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Abstract

An approach to image retrieval using spatial configura-
tions is presented. The goal is to search the database for
images that contain similar objects (image-patches) with a
given configuration, size and position. The proposed ap-
proach consists of creating localized representations ro-
bust to segmentation variations, and a sub-graph match-
ing method to compare the query with the database items.
Localized object representations are created using a com-
munity detection method that groups visually similar seg-
ments. Extensive experimental results on three challenging
datasets are provided to demonstrate the feasibility of the
approach.

1. Introduction
Searching for images with a specific visual content has

been a topic of intense research in recent years [3]. How-

ever, majority of the prior work focuses on searching for

images using global (whole image) attributes, and lacks dis-

crimination based on localized objects or their relative spa-

tial positioning in the images. We consider here a more gen-

eralized problem in which the objects of interests are pro-

vided by a query set that includes multiple image-patches

or images along with the desired spatial configuration, size,

and location of such patches in the target image.

Our goal is to develop localized representations that

would enable queries similar to the one shown in Figure

1. Here the user provides objects/image-patches, together

with specifications on their spatial configuration, size and

position in the image. From such a specification, an image

query is generated and matched against the database. To

achieve this goal, localized representations are needed. We

propose a robust graph-based representation that is learned

from image-part groupings, and encodes size, location, and

spatial configurations of objects/patches. Sub-graph match-

ing is used to search and retrieve similar configurations.

Conventional methods usually represent a query (for in-

stance a “dog”) through a single image or a set of im-
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Figure 1: (a) Example of images/images patches provided by the

user. Matrix [A] is the associated adjacency matrix that denotes the

desired spatial relationship between the provided patches, matrix

[S] represents the desired size of each image-patch, and matrix

[P ] represents the desired position of each image-patch. (b) The

system automatically creates a graphical query representation for

the image-patches based on matrices [A], [S], and [P ]. (c) An

ideal retrieved image corresponding to the specified configuration,

size, and position is depicted.

ages, possibly along with some textual description of the

query [1, 34]. Many approaches focus on the global image

representations [1, 16, 23], while some encode the spatial

information of image features to improve the discrimina-

tive power of the feature representations [13, 11, 19]. In

[19, 15, 33], a large number of key-point based descrip-

tors are computed and their relative spatial relationships are

encoded. Also, [34] calculates the location offset of two

matched features. [14] utilizes the spatial co-occurrence

information of visual words mined from database images

to boost the retrieval performance. The work in [11] in-

corporates spatial layout by introducing a Gaussian loca-

tion model per visual word and encoding only the absolute

spatial information. Utilizing localized grids into the fea-

ture representation is also a common approach to integrate

spatial information [2, 10, 13, 24]. These methods often

result in high-dimensional representation and rely on a pre-

defined partitioning of the image which is independent of its

content. Moreover, they are not generally concerned with

retrieving an exact spatial configuration that exists between

objects of interest.

Alternatively one can compute localized features using

segmented image regions. [4] investigates object segmen-
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tation of database images for image retrieval and [32, 30,

31, 17] focus on semantic segmentation and propose mod-

els to recover the pixel labels of the training images. How-

ever, the aforementioned methods require every image in

the training set to be comprehensively labeled which makes

it impractical in most scenarios. In contrast, the proposed

approach does not require detailed image annotations. In-

stead, it automatically groups related image parts across the

training set using spectral clustering. Furthermore, most ex-

isting methods do not focus on matching the spatial config-

uration of the query with database images. [9] proposes an

approach based on soft-matching tree-walks for classifica-

tion, however it requires that every image be segmented into

equal number of regions.

[25] and [29] are approaches based on fast approximate

spatial verification. However, due to the high computational

cost, these methods are only applied to the top ranked im-

ages. In contrast, our approach is able to apply re-ranking

to all images in the database by introducing new graphical

representations that significantly reduce the graph matching

cost.

The authors of [12] and [27] investigate image re-

trieval with structured object queries by encoding object-

names and certain relations among objects with textual

phrases like “car on road”. While the query in [12] is re-

stricted to queries with word descriptions (such as Q =
{car on road}), our approach can be applied to cases where

the queries can not necessarily be represented by textual de-

scriptions. An example of that is when a graphic designer

searches for illustrations of a specific design that is a com-

bination of two or more designs and those designs can not

be easily described by words. The authors in [35] develop a

method that matches the objects present in the image. How-

ever, they assume that the ground-truth bounding boxes are

available in the training images which would not be feasi-

ble if the number of images and the number of object classes

increase. In addition, during testing, in order to reduce the

number of possible configurations (i.e. locations and scales)

for each object category, they run an object detector on all

locations/scales in a standard sliding window manner. This

results in bounding objects with a rigid box which may not

be adaptive to all object shapes. Consequently, not only it

might not be able to get the regional representation that is

solely corresponding to each object, but also it might not be

able to provide a good measure for the size and position of

each object (although matching the size and the position of

objects were not investigated by authors of [35]). In con-

trast, our approach is based on segmentation followed by

learning image-parts enabling one to highlight the region

associated with each object and therefore providing the abil-

ity to measure the object’s size and position accurately.

In this paper, we consider a retrieval problem in which

a query is defined by a set of images/image-patches along

with their desired spatial configuration, size, and/or location

in an image (Figure 1). We use an attributed graph for each

of the training images based on segmented regions to cap-

ture the relative spatial information and adopt an algorithm

to collectively learn image parts across all training images.

This is done by discovering different groups (communities)

of related image parts based on spatial and visual charac-

teristics using a spectral clustering approach. This provides

a way to compensate for variations in segmentation. Each

segmented region in an image is represented by a commu-

nity with the highest strength of association. Based on these

communities, a robust graph representation is derived for

sub-graph matching between the query configuration and

training images. The highest matching scores would cor-

respond to images that are most similar to the constructed

query through a formulation that will be discussed in Sec-

tion 2.3.

In summary, our contributions is twofold: First, a new

graphical image representation based on segmentation is

proposed. Second, an approach to a query retrieval problem

using image-patches and spatial configuration is presented.

The remainder of this paper is organized as follows. In

Section 2, we describe the overall framework of the pro-

posed retrieval system. The applicability of the proposed

approach is illustrated in Section 3 through a query retrieval

problem on three challenging datasets. Finally, we conclude

the paper with some final remarks and directions for future

research in Section 4.

2. Proposed approach
In this section, we describe the details of the our model

as illustrated in Figure 2.

2.1. Attributed graph structure

Suppose I is an image in a set containing all training

images {1, 2, ..., D}, and G(I) = (V (I), E(I)) is a graph

with V (I) and E(I) representing the nodes and edges of this

graph, respectively. Each node corresponds to an image part

indicated by a segmented region. Two nodes are connected

by an edge if the corresponding regions are adjacent, i.e.

E
(I)
ij is 1 iff i is adjacent to j and 0 otherwise.

To retrieve images with similar spatial configurations,

a query is also defined using a graph-based representation

denoted by G(Q) = (V (Q), E(Q)), where the nodes corre-

spond to the provided image-patches and edges represent

adjacent regions defined by the specified configuration.

The segmentation is computed using the method of [7].

To represent regions (nodes), we extract densely sampled

SIFT features [18] from each image, and map each 128 di-

mensional feature vector to a segment that they belong to.

Each node is then represented by vector h(i) using the Bag

of Words (BOW) [28] model. In what follows, the appear-

ance of node i is denoted by h(i).
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Figure 2: (a) Sample images, their corresponding segmented images and their initial graphical image representations. (b) An example

of network of segmented images. Dotted lines represent connections between segmented regions based on spatial adjacency or visual

similarity. Each color of an ellipse represents a different community. (c) Resulting images after mapping each of the segmented regions

to the detected communities and its corresponding updated graphical image representation. This graph is used for computing the graph

matching score. Figure is best viewed in color.

2.2. Learning image parts

The proposed model utilizes a spatially localized feature

representation that captures attribute similarity with the rel-

ative spatial information without a strong dependence on

segmentation. In this section we follow the localized fea-

ture representation introduced by [20] and provide a brief

summary. We define a network of segmented image re-

gions to integrate the visual similarity between segmented

regions across all training images with the localized spatial

information. In this network, two nodes i and j are consid-

ered related if they are spatially adjacent or if node i/j be-

longs to the set of T most similar nodes to node j/i based on

their visual characteristics denoted by h(i) and h(j). We use

the Hellinger metric [21] to compute the distance between

h(i) and h(j). For L1 normalized h(i) and h(j), distance

d(h(i), h(j)) is computed by:

d(h(i), h(j)) =

(
K∑

k=1

(√
h
(i)
k −

√
h
(j)
k

)2
)1/2

(1)

with K denoting the size of the codebook for BOW (number

of clusters found by approximate kmeans).

In constructing this network, first, two nodes i and j are

connected by a weighted edge equal to their attribute simi-

larity (defined in equation 2) if node i/j belongs to the set

of T most similar nodes to node j/i. Second, two spatially

adjacent nodes are connected with a weighted edge equal

to the average of the weights of all edges connected to the

corresponding nodes.

The attribute similarity between two nodes i and j is

given by the following:

ω(i, j) = e−d(h(i),h(j))︸ ︷︷ ︸
regional similarity

γI{L(i)==L(j)}︸ ︷︷ ︸
label similarity

(2)

where d(h(i), h(j)) represents the distance between appear-

ances of two nodes i and j, L(i) denotes the label associated

with the image that node i belongs to, and γ is a constant

larger than 1. We set γ > 1 to give a higher weight to the

visual similarity of two nodes that belong to images with

the same label. The function I{x} represents the indicator

function and is equal to 1 if x holds true and zero otherwise.

Next, a spectral clustering technique is applied to this

network to aggregate related regions. For graph partition-

ing, we use the normalized cut method [26]. Each partition

is referred to as a community. One can think of each com-

munity as a bag that contains all parts of an object.

LetHi denote the set of all nodes in the spatial neighbor-

hood of node i, φc be a community with c ∈ {1, . . . , C},
and T ′i denote the set of all nodes that are in the top T ′

nearest neighbors of node i. The strength of association of

a node i to a community φc is measured by two factors: first

by the attribute similarity between node i and community

φc, second by considering the attribute similarity between

neighbors of node i and different communities in the net-

work along with the relation between community φc and

each of the communities in the network.
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Let g(i ∈ φc) denote the attribute similarity between

node i and community φc. The function g(i ∈ φc) is defined

by the fraction of top T ′ nearest neighbors to node i that

belong to community φc:

g(i ∈ φc) =

∑
j∈T ′

i

I{j∈φc}

T ′ .
(3)

Moreover, f(φc′ , φc) is defined to measure the relation be-

tween two communities φc′ and φc:

f(φc′ , φc) =

∑
i∈φ

c′

∑
j∈φc

I{Ai,j>0}

∑
i∈φ

c′

N∑
j=1

I{Ai,j>0}
(4)

where N = |V | denotes the total number of nodes in the

network. In particular, f(φc′ , φc) measures the number of

links between the two communities φc′ and φc divided by

the total number of links between community φc′ and all

other communities. Thus, the strength of association of a

node i to a community φc can be determined by P(i)
c :

P(i)
c =

∑
j∈Hi

[
C∑

c′=1

f(φc,φc′ )g(j∈φ′
c)

]
g(i∈φc)

C∑
c′′=1

∑
j∈Hi

[
C∑

c′=1

f(φc′′ ,φc′ )g(j∈φ′
c)

]
g(i∈φc′′ )

. (5)

where C denotes the total number of detected communi-

ties. Now one can use a maximum likelihood classifier to

classify each node by the community with the strongest as-

sociation:
h
(i)
u = argmax

c
P(i)
c (6)

where h
(i)
u represents the updated representation of each

node i. Learning these image part groupings enables one to

illustrate the image using much smaller number of pieces.

Choosing an appropriate number of detected communities

allows us to set the number of pieces equal to the number of

objects that are present in an image.

To find images with the same configuration as the query,

one can adopt a sub-graph matching approach and retrieve

images with the highest matching score between their corre-

sponding graph representations. However, such a sub-graph

matching do not generally perform well due to variations in

segmentation. This effect can be reduced by an updated

graph representation (Figure 3) that enables one to perform

a more robust sub-graph matching for retrieval. Two nodes

i and j in graph G(I) are merged if their updated represen-

tations are the same and also they are adjacent:

j =

{
i “merging” if h

(i)
u = h

(j)
u

j “not merging” if h
(i)
u �= h

(j)
u

. (7)

In the remainder of this paper, we represent the updated

graph of image I by G
(I)
u . One can compute the sub-graph

Map nodes 
to communities

Apply 
update rule

Figure 3: Updating graph structures by mapping nodes to detected

communities and applying the merging rule. (Left) represents the

inital graph representtaion as described in Section 2.1. (Middle)

Each color represents an updated representtaion for each node us-

ing the concept of communities. (Right) The final updated graph

representation with adjacent nodes of same color merged. Figure

is best viewed in color.

matching score between the updated graph representations

for the query and the database images to find images that

best match the query of interest while preserving the spatial

configuration, as well as objects’ sizes and positions.

2.3. Graph matching

Let Q be the query image. We are interested in re-

trieving images that match the exact spatial configuration,

size, and position of the segmented regions of Q. Let

G
(Q)
u = (V

(Q)
u , E

(Q)
u ) and G

(I)
u = (V

(I)
u , E

(I)
u ) be the up-

dated attributed graph representations for a test image Q

and a training image I , respectively. Let nQ = |V (Q)
u |

and nI = |V (I)
u | represent the number of nodes in each

updated attributed graph. In this section, a mapping is

found between V
(Q)
u and V

(I)
u that best preserves the at-

tribute between the two graphs. We seek a set of matches

M = {iQiI} to maximize the graph matching score.

To get a matching score between G
(Q)
u and G

(I)
u , a mod-

ified version of balanced graph matching algorithm [5] is

used. Let x ∈ {0, 1}nQnI be a binary vector, such that

xiQiI = 1 iff iQiI ∈ M . We require to have a one-

to-one mapping constraint, this is
∑

iQ
xiQiI = 1 and∑

iI
xiQiI = 1. The matching score between graphs of Q

and I is defined by solving the following optimization prob-

lem which takes the form of an Integer Quadratic Program:

ŝ(Q, I) = max
x

xTWx
xT x

s.t. Bx = b (8)

where ŝ(Q, I) represents the graph matching score between

Q and I , and W is a nQnI × nQnI comparability matrix

indicating the similarity between nodes and between edges.

An example of matrix W is illustrated in Figure 4. It is

worth noting that Bx = b represents the mapping con-

straint. For one-to-one matching, we let b = 1 in (8). This

optimization problem is solved using spectral matching and

by computing the leading eigenvector x of W .

The similarity between nodes and between edges is de-
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Figure 4: Encoding the edge and node similarities using matrix

W. Red represents the node similarities, blue represents the edge

similarities, and gray corresponds to the comparison of the simi-

larity of nodes and edges and is set to zero. Figure is best viewed

in color.

fined by the following:

WiQiI ,jQjI = exp

(
−

Δ
(
A

(Q)
iQjQ

,A
(I)
iI jI

)
α

)
(9)

where Δ is a function that represents the distance between

two nodes or between two edges and will be defined shortly.

Here, A(I) denotes an adjacency matrix associated with the

updated graph of image I . Diagonal elements of the ad-

jacency matrix A(I) are vectors corresponding to the up-

dated node representations of G
(I)
u , and their corresponding

normalized size and position. The off-diagonal entries con-

tain scalar binary values representing the edges between the

nodes of G
(I)
u . For different values of α ∈ [0, 1], one can

emphasize more on the importance of the node similarity

versus edge similarity. When matching nodes characteris-

tics, smaller values of α correspond to a less emphasis on

node similarities compared to edge similarities.

The Δ function in (9) is defined by the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (iQ = jQ and iI = jI )→ “comparing nodes”:

Δ
(
A

(Q)
iQjQ

, A
(I)
iIjI

)
= β1

[
1− δ

(
h
(iQ)
u , h

(iI)
u

)]
+

β2|S(Q)
iQ

− S
(I)
iI
|+ β3|P (Q)

iQ
− P

(I)
iI
|

if (iQ �= jQ and iI �= jI )→ “comparing edges”:

Δ
(
A

(Q)
iQjQ

, A
(I)
iIjI

)
= 1− δ

(
A

(Q)
iQjQ

, A
(I)
iIjI

)
Otherwise→ “comparing nodes and edges”:

Δ
(
A

(Q)
iQjQ

, A
(I)
iIjI

)
= 0

(10)

where S
(I)
iI

and P
(I)
i(I)

indicate the normalized size and po-

sition of node i in image I . The parameters β1, β2, and

β3 determine how much one emphasizes on the objects’ ap-

pearance similarities, their associated sizes and positions in

an image. In addition, δ (m,n) is equal to 1 if m = n and

0 otherwise. One should note that the Δ function is set to 0
when comparing a node with an edge since they are incom-

parable.

Algorithm 1 Update the graph representation G(I)

Input: G(I) = (V (I), E(I)) ∀ I ∈ {1, . . . , D},
network of segmented regions, detected communties

Output: G(I)
u = (V

(I)
u , E

(I)
u ) ∀ I ∈ {1, . . . , D}

V = ∪D
I=1V

(I)

N = |V |

Comment: update node representations:

for i = 1→ N do
for c = 1→ C do

compute P(i)
c : The likelihood of node i belonging

to community c
end for
h
(i)
u = argmax

c
P(i)
c

end for

Comment: apply merge rule:

for I = 1→ D do
for i = 1→ |V (I)| do

for j = 1→ |V (I)| do
if i and j are adjacent then

if h(i)
u == h

(j)
u then

merge nodes i and j of image I
end if

end if
end for

end for
end for

3. Evaluation
Database: We have performed experiments using three

challenging datasets: PASCAL VOC2007 [8], ImageNet

ILSVRC2010 [6] and TREC. PASCAL VOC2007 is a pub-

licly available dataset containing 9, 963 images and 20 ob-

ject classes. A subset of ImageNet ILSVRC2010 [6] which

contains roughly about 1 million images is added to the

VOC2007 dataset as distractors to test the scalability of our

system with respect to the size of the dataset. The resulting

combined dataset is referred to as “VOC+ImageNet”. To

evaluate the performance of different methods in identify-

ing the object of interest when it occupies only a small por-

tion of the image in a cluttered background, a set of images

is collected by extracting frames from TRECVID 2012 in-

stant search (INS) dataset [22] and it is referred to as TREC

dataset. Since the groundtruth is only published for a subset

of the data, only classes that have sufficient numbers of true

positives are considered. TREC dataset contains 10, 289
images and 10 object classes.

Qualitative analysis: To show the effectiveness of

our approach, we consider a query consisting of multiple
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Figure 5: (a) Sample queries and (b) their corresponding top 3

retrieved images using the proposed retrieval system on “VOC07”

dataset.

image-patches (objects). Our goal is to retrieve images from

the dataset that not only include such objects but also sat-

isfy a set of requirements such as size, position, and spatial

configuration provided by the user. Figure 5 (a) illustrates

the image-patches of interest that should appear in the tar-

get image with the desired spatial configuration, size, and

position. Using the proposed approach the top 3 retrieved

images from dataset “VOC07” are depicted in Figure 5 (b).

As one can see, our method returns images that satisfy the

requirements provided in Figure 5 (a).

Baseline methods: Since the state of the art image re-

trieval systems can not be applied to queries as presented in

Figure 1, for fair comparison, we consider the case in which

the query is a single image with the goal of retrieving an ex-

act spatial configuration of its segmented regions. This can

be viewed as a sub-class of problems that can be handled by

our approach.

The performance of the proposed system is compared

with the retrieval system based on the Spatial Pyramid

Matching (SPM) by encoding the global positions of fea-

tures in the image [13].

We further compare our method with the case in which

each image in the dataset is segmented and represented by

a graph of its segmented regions. Here, each segmented

region is represented solely by a BOW representation [28].

This will be referred to as “Basic Graph Matching”.

Performance: Each database is divided into a training

set and a testing set. For each class, a model is learned us-

ing image features, their corresponding class types, and a

SVM classifier. These models are used to estimate the class

type of each image as wells as their associated confidence

score. The estimated class types for each image are then

sorted based on their confidence scores. Each image is only

associated with a set of class types that have the top Y con-

fidence scores.

Given a query image, the above model is used to asso-

ciate the query image with a set of class types with top Y
confidence scores. In what follows, a “positive set” refers

to a set containing test images that share at least one class

type with the query. The rest of the database images are

referred to as a “negative set”. Images included in the pos-

itive set are ranked higher than the ones in the negative set.

In addition, images in each set are re-ranked based on their

similarity score to the query image. The similarity is de-

fined by ω = e−d(R(I),R(Q)) where d(R(I), R(Q)) denotes

the Hellinger distance between two image representations

indicated by R(I) and R(Q).

In “Basic Graph Matching” and the proposed approach,

the retrieved images for each query in the positive and neg-

ative sets are re-ranked separately. This ranking is based

on combined graph matching scores and visual similarity

scores. This process is summarized in Figure 6.

In our experiments, a set of queries are randomly se-

lected from each dataset and the accuracy of the retrieval

system is measured using mean-average-precision (MAP).

In computing the retrieval accuracy, each image I in the test

set is weighted based on how much its characteristics match

the query Q. These characteristics are class type I, spatial

configuration A, size S and position P. Given a query Q, we

define a label L for each image I to specify how much its

characteristics matches the corresponding ones in the query:

LQ,I := [IQ,I AQ,I SQ,I PQ,I ] (11)

where IQ,I is one iff Q and I both belong to the same class

type, otherwise zero. Similarly, AQ,I , SQ,I , or PQ,I are

either one or zero. In particular, they are set to one if Q and

I are both from the same class type and their corresponding

spatial configuration, size, or position match, respectively.

Finally, the weight that determines how much each im-

age characteristics match the query is given by:

τ(Q, I) = L1(LQ,I). (12)

Table 1 illustrates the accuracy of the proposed retrieval

system compared with the baseline methods. It is shown

that the proposed approach achieves a higher retrieval accu-

racy than the baseline methods by 11 percent in the VOC

dataset and 15 percent in the TREC dataset.

In addition, Figure 7 shows a comparison between the

retrieval accuracy of different methods at different depths

for the “VOC+ImageNet” dataset. These results emphasize

the scalability of our approach.
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Figure 6: Process of ranking the retrieved images for the methods discussed in Section 3.

Database: VOC07

Method / K 200 500 1000

Spatial Pyramid �1 0.39 0.44 0.52

Spatial Pyramid �2 0.41 0.46 0.54

Basic Graph Matching 0.42 0.48 0.54

Proposed Approach 0.60 0.63 0.65

Database: TREC

Method / K 200 500 1000

Spatial Pyramid �1 0.37 0.39 0.42

Spatial Pyramid �2 0.39 0.41 0.43

Basic Graph Matching 0.40 0.42 0.44

Proposed Approach 0.52 0.56 0.59

Table 1: Comparison of the accuracy of different retrieval systems

discussed in Section 3 with different codebook sizes (K). The

results are reported for VOC2007 and TREC databases.

Computational cost: A moderate computational com-

plexity is important when considering scaling to thousands

of images and hundreds of categories. The computational

cost of learning image parts is considerably reduced by per-

forming the search using a space partitioning data structure

(k-d tree) with running time of O(logN). Also, as the size

of the database increases, the network can be constructed

using a subset of the images from the training data. There-

fore, the cost of network construction would not increase.

It is also worth noting that the computational cost related

to the graph matching algorithm of the proposed approach

is relatively small as the number of nodes in the updated

graph representations are considerably fewer than the initial

graph representations. The overhead cost for the retrieval of

each query compared to the global image representations is
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0.65

0.7
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Ac
cu

ra
cy

�

�
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Basic�Graph�Matching
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Figure 7: Comparison of the accuracy of retrieval systems on

“VOC+ImageNet” dataset at different depths. Results are reported

for K = 1000.

roughly equal to 0.1 seconds using a quad core computer

with 3.0 GHz processor.

4. Conclusion
We presented an approach to image search using image-

patches and pre-specified spatial configurations. In gen-

eral, such queries can not be handled by global image rep-

resentations. The updated graphical structures are robust

to segmentation variations and are suitable for sub-graph

matching. Extensive experiments conducted on challenging

datasets demonstrate that the proposed approach compares

favorable with current state of the art methods. For future

work, we plan to explore the applicability of the proposed

method for enhanced object tracking.
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