms per square meter), and
function of the spatial position x.

2 The physical intuition behind this choice is that the membrane density
at x is directly proportional to the image intensity at the point x.
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where m(X) is the center of gravity of the region X (which
will be defined formally in Section 3) and D is a parameter
that defines the mesh resolution. The spatial derivatives are
approximated by the second order central difference
formulae:

o2u
ox2
ðxÞ � uðxþ h; yÞ � 2uðx; yÞ þ uðx� h; yÞ

h2

o
2u

oy2
ðxÞ � uðx; y þ hÞ � 2uðx; yÞ þ uðx; y � hÞ

h2

which provide the discretized version of (2a):

� upþ1;q þ up�1;q þ up;qþ1 þ up;q�1 � 4up;q

h2
¼ k

1

m2
p;q

up;q

where 0 6 p 6 N � 1 and 0 6 q 6 N � 1 are the indices of
the mesh points. Under these assumptions, the solution
for (2) is obtained solving a generalized eigenvalue
problem:

Lu ¼ kV u

where the linear operator L is given by the sparse symmet-
ric matrix:

L ¼ � 1

h2

A IN 0 . . . 0

IN A IN . . . 0

0 IN A . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . A

2
66666664

3
77777775
2 RN2�N2

A ¼

�4 1 0 . . . 0

1 �4 1 . . . 0

0 1 �4 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . �4

2
6666664

3
7777775
2 RN�N

Note that IN is the N · N identity matrix, the vector
u 2 RN2

is obtained by row scanning the discretization grid
so that: uNpþq ¼ uðxp; yqÞ and V is a diagonal matrix such

that V Npþq ¼ 1
mðxp ;yqÞ2

. As we anticipated before, m(xp,yq)2 is
chosen to be inversely proportional to the smoothed version
of the image Is(xp,yq), which is obtained via a convolution
with an isotropic Gaussian kernel with standard deviation
r (in our current implementation the standard deviation is
set to be equal to 2.5 pixels). This is done to ensure that m sat-
isfies the required smoothness properties. The size of the
problem can be reduced by removing the entries of the vector
u that correspond to the points outside of the domain X or to
the points on the boundary. This is equivalent to remove the
corresponding rows and columns in the matrix L and V: after
the reduction the matrix L is no more block tridiagonal
(as shown in the sparsity pattern of Fig. 2(b)) but it still is
diagonally dominant. In our implementation the eigen-
values/eigenvectors are computed using the Fortran library
ARPACK [18] (accessed through Matlab) that takes advan-
tage of the sparse and symmetric structure of L. To improve
the numerical stability of the algorithm we balance the matri-
ces by scaling them, so that iLi1 = iLi1 = 1 and we solve
the modified sparse eigenvalue problem:

V �
1
2LV �

1
2

� �
w ¼ lw

where u ¼ V �
1
2w and l is the scaled eigenvalue. Fig. 2(b)

shows an example of the matrix L associated to the region
outlined by the green boundary in Fig. 2(a). Fig. 2(c) dis-
plays the third eigenmode that solves (2). The bumps on
the eigenmode surface follow from the fact that the mem-
brane density is proportional to the image intensity. The
computation of the HD in the non-uniform case takes on
average 1.5 s on a 2.8 GHz Pentium 4 for D = 30.

2.4. Comparing the descriptors

As mentioned before, it has been theoretically proven
that there exist different curves that have the same spec-
trum. However this event is quite rare (where the notion
of ‘‘rare’’ can be formalized more precisely, see [11]) as
the experiments presented in Section 4 will confirm.

Fig. 2. (b) The sparsity pattern of the matrix L, i.e. it shows a dot for each non-zero entry of L. The matrix L is associated to the image region defined by
the green boundary in (a) (cropped from the painting Persistence of Memory by Salvador Dali). The size of the matrix L is about 104 · 104 but only
4.8 · 104 elements are non-zero. (c) The third eigenmode of the Helmholtz Eq. (2).
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Because of this, the similarity between the descriptors is
defined in terms of the weighted Euclidean:

dðFðC1Þ;FðC2ÞÞ ¼ kFðC1Þ � FðC2ÞkW

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

wk½FkðC1Þ � FkðC2Þ�2
vuut ð7Þ

where the weights are defined according to
wk ¼

def
expð k�1

Nk�1
log qÞ. The parameter q defines the ratio of

the weight of the last component of the descriptor with re-
spect to the first one. Experimentally we found that
q = 0.75 is a sensible choice. The rationale behind the intro-
duction of a weighted distance is related to the physical inter-
pretation of the components of the descriptor: the
coefficients with larger indices are associated to the fast
modes of vibration of the membrane. These modes are more
sensitive to perturbations of the shape of the curve and there-
fore it is reasonable to weight them less when comparing two
curve/regions (in [35] some numerical simulations confirmed
that the eigenvalues with larger indices are those more affect-
ed by the morphological noise). On the other hand the small-
est eigenvalues of a matrix are those more affected by the
finite precision mathematical operations.

In general the task of studying analytically how the spec-
trum of a region is affected by the perturbations of the
boundary is a complex problem. Even if this problem goes
well beyond the scope of this paper, we would like to men-
tion the approaches described in the classical book of Kato
([17], ch. 6, p. 423) and in two recent papers by Noll [25]
and by Ngo [24] that attempt to relate quantitatively the
perturbations of the domain boundary to the value of the
eigenvalues. It is also possible to approach the problem
after the Helmholtz equation has been discretized, by con-
sidering morphological perturbations that correspond to
the removal of rows and columns form L and V and eval-
uating the bounds on the eigenvalues defined by the inter-
lacing theorems thoroughly discussed in [15,20].

3. Achieving affine invariance

The descriptors we have introduced in Section 2 are
RST-invariant. However very often it is necessary to

match curves or image regions in an affine invariant
fashion. As an example, consider planar curves imaged
from two different viewpoints using a distant camera,
where distant has to be intended with respect to the cam-
era focal length. In this case the perspective distortion
can be approximated by an affine transformation (see
Fig. 3 for an example). We will describe in detail a pro-
cedure that allows to map a curve (or an image region)
in a normalized coordinate system where affine-related
objects become congruent modulo a geometric rotation
(a discussion of related approaches can be found in [1]
Chapter 5, [28] and [34]). First we will consider the case
where the content of the region is uniform (uniform case)
and then we will generalize the results to cases where we
take into consideration the intensity content (non-uni-
form case).

3.1. Uniform case

Let’s first introduce the following quantities:

• Let V ðXÞ ¼def R
X dx be the area of X, where dx is the infin-

itesimal area element.
• Let mðXÞ ¼def 1

V ðXÞ
R

X xdx be the centroid of X.
• Let RðXÞ ¼def 1

V ðXÞ
R

X ½x�mðXÞ�½x�mðXÞ�T dx be the
covariance of X.

We now have all the ingredients to define the shape of a
Jordan curve:

Definition 3.1. Let C be a Jordan curve. The shape of C is a
new Jordan curve such that:

SðCÞ ¼deffs 2 R2 : s ¼ RðXÞ�
1
2½x�mðXÞ� for x 2 Cg ð8Þ

This definition is important because it allows us to relate
affine-transformed curves, as stated in the following
theorem:

Theorem 3.2. Let C1 and C2 be two Jordan curves related by

an affine transformation:

C2 ¼ fx2 2 R2 : 9x1 2 C1 such that x2 ¼ Ax1 þ bg

Fig. 3. An example of two image regions related by an affine transformation (cropped from the painting Persistence of Memory by Salvador Dalı́).
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where A 2 R2�2 is a non-singular matrix and b 2 R2. Then

the shapes of C1 and C2 are geometrically congruent via a

two-dimensional rotation.

Proof. Before beginning with the proof we want to empha-
size the fact that all the steps are independent from the
dimension n of the space that hosts the curve. Let
C1 = oX1 and C2 = oX2. We want to show that the matrix:

R ¼def
RðX1Þ

1
2ATRðX2Þ�

1
2 ð9Þ

establishes the congruence relation between S(X1) and
S(X2). The first step consists in verifying that (9) is a rota-
tion matrix. To achieve this goal we first prove the follow-
ing identity:

RðX2Þ ¼ ARðX1ÞAT

Since the relation between the area of X1 and X2 is:

V ðX2Þ ¼
Z

X2

dx2 ¼
Z

X1

j detðAÞjdx1 ¼ j detðAÞjV ðX1Þ

we can write:

mðX2Þ ¼
1

V ðX2Þ

Z
X2

x2dx2

¼ 1

j detðAÞjV ðX1Þ

Z
X1

ðAx1 þ bÞjdetðAÞjdx1

¼A
1

V ðX1Þ

Z
X1

x1dx1 þ b
1

V ðX1Þ

Z
X1

dx1

¼AmðXÞ þ b

and therefore:

RðX2Þ ¼
1

V ðX2Þ

Z
X2

½x2 �mðX2Þ�½x2 �mðX2Þ�Tdx2

¼ 1

j detðAÞjV ðX1Þ

Z
X1

A½x1 �mðX1Þ�

� ½x1 �mðX1Þ�TATj detðAÞjdx1

¼ARðX1ÞAT

which proves the equality. To show that (9) is indeed a
rotation matrix it is enough to verify that:

RTR ¼ RðX2Þ�
1
2

ARðX1Þ
1
2RðX1Þ

1
2AT|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RðX2Þ
RðX2Þ�

1
2 ¼ I

The proof is concluded observing the following two facts:

• For any s1 2 S(C1) there exits s2 2 S(C2) such that
s1 = Rs2. To prove this statement note that if
s1 2 S(C1), then there exists x1 2 C1 such that:

s1 ¼ RðX1Þ�
1
2½x1 �mðX1Þ�

Now let x2 = Ax1 + b and s2 ¼ RðX2Þ�
1
2½x2 �mðX2Þ�

2 SðX2Þ: we want to show that s1 = Rs2. This follows
immediately from the chain of equalities:

s1 ¼RðX1Þ�
1
2½x1 �mðX1Þ�

¼RðX1Þ�
1
2A�1½x1 �mðX2Þ�

¼RðX1Þ�
1
2A�1RðX2Þ

1
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}R�T¼RRðX2Þ�

1
2½x2 �mðX2Þ�

¼RRðX2Þ�
1
2½x2 �mðX2Þ� ¼ Rs2

• For any s2 2 S(C2) there exits s1 2 S(C1) such that
s2 = R�1s1 This claim can be proven similarly to what
we just did before.

3.2. Non-uniform case

Let I(x) be the intensity value of a single channel image
at the location x; we modify the quantities introduced in
Section 3.1 as:

• Let V ðXÞ ¼def R
X IðxÞdðxÞ the weighted area of X, where

dx is the infinitesimal area element.
• Let mðXÞ ¼ ¼def 1

V ðXÞ
R

X IðxÞ xdx be the weighted centroid
of X.

• Let RðXÞ ¼def 1
V ðXÞ

R
X IðxÞ ½x�mðXÞ� ½x�mðXÞ�T dx be

the weighted covariance of X.

In this case Theorem 3.3 becomes:

Theorem 3.3. Let C1 and C2 be two Jordan curves related by
an affine transformation:

C2 ¼ fx2 2 R2 : 9x1 2 C1 such that x2 ¼ Ax1 þ bg
where A 2 R2�2 is a non-singular matrix and b 2 R2. More-
over suppose that the intensity pattern in X1 and X2 is
related according to:

I2ðx2Þ ¼ I2ðAx1 þ bÞ ¼ I1ðx1Þ
Then the shapes of C1 and C2 are geometrically congruent
via a two-dimensional rotation.

Proof. The proof follows exactly the same lines of the proof
of Theorem 3.2, since it is straightforward to show that:

• V(X2) = |det(A)|V(X1)
• m(X2) = Am(X1) + b
• R(X2) = AR(X1)AT

also in presence of the weighting factor related to the image
intensity. h

3.3. Coupling the normalization procedure with the helmholtz

descriptor

If we want to use the descriptors introduced in Section 2
in the context of affine-invariant matching we just have
to extract the shape of a curve C and then calculate the
RST-invariant descriptors of S(C) (using or not the content
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of the region). This two-step approach can be applied with
any RST invariant curve descriptor (such as the Zernike
Moment Descriptors) (see Fig. 4 and 5).

4. Experimental results

The experimental results that we will present in this sec-
tion are divided in two groups. First we will test the perfor-
mance of the Helmholtz descriptor using a semi-synthetic
dataset and then we will use the proposed descriptor to
establish matches between images of natural scenes.

4.1. Performance evaluation on a semi-synthetic dataset

The dataset for the experiments described in this section
has been extracted from the Amsterdam Library of Object

Images (ALOI, see [10]). We considered 250 frontal images
of different objects and for each view we synthetically gen-
erated 9 other images by applying an homographic trans-
formation that simulates a change in the position of the
camera. Each homography is generated following the pro-
cedure that is explained pictorially in Fig. 6(a). The rectan-
gle ABCD, which represents the boundary of the original
image, is transformed into the rectangle A 0B 0C 0D 0, which
represents the boundary of the new image. The transforma-
tion is parameterized by a single positive scalar a such that
A0O ¼ ð1þ aÞAO; B0O ¼ ð1þ aÞBO and C0O ¼ ð1� aÞ
CO; D0O ¼ ð1� aÞDO. The images are generated for val-
ues of a uniformly distributed in the interval [0.65, 1.35].
Further, the image is rotated by a random angle in [�p,
p]. Fig. 6(b) shows an example of the images generated
via this procedure. The objects are segmented using the

Fig. 4. The four plots on the left show the curve C1, its affine transformation C2 = AC1 + b and the corresponding curve shapes S(C1) and S(C2) in the case
where the content of the curve is uniform. The right plot illustrates the congruency between S(C1) and S(C2). The displayed curves are extracted from
Fig. 3(a) and (b).

Fig. 5. The four plots on the left show the curve C1, its affine transformation C2 = AC1 + b and the corresponding curve shapes S(C1) and S(C2) in the case
where the content of the curve is uniform. The right plot illustrates the congruency between S(C1) and S(C2). The displayed curves are extracted from
Fig. 3(a) and (b).
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masking information included in the original ALOI
dataset.

In the experiments described in this section, we will com-
pare3 the performance of the Helmholtz descriptor versus
the Zernike Moment Descriptor, which has been shown
to perform very well in the context of shape matching
and retrieval [31], [33]. Experimental comparisons of the
uniform HD versus the Curvature Scale Space Descriptor
can be found in [35]. The performance of the descriptors
is evaluated using the precision-recall curve calculated (over
the dataset described previously) as follows. Each curve C
(or region X) is used in turn as the query. Let A(C, Nr)
denote the set of Nr retrievals (based on the smallest dis-
tances (7) from C in the descriptor space) and R(C) the
set of 10 images in the dataset relevant to C. The precision

is defined as:

P ðC;NrÞ ¼def jAðC;N rÞ \ RðCÞj
N r

and measures the proportion of items retrieved that are rel-
evant. Similarly, the recall is defined as:

CðC;NrÞ ¼def jAðC;NrÞ \ RðCÞj
10

and measures the proportion of relevant items that are
retrieved. Note that the same quantities can be defined in
the case where the query is a region X. The notation | Æ |
denotes cardinality. The precision recall curve is plotted
by averaging precision and recall over all C, for different
values of Nr. On the plots, each marker corresponds to a
different value for Nr ranging from 1 to 20. Moreover
dashed red lines refer to the ZMD, whereas continuous
blue lines refer to the HD.

Fig. 7(a) compares the performance of the descriptors
after the curves/regions have been normalized using the
uniform or non-uniform normalization. Both the descrip-
tors have 36 components and are uniformly quantized
using 8 bits. For the HD the parameters are D = 30,

r = 2.5 and q = 0.75. Both for the ZMD and for the HD
the performance is better if the regions are normalized
using the non-uniform procedure described in Section
3.2. This can be simply explained observing that the dataset
contains several objects that have a similar shape but a dif-
ferent and distinctive image content. The non-uniform HD
seems to be less affected by the type of normalization used.
This can be understood observing that the descriptor com-
bines the information of the shape with the information of
the content of the considered region. Fig. 7(b) compares
the performance of the uniform HD vs. the non-uniform
HD. The parameters of the descriptors are the same as in
the previous experiment. The precision recall curves con-
firm the intuition that the non-uniform Helmholtz descrip-
tor captures the intensity information contained inside the
region and that this has a beneficial impact on the overall
performance of the approach. Quite surprisingly the per-
formance of the non-uniform HD is essentially equivalent
to the performance of the ZMD. We believe that this is
due to the fact that the numerical scheme used to solve
the Helmholtz equation can be refined and improved. We
will elaborate more on this claim at the end of this section.
Fig. 8(a) shows the behavior of the non-uniform HD for
different resolutions of the discretization mesh parameter-
ized by A (see Eq. (6)). As before, the remaining parame-
ters for the HD are r = 2.5 and q = 0.75 with the
descriptors coefficients uniformly quantized using 8 bits.
As it was pointed out in [35], the results indicate that the
descriptor is reasonably stable for values of D P 30. The
experiment illustrated in Fig. 8(b) compares the perfor-
mance of the ZMD versus the non-uniform HD for differ-
ent lengths of the descriptor. For both of them the
performance fluctuations are rather limited. However we
can observe a drop in performance for the HD for
Nk = 24. This might indicate that the components of the
Helmholtz descriptor with larger indices bring more infor-
mation than the corresponding ones for the ZMD. Fig. 9(a)
displays the precision recall curves for the ZMD and for
the non-uniform HD while varying the number of bits used
to quantize the descriptor components. The ZMD presents
larger fluctuations than the HD: we hypothesize that this
behavior is related to the fact that the coefficients of the
Zernike descriptors cover a larger dynamic range than

O

A

B C

D

'A

'B

'C

'D

a b

Fig. 6. (a) The random homographies are generated. (b) A set of images synthesized using the homographies generated using the method described in (a)
plus an arbitrary rotation.

3 All the code for the normalization, for the computation of the
Helmholtz descriptors and for the computation of the Zernike Moment
Descriptors can be downloaded from http://vision.ece.ucsb.edu/~zuliani/
Code/Code.html.
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the ratios of the eigenvalues of the Laplacian and hence
they are more affected by quantization issues.

From these experiments we conclude that the non-uni-
form Helmholtz descriptor provides a performance (mea-
sured in terms of precision recall) that is comparable to
the performance obtained by the Zernike Moment Descrip-
tor, which can be considered one of the state of the art
descriptors for curve/region description, matching and
retrieval [31]. We believe that the numerical method used
to compute the solutions of the Helmholtz equation can
be greatly improved with an immediate impact on the per-
formances of the HD. This opinion is mainly supported by
the observation that the HD provides a joint description of
shape and content. The normalization procedure, that can
compensate the distortion introduced by an homographic
transformation only up to a first order of approximation

is also a critical step in the overall procedure. A visual
inspection of the eigenmodes of the normalized regions
indicates that perturbations due to a non-satisfactory nor-
malization may produce completely different Helmoholtz
descriptors. Fig. 9(b) compares the ZMD and the non-uni-
form HD when the dataset is generated using an affine dis-
tortion model for the images (and therefore the
normalization procedure carries out its task with no
approximations): as expected the results obtained using
the non-uniform Helmholtz descriptors are superior to
those obtained using the Zernike descriptors. Regarding
the problem of isospectrality introduced in Section 2, a
manual inspection of a sample set of mismatched curves/re-
gions seems to confirm the intuition that with real imagery
the generation of identical spectrums from different curves/
regions is an unlikely event. As a concluding remark we

Fig. 7. (a) Compares the performance of the descriptor in the presence of uniform or non-uniform normalization. (b) Compares the performance of the
uniform HD vs. the non-uniform HD. In both experiments the descriptors have 36 components and are quantized using 8 bits. For the HD the parameters
are D = 30, r = 2.5 and q = 0.75.

Fig. 8. (a) The behavior of the non-uniform HD for different resolutions of the discretization mesh parameterized by D. (b) Compares the performance of
the ZMD versus the non-uniform HD for different lengths of the descriptor. The parameters for the HD are r = 2.5 and q = 0.75.
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want to point out that there exists a tradeoff between the
distinctiveness and the robustness provided by the descrip-
tors. In the context of image registration, where we would
like to establish matches between images, we would like to
avoid situations where the distance between the descriptors
of different (but visually similar) curves is small enough to
produce a mismatch. On the other hand, a certain degree of
robustness is needed to compensate for the approximations
introduced by the normalization procedure. Both these two
aspects will be experimentally explored in greater detail in
the next section.

4.2. Performance evaluation on real images

The performance of the descriptors has been tested on a
set of pairs of real images, representing outdoor and indoor
scenes. Every image pair displays the same scene acquired

under different points of view. The first stage of the pro-
cessing consists in finding in each image a set of candidate
curves for matching. To accomplish this task we used the
level set decomposition of the intensity values of the image,
which are known to enjoy several important invariance
properties [19]. We observed that for our purposes a good
strategy is to slice the intensity profile at two levels, one
large and one small. This way it is possible to identify dark
regions as well as bright regions. Moreover the size of the
extracted regions is large enough so that the intensity con-
tent is non-uniform. As pointed out in the previous section,
this is crucial for the generation of distinctive descriptors in
presence of curves that have very similar shapes. After the
Helmholtz descriptors are calculated for each curve/region,
the matching is performed using the weighted Euclidean
distance (7) (with q = 0.75). In Fig. 10–13 we show the
results of the curve matching procedure. Fig. 10(a) and

Fig. 9. (a) The precision recall curves for the ZMD and for the non-uniform HD while varying the number of bits used to quantize the descriptor
components. The parameters for the HD are r = 2.5 and q = 0.75. (b) Compares the ZMD and the non-uniform HD when the dataset is generated using
an affine distortion model for the images.

Fig. 10. Results of the matching procedure for the Graffiti scene. In all the examples the HD descriptor is composed by 32 components quantized using
8 bits and D = 30. The numbers with white background (green region boundaries) identify curve/regions correctly matched, while those with red
background (red region boundaries) correspond to mismatches.
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(b) show that the matching using the HD is facilitated if the
detected regions are large enough. More specifically,
Region 1 has a round shape that is present elsewhere in
the image (e.g. the other eye of the puppet or Region 9 in
image (b)). However its distinctive intensity content is
likely to be captured by the Helmholtz descriptor. Similar
considerations can be extended to the Regions 1, 11 and
15 displayed in Fig. 11. In particular Region 1 includes
the edges of the inside border of the letter ‘‘o’’, making
such a region distinguishable from the remaining two. In
Fig. 12, Regions 1, 4 and 5 have similar shapes but we
may still argue that the information contained in the inten-
sity pattern can be relevant to the final matching result.
Similar considerations hold for the harbor scene in
Fig. 13. As a final remark, we would like to suggest how
this approach could be used to bootstrap the estimation
of the mappings (such as homographies or fundamental

matrices) that relate the geometry of 3D scenes acquired
from points of view separated by a wide base line.

5. Conclusions

In this paper we presented a curve/region descriptor that
is based on the solution of the Helmholtz equation. This
descriptor has a strong physical characterization, since it
is related to the modes of vibration of a membrane shaped
as the considered region and with a density that is propor-
tional to the region intensity. Together with the descriptor
we presented a normalization procedure that is capable of
extracting the shape of a curve/region. More precisely,
curves (or image regions) are mapped to a normalized
coordinate system where affine-related objects become con-
gruent modulo a geometric rotation. The performance of
the descriptors has been tested both on a semi-synthetic

Fig. 11. Results of the matching procedure for the Books scene. See the caption of Fig. 10 for the experimental conditions and the typographical
conventions.

Fig. 12. Results of the matching procedure for the LA street scene. See the caption of Fig. 10 for the experimental conditions and the typographical
conventions.
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dataset and on real images and it has been compared with
one of the state of the art descriptors, the Zernike moment
descriptor. The results of the experiments show that the
HD performs well in the context of similarity based
curve/region retrieval and curve/region matching. More-
over the normalization procedure proved to be an impor-
tant tool to compensate for the geometric distortions
present in images acquired from different points of view.
Both the descriptor and the normalization procedure com-
bine intimately and in an original way the information
regarding the shape of the object with the information car-
ried by its visual appearance.

The initial studies that have been presented in this paper
open a number of interesting research perspectives. First of
all the calculation of the descriptor would greatly benefit
from advanced numerical methods [5,9,13,14] that could
solve the Helmholtz equation with an higher degree of
accuracy and possibly faster (it is known that finite differ-
ence schemes may introduce spurious modes and that there
exists a dependence between the grid resolution and the
largest index of the eigenpair that can be computed). We
also believe in the importance of quantitatively characteriz-
ing the influence that the perturbations on the boundaries
of the curves have on the coefficients of the descriptors or
equivalently the sensitivity of the HD with respect to mor-
phological perturbations. Another interesting research per-
spective consists in understanding the semantics of the
descriptors, i.e. how and they relate to the visual properties
of the curve/regions [6]. We would also like to emphasize
the fact that the theory that supports both the normaliza-
tion procedure and the calculation of the modes of
vibration of a membrane is independent from the dimen-
sionality of the considered objects and could be generalized
to deal with regions extracted from three dimensional
imagery (such as CAT images). Finally we are interested
in region detectors that are able to identify image portions
that have a rich intensity content and that present a
high degree of repeatability in presence of perspective

distortions. We believe that the curves obtained starting
from the level set decomposition of the intensity surface
of an image [19] could be a good input for the Helmholtz
descriptor.
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Appendix A

For a more thorough treatment of the results presented
in this appendix we refer the reader to the texts by Wein-
berger [30], Carrier et al. [4] and Evans et al. [7].

A.1. Some analytical properties of the helmholtz equation

Consider the boundary problem with Dirichlet condi-
tions (2) rewritten here for sake of convenience:

� DuðxÞ ¼ k
1

mðxÞ2
uðxÞ for x 2 X

uðxÞ ¼ 0 for x 2 C

One trivial solution for this problem is u(x) ” 0 everywhere.
We are interested in the non-trivial solutions of this prob-
lem, which can be proven to exist for a wide class of regions
X for discrete values of the parameter k and for m > 0. Such
solution are in the form of a countable set of pairs of eigen-
values/eigenfunction, i.e. (kk, uk). The next lemmas will
show that such eigenpairs have the following properties:

• the eigenfunctions are orthogonal,
• the eigenvalues are real and the eigenfunctions can be

chosen to be real,
• the eigenvalues are positive.

Fig. 13. Results of the matching procedure for the Harbor scene. See the caption of Fig. 10 for the experimental conditions and the typographical
conventions.
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Lemma A.1. Let (kk, uk) and (kl, ul) be two eigenpairs that

solve Eq. (2). Then:

hukjuli 1
v2
/ dkl

where dkl is the Kronecker triangle and the notation Æ Æ | Æ æ
denotes the weighted inner product on X: Æf|gæw =

�Xw(x)f(x)g(x)dx.

Proof. Consider the pair of equations:

� Duk ¼ kk
1

m2
uk ðA-2aÞ

� Dul ¼ kl
1

m2
ul ðA-2bÞ

and multiply both sides of (A-2a) by ul and of (A-2b) by uk.
If we subtract both members and we integrate over X we
obtain:Z

X
ðulDuk � ukDulÞdx ¼ ðkl � kkÞ

Z
X

1

m2
ukul dx: ðA-3Þ

The left-hand side can be rewritten using Green’s second
identity as:Z

X
ðulDuk � ukDulÞdx ¼

Z
C

ul
ouk

on
� uk

oul

on

� �
dx

where n denotes the normal at the boundary. Since uk and
ul are identically equal to zero on the boundary, the left
hand side of (A-3) must vanish. Consequently, since kl „ kk,
the proof is concluded observing that the right-hand side of
(A-3) yields:Z

X

1

m2
uk ul dx ¼ hukjuli 1

m2
¼ 0 �

Lemma A.2. The eigenvalues that satisfy the Eq. (2) are real

and the corresponding eigenfunctions can be chosen to be real.

Proof. We will proof that the eigenvalues are real by con-
tradiction. Let k 2 C and let u be the correspondent eigen-
function (not identically equal to zero) that solves (2). It is
straightforward to verify that the complex conjugates of
the eigenpairs will also satisfy (2). Hence, letting (kk,
uk) = (k, u) and (kl, ul) = (k*, u*) and following the same
steps of the proof of Lemma A.1 we conclude that:Z

X

1

m2
uu� dx ¼

Z
X

1

m2
juj2 dx ¼ 0 ðA-4Þ

It follows immediately that (A-4) is satisfied only if u ” 0,
which contradicts the hypothesis. Hence k 2 R. Now sup-
pose there exists a complex eigenfunction corresponding
to k : u ¼ mþ jw. Clearly both u and w satisfy (2), hence
we can always choose a real eigenfunction. h

Lemma A.3. The eigenvalues that satisfy the Eq. (2) are

positive.

Proof. If we multiply both members of equation Duk ¼
�kk

1
m2 uk by uk and we integrate over the region X we obtain:

Z
X

ukDuk dx ¼ �kk

Z
X

1

m2
u2

k dx

Applying Green’s first identity to the left hand side we
obtain:Z

X
ukDuk dx ¼

Z
C

uk
ouk

on

dx�
Z

X
krukk2 dx

Since uk is identically equal to zero on the boundary we can
write:

kk

Z
X

1

m2
u2

k dx ¼
Z

X
krukk2 dx

The proof is concluded observing that kk can be expressed
in terms of the ratio of two positive quantities. h

We conclude this appendix listing a few other important
facts.

• The eigenvalues can be sorted in order of increasing val-
ue: 0 < k1 6 k2 6 k3 6 � � � with kk fi1 as k fi1.

• For a given eigenvalue kk there is a finite number of lin-
early independent eigenfunctions (such number is called
the multiplicity of kk).

• The first (or principal eigenvalue) has multiplicity 1 and
does not change sign over X.

• The normalized real eigenfunctions uk form an ortho-
normal basis of L2(X), where the normalization is such
that

R
X

1
m2 uk dx ¼ 1.

• If the region X is not bounded it may happen that the set
of eigenpairs is no longer discrete.
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