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ABSTRACT

The first major contribution of this paper is a robust method to
learn the photometric mapping between the overlapping por-
tions of two registered images acquired either under different
lighting conditions or different sensor modalities. Then, once
such mapping is learnt, we demonstrate how it generalizes so
that the photometric appearance can be transferred from one
image to the other out of their overlapping area.

This task is fundamental in several different contexts,
such as image colorization, seamless mosaicking or change
detection. After introducing the theory and discussing the
algorithms, we will present several examples that confirm the
efficacy of the proposed method dealing with different types
of images.

Index Terms— Radial Basis Function, Approximation,
RANSAC, Photometric variation.

1. INTRODUCTION

In this paper we propose a novel, robust method to learn the
function that describes the photometric mapping between two
images that, after being registered, share a common overlap-
ping area. The basic idea is to first use the channel n-tuples
(such as the RGB values) at corresponding pixel positions to
learn robustly an approximant which is valid on the overlap-
ping portion of the images. Such mapping can then be used
to modify the photometric appearance of the images outside
their overlapping area.

This problem is relevant for many different applications,
such as photographic manipulation (e.g. colorization of aerial
images into maps), image blending and change detection. We
will present examples of the previously listed applications in
the experimental part of this paper. For the moment being, we
will introduce some related work in the filed of image regis-
tration and change detection.

In [1] Brown et al. notice that after a set of images have
been aligned to the same coordinate system, it may be nec-
essary to compensate for the gain adjustment performed au-

tomatically by the camera(s) in order to render seamless mo-
saics. They propose to minimize a quadratic objective func-
tion in the gain parameters obtained using the intensity chan-
nel values at corresponding pixel locations. This formulation
has two main limitations: first it accounts only for a simple
photometric transformation and secondly it is not robust to
the presence of outliers (such as points where the intensity
saturates and therefore it cannot be transformed just using a
gain adjustment). This event, which can be quite common,
can lead to biased estimates of the gains. Our method tackles
both problems by approximating the function that describes
the photometric transformation (for which we may not know
the analytic expression in closed form) using a set of radial
basis functions (RBF) [2]. We will demonstrate the flexibil-
ity of this approach in learning the color mappings between
electro-optical vs. infrared imagery (EO vs. IR) and elecro-
toptical vs. artificially colored imagery. Moreover, our learn-
ing scheme is robust to the presence of outliers, since the
weights of the RBFs are estimated within a RANSAC frame-
work. This allows us to discard points whose photometric
variation cannot be learnt using the RBF approximant. Such
situations may arise in presence of structural differences be-
tween the images, originated by landscape remodeling, by a
non modeled motion of the image objects or by intensity sat-
urations. In addition to the improved robustness, the distinc-
tion between inliers and outliers (a byproduct of the estima-
tion carried out within the RANSAC framework) can also be
used as a robust change detector [3].

2. LEARNING COLOR MAPPING VIA RADIAL
BASIS FUNCTIONS

2.1. Establishing Spatial Mapping Via Registration

The technical details of the image registration system we use
in our approach are beyond the scope of this paper. It is
enough to mention that the image correspondences are auto-
matically established using a (point) feature based approach.
The image pair is aligned to a common reference system us-



ing a homographic mopping [4], which is general enough to
model the perspective distortion of planar surfaces seen by a
pin-hole camera.

2.2. Radial Basis Function Networks

Supervised learning, also known as non-parametric regres-
sion, is the problem of estimating a function f , given only
a training set of N input-output mappings (xi 7→ yi, where
xi ∈ Rn and yi ∈ R for i = 1, . . . , N ). The only assump-
tion made about the function f is that is likely to be smooth.
Mathematically this turns out to minimize a functional H(f)
composed of two parts: a data fitting term E(f) and a regu-
larizing term Φ(f):

H(f) = E(f) + λΦ(f) (1)

The data fitting term can be expressed as:

E(f) =
1
2

N∑
i=1

(
f(xi)− yi

)2
(2)

The general solution for minimizing (1) can be derived using
calculus of variations as:

f(x) =
N∑
i=1

wih(x,xi) +
q∑
j=1

djψj(x) (3)

where h is the Green’s function for the differential operator φ,
ψj with j = 1, . . . , q are the basis functions of the null space
of φ and wi is a set of weights. If we require rotation invari-
ance for the function φ (i.e. φ(f(x)) = φ(f(Rx)), with R
being a rotation matrix), we obtain that the Green’s functions
h(x,xi) are Radial Basis Functions (RBFs). This means that
they depend only upon the radial distance from the centroid,
i.e. h(x,xi) = h(||x−xi||). The choice of the regularization
function yields different types of radial basis function (cubic
splines, thin plate splines, gaussian kernels). In this paper we
restrict our attention to the particular type of regularization
which gives Gaussian RBFs, whose null space is empty (see
[2], for more details). Hence the second term in the right hand
side of eq. (5) vanishes. In this case, solving for the weights
wi yields:

w = (H + λI)−1y (4)

where w and y are column vectors containing respectively wi
and yi,H is aN×N matrix such that hij = h(||xi−xj ||) and
I is the N ×N identity matrix. In most practical applications
N is very large, making the approach in (4) impractical. Start-
ing withH we can selectM < N basis vectors (columns) and
form the N ×M matrix Ĥ . This is equivalent to using only
M RBFs, centered in a subset of cardinality M of the data
points. Note that now the centroids of the RBFs are not re-
quired anymore to belong to the data points, even though this
is a common choice. Assuming for now the regularization

coefficient λ = 0, the problem of estimating the weights be-
comes a Linear Least Squares Estimation problem, in which
we want to find w such that the squared magnitude of the er-
ror e = y − Ĥw is minimized (i.e. eTe is minimized). The
LLSE optimal solution is given by the orthogonal projection:

w = Ĥ†y (5)

where Ĥ† is the pseudo-inverse of Ĥ: Ĥ† = (ĤT Ĥ)−1ĤT .
Regularization can be obtained by adding λÎ to Ĥ , where Î =
[I 0]T (I is theM×M identity matrix and 0 is aM×(N−M)
zero matrix).

2.3. Robust Estimation of the RBF weights

The least square estimator (5) that yields the RBF weights can
be biased by the presence of outliers. In this specific context
we regard as outliers the pairs of n-tuples for corresponding
pixels (in the overlapping portion of the images) for which
the RBFs cannot learn a satisfactory photometric mapping.
To overcome this problem we propose to carry out the weight
estimation within the RANSAC framework [5] (more specif-
ically we use the MSAC variation suggested in [6]). Note
that the size of the minimal sample set (MSS) is equal to
the number of the RBFs used to approximate the photomet-
ric mapping. In fact, since each n-tuple produces an equa-
tion and since there are M RBFs, the cardinality of the min-
imal sample set is M . At each iteration, RANSAC selects a
MSS which is used to instantiate the model parameters. Then,
among the remaining points, those who fit the model within
a given noise threshold Tη will be detected and the quality of
the solution is evaluated in terms of the goodness of the fit.
The algorithm will iterate enough times to reduce the proba-
bility of never sampling a minimal sample set composed only
by inliers. This probability is less than ε as long as the the
number of iterations is:

T̂iter ≥
⌈

log ε
log (1− q)

⌉
where:

q =

(
NI

k

)(
N
k

) =
NI !(N −M)!
N !(NI −M)!

=
M−1∏
i=0

NI − i
N − i

≈
(
NI
N

)M
and NI denotes the number of inliers (also estimated online
as the largest consensus set found so far). This number can
rapidly grow very large. To mitigate this problem we sub-
sample the n-tuples in the overlapping portion of the images
(i.e. we reduce N ). The error threshold, a parameter quite
critical in RANSAC, is set accordingly to the dynamic range
of the intensity values of the images: in all our experiments it
was set to Tη = 13.

3. EXPERIMENTAL EVALUATION

In this section we demonstrate the effectiveness of the pro-
posed approach in learning the photometric mapping between
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Fig. 1. Aerial view acquired under different sensor modalities. (a)
Electro-Optical (EO) image. (b) Infra-Red (IR) image. (c) Photo-
metric mapping learnt from EO to IR. (d) Comparison of the orig-
inal IR (overlapping area) and the learnt IR (non-overlapping area)
to show the consistency in the mapping. (e) Photometric mapping
learnt from IR to EO.

the overlapping portions of two registered images (often ac-
quired either under different lighting conditions or different
sensor modalities) and its capability of colorizing areas that
do not share any overlap. In all examples the registration is
obtained in a fully automatic manner (except for the case in
Fig. 3, where the satellite image and the map were already
registered). The number of RBFs is chosen between 10 and
50 and the λ parameter (coefficient of the regularizing term)
is kept constant for all the experiments (λ = 0.001). The
position of the centroids is chosen randomly selecting a sub-
set of the data points. We also would like to mention that
we tested our framework with other criteria for selecting the
centroids, such as k-means clustering on the data points or
uniform sampling of the feature space. A preprocessing step,
in which the two images are smoothed using a Gaussian ker-
nel, is used in order to mitigate the effect of the registration
errors which could give raise to incompatible n-tuple pairs.

The first two examples show the learning of the map-
ping between Electro-Optical (EO) and Infra-Red (IR). Fig.
1(c) and Fig. 2(c) show the mapping from EO to IR, learnt
based on the overlapping portions of the two views. As shown

(a) (b) (c) (d)

Fig. 2. Another aerial view acquired under different sensor modali-
ties. (a) Electro-Optical (EO) image. (b) Infra-Red (IR) image with
synthetically generated occlusion. (c) Photometric mapping learnt
from EO to IR. (d) Outliers (in green) detected by RANSAC during
the robust estimation of the RBF weights.

(a) (b)

(c)

Fig. 3. (a) Satellite image. (b) Map. (c) Photometric mapping
learnt from Satellite to Map (learnt on the overlapping region and
then extended to non-overlapping area).

in Fig. 1(d), where we compare the original IR image (on
the overlapping area) and the learnt IR image (on the non-
overlapping area) the coloring is consistent. Fig. 1(e) demon-
strates that it is possible to learn the inverse mapping (IR
to EO) as well. In addition, Fig. 2 shows that estimating
the RBF weights using RANSAC, the algorithm becomes ex-
tremely robust to the presence of outliers (i.e. black patch in
Fig. 2(b)). This can be used as a robust change detector when
the images to be compared are acquired under different sensor
modalities or lighting conditions.

In the extremely challenging example of Fig 3, maps are
learnt from satellite images. In order to make more discrim-
inant the description of the points in the first view (i.e. the
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Fig. 4. Two images of the same scene taken under different lighting
conditions. (a) Sunset scene. (b) Day light scene. (c) Photometric
mapping learnt from Sunset to Day light.

satellite image), we added to the color information a descrip-
tion based on texture (Gabor feature descriptors are computed
using 6 orientation and the smallest 2 scales, in order to limit
edge delocalization). Therefore the learnt mapping goes from
a feature space with 15 components (3 colors plus 12 texture
features) to the standard 3 component color space of the map.

In Fig. 4 we apply the proposed framework to learn the
mapping between two different lighting condition (sunset to
day light). Similarly in Fig. 5, we demonstrate that it possible
to learn the mapping between two different DOQQ images.
Mapping from the first modality to the second one is shown in
Fig 5(c), while the reverse mapping is shown in Fig. 5(d). The
colorization remains consistent despite the structural changes
in the DOQQs due to landscape remodeling.

4. CONCLUSIONS

In this paper we presented an approach to learn the photo-
metric mapping between partially overlapping images and to
extend such mapping out of the overlapping area. The func-
tion that realizes the mapping is learnt using a set of radial
basis functions whose weights are robustly estimated within a
RANSAC framework. The efficacy of our approach has been
shown on several image pairs acquired under different sen-
sor modalities and lighting conditions. We have also exper-
imentally proved that the discrimination between inliers and
outliers can serve as a robust change detector.

Future work will explore the possibility of introducing a
spatial component in the learning process so that the same
color can be mapped differently according to the spatial loca-
tion. We also plan to explore further the possibility develop-
ing a change detector framework based on the learnt photo-

(a) (b)

(c) (d)

Fig. 5. (a,b) Two different DOQQ images of the same aerial scene.
(c) Photometric mapping learnt from DOQQ1 to DOQQ2. (d) Learnt
mapping from DOQQ2 to DOQQ1.

metric mapping between two images.
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