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ABSTRACT

A novel interactive segmentation framework comprising of a
two stage s-¢ mincut is proposed. The framework has been
designed keeping in mind the need to segment touching neu-
ronal structures in Electron Micrograph (EM) images. The
first stage undersegments the image, and groups touching
structures into a single class. The second stage accepts user
interaction to separate touching structures. The technique
introduces user feedback through a Markov Random Field
formulation. Furthermore, a method for constructing interac-
tion potentials using an edge response function is proposed.
Encouraging results, and a comparison to state of the art
methods is presented.

Index Terms— Graph Cuts, Interactive Segmentation,
Markov Random Fields

1. INTRODUCTION

Electron Micrographs (EM) are widely used in neuroscience
for morphological studies. They offer sub-cellular resolutions
and are an important source of information to biologists. The
basic and most important step in analyzing these images is
the segmentation of individual neuronal structures. However,
the segmentation of EM images [1, 2, 3] is complicated due to
poorly defined image gradients, and inhomogeneous intensity
distributions of foreground objects.

A grand challenge in neuroscience is to understand how neu-
rons are wired together in the mammalian brain [4]. EM
images offer resolutions at which the wiring diagrams can
be accurately reconstructed. In order to tap into this rich
information source, one is confronted with the problem of an-
alyzing massive amounts of image data. As a result, manual
segmentation of EM databases could be very time consuming
and laborious. Hence, semi-automated solutions have been
proposed to segmenting EM images. This paper presents
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a novel framework for interactive segmentation, that over-
comes some drawbacks of previous methods. The primary
contribution lies in the segmentation of multiple touching
structures with a two-stage s-t mincut algorithm. The first
mincut is designed to undersegment the image, while the
second cut accepts user interaction to help delineate touching
boundaries. In other words, segmentation of several touch-
ing structures (15-20 per image in the dataset considered) is
achieved at the end of the second mincut.

The next section briefly summarizes concepts from graph
cuts, distance transforms, and previous work related to the
problem at hand. The third section presents the proposed
framework, followed by an experimental comparison to state
of the art methods. The final section concludes with a sum-
mary of our work, and possible extensions.

2. BACKGROUND AND PRIOR WORK

2.1. Graph Cuts

Image Segmentation can be posed as an energy minimization
problem. The energy function to be minimized is parameter-
ized by the labels (y, € {0, 1}) assigned to every image pixel
(p). The set of labels assigned to image pixels (y) is called a
labeling configuration. The objective is to find the labeling
configuration that exactly minimizes the energy function de-
fined in Equation 1.
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where V,,(y,) is the negative log likelihood of pixel p taking
up label y,. The term V,,(yp,y,) is usually a function of
label differences between pixel p, and a pixel ¢ in the neigh-
borhood system N, of p. Interaction potentials used in this
work are of the form:
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where F), and Fj, are pixel level features of p and ¢ respec-
tively, A; and oy are parameters controlling the magnitude
and smoothness of the interaction potentials. We employ
graph cut based techniques for the optimization, and briefly
describe the procedure.

Consider a graph, G = (V,E), where V. = {P,s,t}
corresponds to pixels p € P in an image, along with
two special nodes, the source s and the sink ¢. The set
E = {epq Uesp Uep @ p,g € P} consists of all edges
connecting nodes on the image grid (n-links or interaction
potentials), and edges connecting each node on the image grid
to the source and sink (s and ¢ links), respectively. A cut in
the graph is a set of directed edges C' = {p,q;p € S,q € T},
which when removed leave no paths from source to sink. The
cut with minimum sum of edge weights is called a mincut.
Note that a cut partitions the graph into nodes belonging to
the source S and sink sets 7" respectively. It can be shown
that a mincut
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on the graph G exactly finds y* = argmin E(y). w(p,q)

Yy
is the weight of the directed edge from p to q. We refer the
reader to [5, 6, 7] for a detailed treatment of graph cuts and
applications to segmentation.

Table 1. List of Variables Used

Variable Explanation
Sr Set of pixels segmented as foreground
Si Set of pixels segmented as background
D(p, M) Distance Transform
Dga(p, M) Geodesic Distance Transform

F Foreground Interaction(Set of Pixels)
B Background Interaction(Set of Pixels)
Boundary Interaction(Set of Pixels)

Wt Sink Potentials for Graph Cuts
Wep Source Potentials for Graph Cuts
Wpq Interaction Potentials for Graph Cuts

Distance Transforms: For an image P, and a subset of pixels
MA{M cC Pm; € M;1<i<|M|},
pe{P\M}
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A related function is the geodesic distance transform, where
distances described previously are replaced by weighted dis-
tances. The weighting function (or speed function) is defined
over the image domain.

2.2. Prior Work

In interactive segmentation systems, the user gives markers
that help the segmentation algorithm move towards the de-

sired solution. The information provided by the user is treated
as a gold standard, and is hardcoded into the algorithm. For
example, if the user marks some pixels as foreground and
background, the algorithm should be constrained to obey la-
bels provided by the user. Boykov et al. [7], were the first to
propose the idea of interactive segmentation. Vu et al. [2] pre-
sented a method (M) which assumes that true foreground
pixels are far away from the hardcoded background(%),
while the true background pixels are far away from the hard-
coded foreground (%). They compute geodesic(weighted)
distances with the image gradient magnitude as the weighting
function.

They propose the following source and sink potentials after
user interaction.
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Grady and Funka Lea [3] presented a method the assumes
that true foreground pixels are close to the hardcoded fore-
ground (%), while the true background pixels are close to the
hardcoded background (). They propose two variations to
the cost function, one (Mg,1) that assigns a constant con-
fidence value (k) to the presegmented foreground and back-
ground pixels, constrained by the user interaction.

The second cost function (M gr2) proposed by [3] as-
sumes localized corrections, and confidence values are mod-
ulated by their distance from the foreground and background
marks by the user.

rexp(=D(p, 7))  pe{SF\F}
Wsp = K p e F

0 p € {S\F}

rexp(—D(p, B))  p€{Ss\#}
Wpt = K peERB

0 p € {SF\%}

3. PROPOSED METHODOLOGY

A common feature in all methods discussed, is the intro-
duction of user interaction through likelihood potentials V/,.
This can be justified because previous methods aimed at
correcting regional errors in segmentation through user inter-
action. However, the application at hand requires correction
of errors at object boundaries (edge based corrections) which
these methods do not achieve. In order to introduce an edge
based correction factor information from user input is in-
duced through interaction potentials. This is in keeping with



Fig. 1. (Left to Right and Top to Bottom) (a) First pass of graph cut (b) User interaction indicating boundaries of neuronal
structures (c¢) Result using method M g,1 of Grady et al. [3] (d) Result using method Mg,2 of Grady et al. [3] (e¢) Method
My, of Vu et al. [2] (f) Proposed Method. (Image Best Viewed in Color)

the spirit of Markov Random Field formulations that intro-
duce priors using clique potentials. The introduction of user
interaction is done using an edge response function, as will
be explained.

An important issue while segmenting touching structures is
the delineation of their boundaries. We make this problem
amenable to user interaction by dividing it into two phases.
The first phase produces an undersegmentation as shown in
Figure la. Note that undersegmentation can easily be ob-
tained using graph cuts by increasing the effect of interaction
potentials. The interaction potentials V},, for the first phase
uses image intensity as the feature (F),, Fy,) in Equation 2.
The likelihood potentials V), for the first s-¢ are learnt offline.
In the second phase, the user is expected to roughly indicate
the presence of a boundary between structures. Background
likelihoods are increased near user interacted pixels.

We create an edge response function (0), formed by a
smoothed gradient response. This procedure of creating a
clean edge response is essential in getting rid of trivial solu-
tions that could result due to very noisy gradients. The user
interacted boundary pixels are now introduced as pixels in
the edge response function with some high value K. The
interaction potentials evolved from the edge response will
favor creation of boundaries along user interacted marks. Re-
fer to Figure 2 for the potentials created using the proposed
modifications. Observe the large intensity difference between
user interacted pixels and background pixels in the feature
map F', and the sink potentials encouraging the cut to pass
through user interacted pixels. The proposed formulation can

be stated as:
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To the best of our knowledge, the proposed method is the first
of its kind in introducing user interaction through interaction
potentials. Further, the technique of creating interaction po-
tentials from smoothed edge response functions has been em-
ployed for the first time. The overall energy function being
minimized in the second pass is given by:
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In the above equation, y,, is the set of labels obtained at the
end of the first s-f cut. Minimization of Equation 4 yields the
set of labels y;, that separate touching structures.

4. EXPERIMENTS

The algorithm developed was tested on 2D slices of EM im-
ages. The main advantage of the proposed method is the pro-
vision of freedom, or immunity for human markings against



Fig. 2. Potential functions (normalized for visualization) for the second s-¢ cut. (Left to Right) (a) The feature map F' used to
compute interaction potentials (b) Source (Foreground Potentials) (¢) Sink (Background Potentials). (Best Viewed in Color)

minor errors. Moreover, creating interaction potentials from
edge response functions provides more reliable gradient maps
than existing methods. The advantage of using the proposed
method is evident from the fact that around 20 structures were
segmented from the single image in Figurel with less than
10 seconds of human interaction. This procedure is much
faster than performing a single s-r cut for segmenting neu-
ronal structures individually. Since the segmentation is to be
used on a large database, no user interactions for foreground
and background were hardcoded. From the output of Fig-
ure 1(f), a simple connected components analysis would yield
the contours of all neuronal structures that have been seg-
mented. The parameters of the segmentation algorithm were
fixed throughout the comparison between different methods.
{A1,01} values for the first and second pass were {20,20}
and {1, 10} respectively, while x was set to 1. The higher
value of {7, o} in the first pass causes the creation of larger
connected components. Reduction of the values results in
smaller connected components, and thus separates touching
structures. Table 2 lists results obtained on different images
from a 3D EM stack. The expected structures (ES) is the
number structures that would result if the algorithm correctly
delineated all boundaries. The structures detected by the pro-
posed and competing methods is listed for seven different im-
ages. A structure was considered a detection only if it could
be completely isolated through a connected components anal-
ysis. For example, if the boundary separating two structures
were not correctly detected, both structures were marked un-
detected. It can be observed that the proposed algorithm out-
performs competing methods in all images. An occasional
drop in performance was uniform across all methods, and can
be attributed to boundaries with minimal discriminating in-
formation.

5. CONCLUSIONS

We have presented a new interactive segmentation framework
that is capable of segmenting touching neuronal structures on
an ensemble. Experimental results obtained show encourag-
ing performance compared to state of the art methods. We are
currently working on enhancing the existing method to work
in 3-D, and in creating online methods that learn from user

markings.

Table 2. Proposed method has better detection rate in com-
parison to existing methods

Img | Mgr1 | Mar2 | Mvyy | Proposed | EC
1 1 2 4 16 16
2 2 1 3 12 14
3 1 1 4 13 16
4 4 4 8 19 19
5 - - 10 16 23
6 2 2 6 15 21
7 4 12 14
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