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ABSTRACT

This paper proposes a distributed algorithm for object track-
ing in a camera sensor network. At each camera node, an
efficient online multiple instance learning algorithm is inte-
grated with particle filter for camera’s image plane tracking.
To improve the tracking accuracy, each camera node shares its
particle states with others and fuses multi-camera information
locally. In particular, particle weights are updated according
to the fused information. The effectiveness of the proposed
algorithm is demonstrated on human tracking in challenging
environments.

Index Terms— Camera sensor network, Distributed
tracking, Particle filter, Multiple instance learning

1. INTRODUCTION

Object tracking using multiple cameras is a key step to many
applications such as video surveillance. This paper proposes
a consistent tracking algorithm using a distributed smart cam-
era network where each camera node has its own processing
power and it can communicate with each other. Convention-
ally, object tracking in a camera network is realized in two
steps, 1) Visual tracking of the objects on the image plane at
each camera node; and 2) Fusion of information on a global
ground plane.

To reduce the system complexity, the above mentioned
steps are often done in an open-loop sequential manner. Ob-
ject tracking on the image plane of individual camera is often
considered to be a solved problem when using a camera net-
work. Unfortunately, this is not the case even with the state-
of-art tracking algorithm. Robust visual tracking is still an
open issue in real life tracking applications, e.g. rapid appear-
ance changes in objects, lighting changes, occlusions, etc.

The tracking accuracy of a camera network can be im-
proved through data fusion by exploiting the redundancy in
multiple cameras with overlapping fields of views. The infor-
mation can be fused either at a central/head node [1, 2, 3] or
by a distributed consensus algorithm [4]. However, no mat-
ter how robust a fusion algorithm is, the entire object tracking
process might still fail because of the inaccurate visual track-
ing on each camera’s image plane.

The main bottleneck for robust object tracking in a cam-
era network is the low level visual tracking at individual cam-
era nodes. This paper proposes a closed-loop interaction be-
tween visual tracking on the image plane and data fusion on
the global space. In other words, the fusion result is used as
feedback to enhance the local tracking, as illustrated in Fig. 1
and Fig. 2. Ateach camera node, a learning-based tracking al-
gorithm (i.e. a discriminative appearance model [5, 6] using
multiple instance learning) and local particle filtering are used
to track object’s location on the image plane. Considering a
synchronized and calibrated camera network, particles (esti-
mated from the object’s tracked blob) from individual camera
nodes are then shared with each other over the network. At
each camera node, a mixture of Gaussians are fit over all the
particles and is used to drive a global ground plane Kalman
filter. Then, the local particle’s weight is re-adjusted based on
Kalman filter posterior state density.

Compared with similar works in the literature, the main
contributions of this paper can be summarized as follows

e For visual tracking at each node, multiple instance
learning is used to learn a discriminative appearance
model to deal with the appearance changes. This is
combined with particle filter by generating the training
examples based on particle distribution (section 3.1).

e A distributed fusion algorithm is proposed to fuse all
the shared particles from multiple cameras and update
the local particle weights based on the global ground
plane Kalman filter(section 3.2).

2. RELATED WORK

Multi-sensor fusion and tracking have a long history in signal
processing, control theory, and robotics [7]. There have been
many efforts recently on tracking objects in a camera network
setup [1, 2, 3, 4, 8]. However, most of these methods are not
distributed, i.e. require a central server to collaborate all cam-
eras. Most methods do not consider jointly the visual tracking
on the image planes and the data fusion on the ground plane.
The closest works to the proposed method in terms of the ba-
sic framework are [2] and [4].
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Fig. 1. Closed loop interaction between object’s image plane
tracking and ground plane fusion. As illustrated here, incor-
rect particles could be discarded because of the fusion.

In [4], a distributed Kalman consensus filter is used to fuse
noisy measurements (object’s ground location) from individ-
ual cameras to improve global tracking results and achieve a
consensus at all the camera nodes. Although their proposed
method is distributed, they assume that local object tracking
on the camera’s image plane is already solved. In particular,
they model the ground plane measurements from each cam-
era node with a simple Gaussian distribution. This might not
be robust given the complex nature of vision-based tracking.
Instead, in this paper, a set of particles are used to model the
ground plane measurements from each camera node. In ad-
dition, the proposed method uses the fusion result to improve
the visual tracking on the camera’s image plane without any
additional communication requirements. In [4], there is no
such closed-loop interaction between the two modules.

In [2], a multi-camera people tracking algorithm based on
collaborative particle filters is discussed. In particular, a tar-
get is tracked on both individual camera’s image plane and
on the ground plane by individual particle filters. The fusion
results on the ground plane are incorporated by each camera
as a boosted proposal function. This help to re-adjust parti-
cles for each camera’s image plane tracking. This is similar to
the proposed method. However, in the proposed method, re-
adjusted local particles are not only used as a starting point for
tracking in the next frame but also used to generate a more-
representative set of training examples to update a discrimi-
native classifier. This is due to the treatment of tracking prob-
lem as a classification problem so that both the object and
the background are parts of the model. This method (often
called “tracking by detection”) achieves much more robust
visual tracking compared to the classical color observation
model used by [2]. In addition, in this paper, the fusion is

achieved in a distributed manner without any central fusion
module (needed in [2]). Therefore, there are no additional
message exchanges in order to send the fusion results as feed-
back to camera node’s local image plane tracking.

As described above, this paper uses a learning based
tracking algorithm at each camera node to track a target on
the image plane, i.e. use a discriminative classifier as the
adaptive appearance model. By learning the appearance of
both foreground and background, this kind of approaches
that training a model to separate the object from the back-
ground via a discriminative classifier have been shown to
achieve superior results [5, 6, 9]. To address the problem
of noisy training examples when updating the discriminative
classifier, a online multiple instance learning (MIL) algorithm
similar to the MILBoost proposed by Babenko et al. [5] is
used. In particular, this paper combine the MIL tracking in [5]
with a particle filter. Details will be discussed in section 3.1.

3. PROPOSED TRACKING APPROACH

Fig. 2 shows an overview of distributed tracking system in
a fixed camera network. Assuming that object has already
been detected, the detected object serves as the input to the
tracking system. In addition to this, cameras are assumed to
be pre-calibrated with respect to the global ground plane.
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Fig. 2. Proposed Distributed Tracking Framework

3.1. Image Plane Tracking

Generally, any tracking system consists of three main com-
ponents: image representation, appearance model and mo-
tion model. In this paper, image representation (computed for
each image patch x) consists of a set of Haar-like features[10]
and a special culture color histogram [11]. The discrimina-
tive classifier H forms the appearance model using a multiple



instance learning algorithm similar to [5]. Given an image
patch z, and its binary label y = 1 indicating the presence
of the tracked object, the instance probability p(y = 1|z) =
1/(1 4 exp(—H(z))) (p(y|z) is used as shorthand).

At frame ¢, tracker maintains the object state 0, =
[row, col, scale]™ with a particle set {Ot ,7rt } where
[row, col] is the position on the image plane. Given a particle
set from previous frame ¢ — 1, a basic sequential importance
re-sampling particle filter is used to update the particles as
follows:

1. Generate an updated particle set by sampling from the
proposal distribution (assumed to be Gaussian here),
l IPNC l l
0} ~ p(0;”[0g; ;) = N(0[:0f; ;. T), where
U is the covariance matrix of the state variables. lL.e.,
state dynamics is modeled using a Brownian motion.

2. Re weight each particle [ according to H: ng) x

l
mip(yl(0f).
3. Re-sample particles from current particle set.

Once object’s state is updated (after fusing the measure-
ments from other cameras) at frame ¢, the tracker updates
the appearance model H using the particle set. In particu-
lar, training examples for the classifier learning are generated
based on the updated particle distribution. This is more ro-
bust compared with the greedy method of training example
generation in [5].

3.2. Information Fusion across Multiple Camera Views

At the camera node ¢ , every particle 0§” (t) (i.e. an rectan-
gular blob) corresponds to a possible location of the object’s
position Z(l)( t) = [Gx(t),Gy(t)] on the ground plane. To
avoid the complex task of detecting the intersection point of
the visual object and the ground plane, the object’s ground po-
sition is estimated by mapping the lower-middle image point
of the blob to the ground plane with a pre-computed Homog-
raphy. This simple method of ground position measurement is
computationally efficient at the expense of noisy positions, as
the particles are already noisy in nature. Therefore, a conven-
tional Gaussian measurement noise assumption, as in [1, 4],
would not be valid. In other words, the cameras have to share
their particles, {Zgl) ()}, directly with each other instead of a
more compact distribution parameters.

To reach consensus among all the cameras and reduce
the measurement noise, a mixture of Gaussians is fit over the
{Z"(t)} from all the cameras. Let 12" and P{*) be the mean
and covariance of the fitted G Gaussians. Define measure-
ment m; and measurement noise covariance R; as

Za(g) (9) (1)

G
Z P(g) + (g) mt)(ugg) _ mt)T) (2)

where agg ) is the weight of gth Gaussian component.

At each camera node, a Kalman filter is used to estimate
the object’s ground position. With the new measurement m;
and R, the state of the Kalman filter is updated.

From the posterior density of the Kalman filter, the distri-
bution of object’s ground plane position, P([G(t), Gy (t)]),
is obtained. The particle weights 7r§ ) of 05”( t) can then be
updated with P(Z"(¢)).

By re-weighting particles and re-sampling, incorrect par-
ticles (outliers) can be removed (See Fig. 1). This gives a
more reliable estimation of the object’s state in the image
plane. These refined particles (image patches) are then used
to generate a more representative set of training examples for
updating the appearance model. This forms a closed loop be-
tween the image plane tracking and the global ground plane
fusion (Particle weighting with model H—Ground plan fu-
sion —Particle re-weighting —Updating H ). Note that, each
camera replicates this fusion operation at its local node. There
is no need for a central controller. In addition, the sharing
of particles across cameras does not put much burden on the
communication channel compared with methods that requires
sending image data across cameras.

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed method, it
is tested with our own dataset with some complex scenarios
consisting of five camera sensor network along a long corridor
(See Fig. 3). In particular, we show how the proposed algo-
rithm deal with the complex shapes and appearance changes
in humans, and the unexpected illumination variations (e.g.
shiny floor surface, shadows, sudden lighting changes caused
by door-opening and closing etc.). During experiments, 200
particles are used at each camera node.

camera 5

camera 3

Fig. 3. Five Camera Sensor Network

camera 1

Fig. 4 shows how the information fusion helps in cleaning
up the particles. Before the fusion, object’s ground plane po-
sition {ZZ(-Z) (t)} is directly obtained from the particles (tracked
blobs) of all the cameras and hence it is very noisy. With the
fusion (section 3.2), object’s position estimate on the ground
plane becomes less noisy (Fig. 4(c)) by exploring the multiple
camera’s redundancy. With the updated global ground plane
estimation, weights of the noisy particles on the image plane
at each node are scaled down. As illustrated in Fig. 4(a,b) for



cameras 2 and 3, some of the non-conforming particles are
discarded after particle re-sampling due to low weights.
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Fig. 4. Particle refinement due to information fusion across cam-
eras. Each blue box represents a particle state. Different particle
color indicates different cameras (Best viewed in color).

Fig. 5 shows how the proposed closed loop framework im-
proves the local image plane tracking. In camera 1, when two
objects get close to each other, some of the particles cover the
wrong object. Since the learning algorithm uses these parti-
cles to generate the training examples, the appearance model
H starts capturing some features from the wrong object and
loses track of the correct object eventually. With the closed
loop, wrong particles get discarded after the fusion and more
representative particles are kept intact for the learning algo-
rithm. As seen in the Fig. 5, even though the camera 1 has
some difficulties in tracking the object, other cameras might
have a clear view of the same object (such as camera 3 showed
the figure).

5. CONCLUSION

In this paper, a distributed object tracking algorithm in a cam-
era sensor network is proposed. At each camera node, multi-
ple instance learning is effectively coupled with particle filter
for local image plane tracking. Particles are shared across dif-
ferent cameras. Information from multiple cameras are fused
on the ground plane and the fused information is used to re-
weight the particles. The distributed nature of this algorithm
keeps the communication channel free from frequent data ex-
changes (no image related data is shared). The proposed al-
gorithm is fully distributed and it gives robust tracking re-
sults in-spite of noisy measurements at each node. For future
work, we plan to extend the system for multiple object track-
ing where we need to associate objects across cameras.

Fig. 5. Improvement in local image plane tracking with the pro-
posed closed loop tracking algorithm.
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