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Abstract. A novel framework for robust 3D tracing in Electron Mi-
crographs is presented. The proposed framework is built using ideas from
hypergraph diffusion, and achieves two main objectives. Firstly, the ap-
proach scales to trace hundreds of targets without noticeable increase in
runtime complexity. Secondly, the framework yields flexibility to fuse top
down (global cues as hyperedges) and bottom up (local superpixels as
nodes) information. Subsequently, a procedure for auto-seeding to ini-
tialize the tracing procedure is proposed. The paper concludes with exper-
imental validation on a challenging large scale tracing problem for simul-
taneously tracing 95 structures, illustrating applicability of the proposed
algorithm.
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1 Introduction

Connectomics [1] is a sub-field of bio-informatics attempting to understand neu-
ronal connectivity patterns from data acquired using microscopic imaging of
neurons. This work focusses on the analysis of volumetric datasets from a con-
nectome, acquired using electron microscopy at nanometer resolutions. The ma-
jor image analysis challenge in tracing neuronal structures from Electron Mi-
crographs (EM) are two-fold. Firstly, the datasets are extremely large with a
requirement to scale algorithms to trace hundreds of targets (structures) simul-
taneously. Secondly, the structures present in the data undergo arbitrary defor-
mations and topological changes that need to be accurately modeled. This work
proposes a tracing model attempting to jointly satisfy the above requirements.
The problem can be defined as one of extracting 3D reconstructions of hundreds
of structures from a volumetric dataset in an accurate and computationally effi-
cient manner. There are well established algorithms for single structure tracing
in Electron Micrographs with deformations and topological changes. However,
creating multiple binary segmentations by applying single structure tracing on
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every structure is problematic. Firstly, if a pixel is set to one in the binary masks
of two structures, it is not clear which label takes ownership of the structure.
Secondly, interactions between structures cannot be modeled in such a scenario.
The obvious solutions of utilizing discrete Markov random fields(MRFs)/Level
sets, though attractive may not be most suitable as verified by experiments in
Section 3. In case of MRFs, scaling the number of labels has a direct impact on
the runtime of algorithms like alpha expansions and behavior of such methods
for segmenting hundreds of labels is not a well studied problem (though such
problems have been looked into for stereo and optic flow). Level Set methods like
the Chan-Vese model, have also not been shown to work on hundreds of labels.

Proposed Solution: The image stack is assumed to be made up of super-
pixels linked to each other in three dimensions, forming a graph. As an example,
Figure 1a shows superpixel segmentation of two consecutive slices, say s13 rep-
resents third superpixel in slice 1. The superpixel graph is constructed by intro-
ducing edges between the superpixel of interest (s11) and its spatial (s12, s14)
and temporal neighbors (s21, s22, s24). Hyperedge construction from top down
information is illustrated in Figure 1b. Maroon dotted circle is the output of top
down detector grouping red, green, blue and yellow blobs leading to a hyperedge.
Hyperedges based on k-nearest neighbors are similarly constructed. The key idea
is to model the label propagation across image sequences as the solution of a
hypergraph diffusion equation in a 3D superpixel hypergraph. In doing so, one is
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Fig. 1. Construction of the 3D superpixel hypergraph

presented with a model having some very desirable properties. Firstly, a flexible
framework that can utilize top down (coarse object location) and bottom up
(local image structure) information results. Secondly, the diffusion has a closed
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form solution with complexity weakly dependent on the number of labels. In
other words, the complexity remains unchanged in spite of an increase in the
number of labels. The primary contributions of this work include: An efficient
tracing framework based on hypergraph diffusion that fuses top down
and bottom up cues and a method for Automatic Target Seeding .

Related Works: The works by [7, 8, 6, 12] are good sources of reference for
EM image analysis. Further, [5] utilized hypergraphs for unsupervised video seg-
mentation, in contrast to the supervised case the proposed approach deals with.
Salient aspects of the proposed 3D tracing framework are scalability to hundreds
of labels, modeling higher order interaction between segments, introduction of
global contour cues using hyperedges, generic autoseeding for fully automatic
tracing, and semi-supervised nature, amenable to user interaction if needed.
Our claim of originality is in the framework comprising the salient aspects listed
above. In related work, [12] propose an interesting technique utilizing pairwise
segment interactions on EM data from a mouse (gradient based), but do not lay
emphasis on user interaction or scalability. The data used in this work is very
different and is from a rabbit retina (noisy regional texture based). Techniques
similar to [12] did not perform well on our datasets, leading us to compare with
the state of the art on rabbit retina and relevant tracing techniques. Our work
is intended as a scalable replacement to the graph cut solvers used in [6], as will
be established by experimental results.

2 Proposed Model

The model is initially presented in terms of a bigraph. Subsequently, it is ex-
tended to the hypergraph case. The intuition behind the graph diffusion en-
ergy is motivated by semi-supervised learning [13], where structure of the data
manifold is utilized along with a sparse initial labeling of data points (y) to
arrive at a final labeling(f). Consider a bigraph G = (V,E,w), comprising a
vertex set v ∈ V with weights between nodes {u, v} ∈ G denoted by w(u, v).
Further, let d(u) denote the degree of node u. Considering a two label model,
f ∈ {−1, 1}|V | is the classification function to be estimated, and y ∈ {−1, 1}|V |
is the initial labeling vector. The following equation can be interpreted as fol-
lows, estimate a labeling function f over graph G whose smoothness is measured
by a smoothness cost term, and which does not deviate too much from initial

labeling: argmin
f∈R|V |

1
2

∑
{u,v}∈V

w(u, v)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

︸ ︷︷ ︸
Smoothness Cost

+ µ||f − y||2︸ ︷︷ ︸
Deviation from Seeds

.

The above formulation can be extended to a hypergraph [14], generalizing the
notion of an edge linking a pair of nodes to a hyperedge linking multiple nodes.
The intuition behind the hypergraph model is similar to the bigraph case, except
for the fact that smoothness is over multiple nodes constituting a hyperedge.
Consider a hypergraph G = (V,E,w), comprising a vertex set v ∈ V , an edge
set e ∈ E and a set of weights w. A hyperedge e comprises of a set of nodes
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ve ⊂ V that form a clique inside the hyperedge. The degree of a hyperedge is
δ(e) = |ve|, while the degree of a vertex is defined by d(v) =

∑
e∈E,v∩ve 6=∅ w(e).

The incidence matrix H ∈ <|V |×|E| contains binary elements h(v,e) taking the
value 1 if v ∈ ve, and 0 otherwise. De ∈ <|E|×|E| and Dv ∈ <|V |×|V | refer
to the diagonal matrices of hyperedge and vertex degrees. The ultimate goal
is to perform estimation of a smooth function f on the graph, given an initial
labeling y ∈ {−1, 1}|V |. The formulation to accomplish the same is given by:

argmin
f∈R|V |

1
2

∑
e∈E

∑
{u,v}⊂e

w(e)

δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

︸ ︷︷ ︸
Smoothness Cost

+ µ||f − y||2︸ ︷︷ ︸
Deviation from Seeds

.

Defining the matrix Θ = D
− 1

2
v HWD−1e HTD

− 1
2

v , and 4 = I − Θ, it is
straightforward to obtain a closed form solution on label certainties by, f =
(1 − ζ)(I − ζΘ)−1y, ζ = 1

1+µ . In the context of image labeling (see Figure 1),
v ∈ V corresponds to a set of superpixels in an image sequence, e ∈ E refer to
the hyperedges constructed by including higher order neighbors on the 3D su-
perpixel graph, thus forming the matrix H. Inferring using the above equation
would result in a class marginal on each superpixel that would lead to a tracing
result. The use of transductive hypergraph learning for supervised tracing in EM
stacks is our first contribution.

Extension to Multiple Labels and Uncertainty Characterization:
The above formulation can be extended to the multiple label case in a straight-
forward manner. The vectors f, y used for the two class problems are now trans-
formed to matrices F, Y ∈ <|V |×|L|, where column j of {F, Y } correspond to
the probability of label j to be associated with every node in the graph. The
entry Y (i, j) is set to 1 if node i has a label j associated with it, and F (i, j)
yields the probability of node i to be associated with label j after diffusion. Al-
ternately, each row i of the matrices F, Y can be interpreted as the probabilities
of node i to be associated with each label. The associated inference is given by:
F = (1− ζ)(I − ζΘ)−1Y, ζ = 1

1+µ . A side benefit of the above formulation is the
fact that uncertainty of solutions can be characterized from the entropy com-
puted using rows of F . Computing uncertainty estimates would point towards
confidence of the algorithm in its solutions, and it can readily probe the user for
assistance using an active learner in interactive settings.

Low Level Features and Graph Weights: The feature representation of
superpixels plays an important role in the end results. We utilize gray scale and
Local Binary Pattern (LBP) based texture histograms [9] for characterizing ap-
pearance of superpixels. The distance between histograms is modeled using the
symmetric Kullback Leibler divergence, assuming independence between gray
scale and texture channels. Assuming hgray(i) and hlbp(i) respectively to de-
note the gray scale and texture histograms of superpixel i, the dissimilarity be-

tween superpixel i and j is constructed as: KL[h(i), h(j)] =
∑
k h(i, k) ln h(i,k)

h(j,k) +

h(j, k) ln h(j,k)
h(i,k) w(i, j) = exp (−KL[hgray(i), hgray(j)] +KL[hlbp(i), hlbp(j)]).
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Complexity of Algorithm The complexity of inversion is cubic O(|V |3)
in the number of nodes, as is evident from the equation for inferring multiple
labels. Since the matrix considered is sparse, efficient sparse solvers can be em-
ployed leading to considerable reduction in running time. The matrix inversion
of the graph Laplacian has the greatest computational load, while the matrix
multiplication with the label vector Y is of lower complexity than the inversion.
As a result, an increase in the columns of Y (additional targets) does not affect
the overall time complexity of the algorithm. An intuitive way of looking at the
solution is that the graph Laplacian models the entire 3D stack (primary target
and contextual information), and a diffusion utilizing this graph Laplacian yields
a simple and efficient method for label propagation. Finally, if solutions need to
be corrected during interactive segmentation, the computed inverse matrix can
be cached, resulting in extremely fast responses to user corrections. Now two
important questions arise, Can the hyperedges be utilized to induce a top down
global contour cue? (Global Cue Detectors) and is it possible to automatically
initialize the number of targets present in the field of view? (Automatic Seeding).
The following discussions answer the above questions followed by experimental
validation of the proposed ideas.

Global Cue Detectors As has been described, global detectors are out-
puts of any algorithm that gives a rough grouping of the nodes in a graph. In
the current problem, any algorithm that gives a probable association between
superpixels over the 3D volume, thus modeling higher order correlation over the
stack is called a global cue detector. The idea is to learn edge profiles using
Boosted Edge Learning (BEL) [4], followed by a pass of watershed transform
for obtaining 2D segments. The 2D segments are associated in an unsupervised
manner across the third dimension using the Floyd-Warshall all source shortest
path algorithm [3] to generate probable global cues, see Figure 2a. These cues
define association rules between superpixels, thus modeling longer range corre-
lations. Subsequently, the k-nearest neighbors of every superpixel are also used
in constructing hyperedges constituting additional global cues.

An important observation to be made is that the k-nearest neighbor hyper-
edges enforce a Potts style prior encouraging spatial smoothness of labels among
superpixels using pairwise interactions. However, in scenarios where information
on association between superpixels over larger spatial neighborhoods (across
space and the third dimension) are available, they can be readily encoded using
the hyperedges for promoting label smoothness. The top down cue detectors
serve the purpose of defining these larger interaction neighborhoods over which
label smoothness is encouraged.

Automatic Seeding Another important problem that arises is the auto-
matic initialization (seeding) of targets for efficient tracing. While the most
widely used strategy for target initialization is based on user marked seeds in
the first frame, it may not always be possible to seed hundreds of targets man-
ually. In order to solve the above problem, a technique for automatic seeding is
proposed. The result of the seeding algorithm can be utilized for initializing the
matrix Y . The question asked for auto-seeding is: Is it possible to pick a set (car-
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(a) (b)

Fig. 2. Figure of the left illustrates outputs from the top down cue detector that serves
to construct hyperedges. Figure on right illustrates results of the automatic seeding.

dinality |L|) from the K superpixels from the first slice that are as different from
one another in appearance (Ai1 ∈ <m) and spatial positions (Si1 ∈ <2)? The
above problem can be solved by estimating an indicator vector z ∈ {0, 1}K that
minimizes a cost comprising distances between selected points in spatial and fea-
ture spaces. We formalize the above intuition as a relaxed quadratic program [2]

(QP) argmin
z

∑|V |
i=1

∑|V |
j=1 wijzizj , s.t

∑N
i=1 zi = |L|. Rounding the solution of

QP yields the desired set of superpixels to be used as seeds for tracing, see Fig-
ure 2b. The weights w in the above equation can be constructed in a manner
discussed previously.

Contour Refinement: The result of hypergraph diffusion achieves regional
homogeneity but is not always edge aware. We utilize an edge based active con-
tour based on hidden Markov models (HMM) [10][11]. Contours resulting from
hypergraph diffusion initialize the edge based active contour. For each contour, a
trellis with states sampled as points along normals to the contour is instantiated.
These points represent the states of the HMM, and any path through the trellis
is a potential contour candidate. The Viterbi decoding algorithm yields the final
contour passing through strong image gradients.

3 Experiments

Experiments are reported on a tracing task over two separate stacks of electron
micrographs. For the purpose of studying the behavior of diffusion in isolation
from seeding, contours are manually initialized in the first frame. The metrics
used for validating the tracing are the F-measure and Rand index, two com-
monly used metrics in the segmentation literature. Justification for scalability is
given by the running time of algorithms on an Intel Core i7 860 @ 2.8GHz ma-
chine. Further, two variants of the proposed idea are utilized in experiments. The
HGraph3D method attempts to perform diffusion through the entire 3D graph
and thus performs a one shot optimization. On the other hand, HGraph Propa-
gate attempts to propagate contours in a slice by slice manner with segmentation
of one slice being the prior for subsequent slice. Figure 3(a) illustrates the result
of tracing all structures over the first few frames of the dataset. In order to place
the proposed algorithm in context with existing state of the art techniques, we
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(a) Result of hypergraph diffusion on Dataset-I

Method Median Mean Standard Deviation Time(sec.)

Level Set Tracking 0.55 0.53 0.25 1080

BiGraph3D 0.16 0.23 0.26 78

HGraph3D (Proposed) 0.68 0.66 0.21 108

HGraph Propagate (Proposed) 0.71 0.78 0.22 34

Graph Cuts, Pn Model 0.67 0.77 0.28 1320

(b) F-Measure and Running Time on Tougher Dataset-I (95 targets, 5 slices)

Method Level Set Tracking HGraph3D HGraph Propagate Pn Graph Cuts

Median 0.87 0.91 0.89 0.91

RunTime(sec.) 378 210 61 950

(c) F-Measure and Running Time on Easier Dataset-II (30 targets, 10 slices)

Method Frame1 Frame2 Frame3 Frame4 Frame5

Level Set Tracking 0.82 0.78 0.75 0.72 0.69

BiGraph3D 0.81 0.70 0.64 0.60 0.58

HGraph3D (Proposed) 0.88 0.86 0.83 0.79 0.77

HGraph Propagate (Proposed) 0.88 0.86 0.85 0.83 0.80

Graph Cuts, Pn Model - 0.81 0.85 0.84 0.80

(d) Rand Indices on Tougher Dataset-I (95 targets, 5 slices)

Fig. 3. Validation of the Proposed Tracing Framework

compare performance with Graph Cuts based Pn model [6], Level Sets using the
Chan-Vese model, and bi-graph diffusion, see Figure 3. The striking aspect of
experiments is the running time of algorithms. For instance, HGraph
Propagate runs in 34 seconds on Dataset-I without compromising ac-
curacy, in comparison to graph cuts which takes 1320 seconds. This
is a speed up of almost 35×. Table 3(b),3(c) reports statistics on F-Measures
against the ground truth over 475 (Dataset-I) and 300 (Dataset-II) contours re-
spectively on two different datasets with corresponding run times. Dataset-I is
much more challenging due to appearance variability and larger number of la-
bels. Similarly, Table 3(d) also reports the average Rand index of Dataset-I over
all structures in every frame. In conclusion, this paper presented a simple trac-
ing technique that easily scales to hundreds of labels. Experimental results on
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electron micrographs and comparisons to state of the art illustrate the method’s
applicability. Future work includes stable auto seeding using Minimum Descrip-
tion Length, deployment on larger distributed computing infrastructures, and
active learning based interactive tracing.
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