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Abstract

This paper proposes a novel system to assist human im-
age analysts to effectively browse and search for objects in a
camera network. In contrast to the existing approaches that
focus on finding global trajectories across cameras, the pro-
posed approach directly models the relationship among raw
camera observations. A graph model is proposed to repre-
sent detected/tracked objects, their appearance and spatial-
temporal relationships. In order to minimize communica-
tion requirements, we assume that raw video is processed
at camera nodes independently to compute object identi-
ties and trajectories at video rate. However, this would re-
sult in unreliable object locations and/or trajectories. The
proposed graph structure captures the uncertainty in these
camera observations by effectively modeling their global re-
lationships, and enables a human analyst to query, browse
and search the data collected from the camera network. A
novel graph ranking framework is proposed for the search
and retrieval task, and the absorbing random walk algo-
rithm is adapted to retrieve a representative and diverse
set of video frames from the cameras in response to a user
query. Preliminary results on a wide area camera network
are presented. 1

1. Introduction

Wide area video surveillance requires the use of many
cameras. Traditional centralized approaches to video anal-
ysis do not scale well as the number of cameras in a net-
work increase. In addition, recent technological advances
in imaging, embedded computing and communication, have
made it possible to consider decentralized processing. In
such a set up, raw videos are analyzed at individual sen-
sor nodes and information exchanged between cameras de-
pending on application needs and priorities. At present,
there are no good general strategies in such a network that
would facilitate easy interaction between human image an-

1This work was supported by ONR grant # N00014-10-1-0478

alysts and the data collected/analyzed at the remote camera
nodes. This work is an attempt to fulfill this critical need.

We consider a fixed camera network deployed over a
wide area (see Figure 1 and Figure 3). Raw videos are
archived at the remote camera nodes and each camera node
has limited processing power for simple video analysis such
as motion detection and tracking. Given the bandwidth
constraint, there is no live video streaming to the distance
central node where human analysts are. We envision the
following two application scenarios for the interaction be-
tween the user and the camera network:

• Browsing(see Figure 5 and 7): A user instantiates the
interaction with the network by specifying regions on
the image plane (cameras, time intervals) of interest.
An example query could be “FIND object instances re-
lated to regionA FROM camera 1 OR regionB FROM
camera 4 between time 9:30am and 9:35am”. For each
query, the system needs to provide a “smart summa-
rization” with an overview of network activities that
satisfy the query criterion. The reason for the “sum-
marization” is to reduce communication cost when ac-
cessing the remote videos and alleviate human efforts
when interpreting the query results.
• Searching(see Figure 9): With the results from the

previous scenario, the user could then identify specific
objects of interest to initiate further searching for the
same or related objects. An example query here could
be “FIND all objects related to the object instance at
region C FROM camera 1 at time 9:32:41.3am”. A
special case for this query scenario is the classic prob-
lem of object re-identification, i.e. find the instances
of the same object in all camera views.

Designing a system to address such queries is an interest-
ing and challenging problem, and is the primary motivation
for the proposed work. One way to address this problem is
to provide human users with an high-level interface, such
as dynamic global scene visualization [1, 6]. To achieve
this, prior research has focused on methods that can detect
and track all observed objects across the entire camera net-
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Figure 1. The proposed system to facilitate human image analysts to efficiently browse and search objects in a camera network

work [7, 8, 10]. While this could be an ultimate goal for
an ideal surveillance system, it is a difficult task to achieve
with existing state of the art in computer vision. For exam-
ple, with limited on-board processing and low-quality im-
age sensors at remote camera nodes, it would be difficult to
detect and track objects in a consistent manner.

In this work, instead of trying to find global trajectories
for every object visible in the network, we propose to com-
pute representative raw video frames (snap shots) from in-
dividual cameras. These frames are likely to contain events
or objects of interest (see Figure 1) requested in the user
query. In particular, the proposed system acts as an inter-
mediate agent between distributed camera nodes and human
image analysts, and provides recommendations to the user
with a concise and authoritative set of frames captured by
the camera network. The goal is to help the image analysts
to browse, search and identify objects of interest by giving
a canonical overview of the entire set of visual observations
in the network.

The proposed system contains two essential parts: 1)

real-time object detection and tracking at the remote cam-
era nodes; and 2) modeling of relationships among cam-
era observations with a graph at a central node. The key
contributions of this paper include constructing a time-
evolving graph based on remote camera observations and
serving various user queries by ranking graph nodes (raw
video frames with observations) and recommending the
high-ranked frames to user. To prevent redundant items
from receiving high ranks, we utilize the absorbing random
walk [18] to improve searching diversity and present the
user with a diverse and representative visual summariza-
tion. To the best of our knowledge, this proposed system
is the first attempt to allow user interaction with distributed
camera network by utilizing graph modeling and ranking
to facilitate effective object browsing and searching. This
system is successfully demonstrated with an 11-camera out-
door network.

The rest of the paper is organized as follows. Sec-
tion 2 describes related works on object re-identification
and graph-based method for visual searching. Section 3
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describes the methodology in details. Finally, Section 4
presents experimental results on a real 11-camera outdoor
camera network and Section 5 concludes this paper.

2. Related Work

The proposed system is related to the problem of ob-
ject reacquisition or re-identification in multiple cameras.
In [1, 6], similar systems with distributed cameras are pro-
posed, with a server collecting camera observations and as-
signing unique global object ID based on object’s estimated
location and/or color appearance. To deal with appearance
variations across views, much work has been done on find-
ing the best matching criterion, for example the joint mo-
tion and appearance model in [7], low-dimension subspace
learning of brightness transfer functions in [8], symmetry-
driven accumulation of local features in [5], probabilistic
relative distance comparison in [17], and the shared set of
haar-feature in [14]. All these methods share one common
property, that is the pair-wise comparison of measurements
from different camera views. This way of direct comparison
might suffer when the measurements (object detection and
tracking) from the individual cameras are noisy. A more
effective way of relating observations from different cam-
eras is to treat them collectively, instead of doing pair-wise
similarity comparison, such as the method in [10], which
finds optimum paths (maximum a posterior estimates) over
all camera observations. However, their proposed solution
of linear programming still requires the perfect detection
and tracking from individual cameras. In this paper, we
propose to utilize a graph to represent the underlying rela-
tionships among camera observations and cast the problem
of user interaction as an unified graph ranking problem by
identifying representative snap shots that could contain the
observations requested by the user query.

The proposed system adapts concepts from content-
based image retrieval (CBIR), especially graph modeling in
large-scale image databases. In [9] a visual ranking algo-
rithm was proposed to apply graph-based PageRank for im-
age search. However, visual features alone might not be suf-
ficient to convey the semantics in the images. Researchers
in the CBIR community have tried to exploit multiple in-
formation cues to alleviate this problem. For example, a
graph framework was utilized in [16] to fuse information
from multiple sources (e.g. image feature and text annota-
tion). The utilization of graph model introduces structures
to the data to capture their global inter-relationship and ex-
ploit the mutual reinforcement among different modalities.
Similar ideas were used in [12, 15]. In summary, graph
modeling has been proven to be an efficient method to com-
bine multiple cues, especially for large databases.

3. Proposed Method
Figure 1 gives an overview for the proposed system. As-

suming a network of N distributed static cameras with em-
bedded storage and computing power, each camera node in-
dependently detects and tracks moving objects in real time.
For each frame with detected objects, the camera sends an
abstracted record, including object’s spatial, temporal and
appearance information, to a central node. At the central
node, a time-evolving graph is incrementally built to model
the relationships among the camera observations based on
the received records.

Given a user’s query, e.g., “FIND observations related to
region A of camera 2 between time t1 and t2”, the central
node performs ranking on the graph to identify a represen-
tative and concise set of frames and then requests the re-
mote cameras to deliver the corresponding snap shots over
the network. In this way, the system avoids the need of any
real-time video streaming, which could be prohibitively ex-
pensive.

3.1. Real-time Distributed Detection and Tracking

At each camera node, the system detects interesting ob-
jects and tracks them on the image plane. Assuming a static
camera network, objects can be detected by modeling back-
ground and identifying moving foreground. In particular,
foreground pixels are identified using background subtrac-
tion [11]. Connected foreground pixels are combined to-
gether to form foreground blobs, which are then tracked by
a mean shift algorithm [3]. In the current set up, each object
is represented with a rectangular blob. To address the prob-
lem of scale variations, we utilize the the general mean-shift
blob tracking algorithm proposed in [2].

For each tracked object, a unique object ID is assigned 2.
For each frame processed by the camera, a record is gener-
ated for each detected/tracked object and sent to the central
node over the network. Each observation record includes
information such as camera ID, time, object’s position on
the image plane and a 16-bin Hue histogram as appearance
representation.

3.2. Modeling Camera Observations with a Graph

Given a user query, the system aims to find the obser-
vations with the following two properties, centrality (i.e.,
representative ones which are closely related to the query
and many other observations and hence considered impor-
tant) and diversity (i.e., covering as many distinct groups as
possible). In a browsing scenario, there is no live video for
the user to monitor in real time. The system should provide
a smart “summarization” from all the cameras. A frame
with more detected objects is considered more important to

2Unique for the particular camera but not across cameras, therefore no
cross camera collaboration/communication is required.
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the human analysts. Similarly, an object observed by mul-
tiple cameras over a longer duration is more important than
an object just appearing in a single camera. On the other
hand, in a searching scenario, a user might be interested
in a particular object(s). Instead of showing near-identical
observations, it would be more interesting to display the ob-
servations with different properties, e.g., different visual ap-
pearance and from different cameras etc.

With a graph framework, we can easily address the above
requirements utilizing effective graph ranking algorithms,
e.g., absorbing random walks [18] and manifold ranking
with stopping points [19]. Further more, the graph frame-
work presents a principled formulation to answer different
queries. In such a graph framework, individual camera ob-
servations (i.e., frames with detected objects) form the ver-
tices V in a simple graph G(V,W). The weight matrix W
defines the strength of connectivity between camera obser-
vations (e.g., the same object at different views). Note that
the graphG is built at the central server incrementally as the
new records are received in real time from the cameras.

Time delay T
d

between 
two blocks

Figure 2. Spatial-temporal topology across cameras

In our current implementation, W is estimated ac-
cording to objects’ visual appearance and spatial-temporal
topology in the camera network. Given two vertices Xi and
Xj , their edge weight Wij is calculated using Algorithm 1.
If the two vertices are from the same camera, Wij is set to
kω where k is the number of common objects (records with
same local object ID) in Xi and Xj and ω here is a con-
stant. If frame Xi and Xj are from different cameras, we
first check whether it is likely that the two observations are
caused by the same object based on the network’s spatial-
temporal topology (see Figure 2).

To model the spatial-temporal topology across cameras,
the image plane from each camera view is divided into 8x6
blocks. We assume the time delay Td for an object to travel
across any two blocks follows a Gaussian distribution with

known mean µ and variance δ2. With this topology model
and two observation records Ri and Rj , from Xi and Xj

respectively, we can calculate PST (Ri, Rj), the likelihood
thatRi andRj belongs to the same object, based on the time
delay betweenBlock(Ri) andBlock(Rj). If PST (Ri, Rj)
is larger than a threshold 3, the weight Wij is increased
by pA(Ri, Rj) ∗ pST (Ri, Rj), where pA(Ri, Rj) models
two record’s similarity in visual appearance (correlation be-
tween the Hue-histograms of record Ri and Rj).

Algorithm 1 Weight computation between two vertices
Input: Two vertices Xi and Xj in the graph
Output: Edge weight between Wij between Xi and Xj

1: Initialization: Wij = 0, i.e., no connection.
2: for Each each object record Ri in Xi do
3: for Each each object record Rj in Xj do
4: if Ri and Rj are from the same camera and share

the same object ID then
5: Wij = Wij + ω
6: else
7: if Ri and Rj are from different cameras and

pST (Ri, Rj) > Threshold then
8: Wij = Wij + pA(Ri, Rj) ∗ pST (Ri, Rj)
9: end if

10: end if
11: end for
12: end for

3.3. Query Serving with Graph-based Ranking

With the graph modeling of camera observations, we can
utilize off-the-shelf graph ranking methods to answer dif-
ferent user queries. Among them, VisualRank [9] is prob-
ably the most related to our scenario. Essentially a simi-
larity graph is constructed based on image visual similar-
ity, and the PageRank algorithm [13] is applied to re-rank
the initial text-based searching results. However PageRank
does not ensure diversity at all, i.e. if two images are both
very similar to many other images, they will have similar
(high) ranks. Thus redundant information is being kept.
In order to deliver more diverse ranking results, recently
methods such as absorbing random walks [18], decayed
DivRank [4], and manifold ranking with stop points [19]
have been proposed. These methods perform quite simi-
larly, this paper adapts the absorbing random walk approach
since it is easy to implement. The main idea is to let a
high ranked node to transform into an “absorbing” state
during the random walk on the graph. This node will then
“drag down” the importance value of other similar unranked
nodes, thus encouraging diversity. The algorithm consists

3This threshold helps to remove edges with negligible weights, which
simplifies the graph model and improves ranking speed significantly with
little effect on the final results.
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of two parts. The first part is to find the overall top ranked
node. Assuming an n × n weight/affinity matrix W, a raw
transition matrix P̃ is defined by row-normalizing W, i.e.
P̃ij = Wi,j/

∑n
k=1 Wik, such that P̃ij is the probability

that the random walker moves from vertex i to j. Then a
teleporting random walk P is defined by adding each row
with the user-supplied initial preference vector r,

P = λP̃+ (1− λ)erT, (1)

where e is an all-1 vector. The r is determined accordingly
to the particular query scenario. The final ranking vector
π is the stationary distribution of the random walk, i.e., the
solution for equation π = PTπ. The vertex with the largest
stationary probability is the overall top ranked observation,
i.e.,g1 = argmaxni=1πi

The second part of the absorbing random walk is a series
of ranking iterations to pick the remaining vertices in the
graph. Suppose a group of top-ranked vertices G = {gi}
have been selected, they are turned into absorbing states
by setting Pgg = 1 and Pgi = 0, ∀i 6= g, which is es-
sentially adding a self-edge to those vertices and making
them into sinking/stopping states. If we arrange vertices
such that ranked ones are listed before unranked ones, we
modify transition matrix P to

P =

[
IG 0
R Q

]
. (2)

Here IG is the identify matrix on G. Submatrices R and Q
correspond to the rows of unranked items from (1).

Based on the above matrix, we can compute the expected
number of visits to each remaining nodes before reaching
any absorption by v = (NTe)/(n−|G|), where N is known
as the fundamental matrix: (I−Q)−1. Again, we can select
the vertex with the largest expected number of visits as the
next item in ranking: g|G|+1 = argmaxn|G|+1vi. The main
steps to compute the diverse ranked list is summarized in
Algorithm 2.

Algorithm 2 Serve user query by ranking camera observa-
tions with absorbing random walk
Input: Graph weight matrix W and preference vector r.
Output: Top-ranked vertices {g1, g2, g3, . . .}.

1: Compute the initial transition matrix P from (1).
2: Compute stationary distribution π.
3: Pick the top ranked item g1 = argmaxiπi.
4: while Need to look for enough high ranked vertices do
5: Convert ranked vertices into absorbing states (2).
6: Compute the expected number of visits for all re-

maining vertices before reaching any absorption.
7: Pick the next vertex g|G|+1 = argmaxiπi.
8: end while

The preference vector r in (1) is a n-dim vector repre-
senting the user query. The entries of the vector are mostly
zeros, except for the ones that correspond directly to the ver-
tices (i.e., camera observations) carrying initial query inten-
tion. For instance, suppose an image analyst is interested
in objects related to “region B of camera c between time
t1 and t2”. The system will first identify all frames with
records that match this criteria and then mark the corre-
sponding m vertices {Gq} as the query vertices. Then, a
uniform score is given the vertices in this query set {Gq},
i.e., ri = 1/m if i ∈ {Gq}, and ri = 0 otherwise. Here we
can consider r as an initial ranking vector that kick-starts
the absorbing random walk. For the searching query, it is
more straightforward. For example, to search for a particu-
lar object instance at time t of camera 3, which corresponds
the vertex j in the graph, preference vector is set as rj = 1
with all other entries as 0.

4. Experiments

1

2

7

10

3 4

5
6

8

9
11

Central node

Figure 3. Experimental setup: an outdoor network with 11 cam-
era nodes observing bike paths (shown in green line, the area is
approximately 600 meters in width and length).

To demonstrate the proposed system, an outdoor net-
work of 11 cameras is deployed along bike paths in an ur-
ban environment (see Figure 3). In particular, our “smart
camera node” consists of two parts: a Cisco WVC2300
wireless-G Internet video camera and a nearby dedicated
computer. The local computer achieves and processes the
live streamed video (640x480, about 20fps) from the Cisco
camera. The computer and the wireless camera together
simulate a distributed smart camera node in a camera net-
work. These “smart camera nodes” communicate with a
distance central server node, where the human user locates.
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C8 C9 C10 C11

Figure 4. Example graph weight matrix W with observations from cam-
era 8-11 in 60 seconds. Brightness indicates edge weight.

Time of Interest:  9:39am to 9:42am

C8 C9

Figure 5. Browsing scenario 1 with regions of interest indicated by the
rectangles in camera C8 and C9.

Time of Interest:  9:44am to 9:50am

C2 C3
Figure 6. Browsing scenario 2 with regions of interest indicated by the
rectangles in camera C2 and C3.

It is a challenging task to reliably detect and track cyclists
and pedestrians observed in the scene, especially with low
quality video sent from the wireless cameras. Hence this ex-
perimental set up serves as a good test bed for the proposed
system.

Due to the nature of the problem, there is no off-the-
shelf metric to perform large-scale quantitative evaluation.
In this paper, we demonstrate the effectiveness of the sys-
tem with a few application scenarios. Figure 5 and 6 show
two “browsing” examples and Figure 7 and 8 show the cor-
responding top ranked camera observations. The system
allows regions of interest from any set of cameras, which
simply specify the preference vector r for the absorbing

random walk algorithm. The anticipated result is that top
ranked frames should contain majority of the objects (di-
versity) related to the browsing query (i.e., the object has
passed through the regions of interest of all the queried cam-
eras within the specified time). This does not mean the re-
turned frames must be from these regions of interests, as
other frames might contain the same objects with more in-
formation and hence more representative (centrality). The
following table shows the error (wrong objects) and recall
(number of matched objects which have been identified) for
the two scenarios.

Browsing 1 (Top 10) Browsing 2 (Top 15)
Recall 10 out of 10 objects 17 out of 22 objects
Error 1 out 10 frames 0 out 15 frames

With results from browsing, a user can further initiate
searching of a particular object instance. Figure 9 shows the
searching result when querying with the 5th ranked frame of
Figure 7 (starred). Figure 10 shows the results when search-
ing for the 11th ranked frame of Figure 8 (starred). For both
cases, the top ranked frames contain a diverse set of objects
that is spatially or temporally close to the query object. Col-
lectively, these frames tell a summarized “story” for the ob-
ject of interest. The red cyclist in Figure 9 travels along the
bike path alone all the time, thus the system returns snap-
shots of him passing different camera views. In addition,
the top ranked frames contain other cyclists who are tempo-
rally nearby. In Figure 10, the pink cyclist travels along the
bike path while occasionally passed by other cyclists. As
a result, the system finds those frames which contain other
cyclists which are spatially nearby.

5. Discussions
This paper proposes a novel system to assist human im-

age analysts to effectively browse and search for objects in
a large distributed camera network for visual surveillance.
In particular, the proposed approach directly models the re-
lationship among raw camera observations with a graph.
All frames with detected/tracked objects are treated as ver-
tices in a graph, with edges determined by spatial-temporal
topology and visual appearance. With the proposed ap-
proach, reliable detection and tracking from local cameras
is not required, as there is no need for cross camera ob-
ject association. The graph structure naturally captures the
global relationship of camera observations, and enables the
system to answer various human queries through a unified
ranking framework. The system utilizes absorbing random
walk algorithm to retrieve a representative and diverse set
of video frames based on the human queries. The effective-
ness of the system is demonstrated with a 11-node outdoor
camera network. For future work, we would like to uti-
lize the similar graph model here for other applications such
as event recognitions by clustering graph vertices. In addi-
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9:39:18.2am
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9:39:27.8am
C8

9:41:00.8am
C8 9:38:55.6am  C11 9:42:08.5am  C6

9:39:42.6am C8 9:39:09am C8 9:41:46am C7 C8 C99:40:18am 9:41:07.1am
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P8

P5
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P6

Figure 7. Top 10 ranked frames for browsing scenario 1 (Decreasing order: left to right, top to down. The green ellipses are the blobs detected by the
remote camera nodes). There are a total of 10 distinct objects satisfying the criterion in Figure 5. All of them have been identified (labeled in yellow). The
8th ranked frame is a “false positive” (it has not passed the queried regions within the specified time interval).

C3
9:39:27.8am

9:47:04.1am C29:46:27am 9:46:13.8am  C5  C2

9:48:58.5am C3 9:44:02.7am C2 9:49:41.5am C3 C4 C39:46:15.2am 9:48:18.2am

C39:49:36.6am 9:47:06.3am

9:43:12.9am C2 C39:48:18.6am 9:45:52.6am C6 9:47:58.6am C3 9:45:06.3am  C2

P1

P2

P3
P4

P5
P6

P7
P8

P10

P9

P11

P12 P13 P14

P14

P6
P15 P14

P17

P16

Figure 8. Top 15 ranked frames for browsing scenario 2 (Decreasing order: left to right, top to down. The green ellipses are the blobs detected by the
remote camera nodes). There are a total of 22 distinct objects satisfying the criterion in Figure 6. 17 of them have been identified (labeled in yellow).

tion, we plan to prepare manually labeled object trajectories
to facilitate large-scale quantitative performance evaluation.
The presented data set in this paper will also be released to
the research community in the near future.
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