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Abstract
When engineers design components, they rely on
accurate property descriptions of the materials be-
ing used to predict performance. Most materials
used for engineering applications are composed of
an arrangement of atomic constituents into crys-
talline phases, which control the properties of that
material. The crystal orientations embedded in
this microstructural information differ from the
information in conventional light optical images,
and are critical for developing and designing ma-
terials for a range of applications. However, col-
lecting microstructure information through experi-
mental methods is expensive and time-consuming,
especially when 3D information is needed. In or-
der to model material properties under different
material processing conditions (resulting in differ-
ent microstructural arrangements), physics-based
generative models are needed to create realistic
synthetic microstructures. This research releases
microstructural data of a titanium alloy, Ti-6Al-
4V, and discusses their information modalities and
the physics needed to be incorporated to enable
the design of physics-based generative models for
generating synthetic microstructures.

1. Introduction
Most materials used for engineering applications are com-
posed of an arrangement of elemental constituents into crys-
talline phases, which control the properties of that material.
The arrangement of these crystals (also known as grains)
is referred to as the microstructure, and is described using
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metrics that capture the size, arrangement, connectivity, and
crystallographic orientation of the grains. Efficiently obtain-
ing sufficient microstructure information to predict material
properties is crucial to the development of new technologies,
especially under extreme environments. Voxel-based 3D
microstructure information is especially valuable for under-
standing material behavior (Rowenhorst et al., 2010; Kelly
et al., 2016; Hémery et al., 2019; Echlin et al., 2021; DeMott
et al., 2021; 2020), but the cost of 3D reconstruction has
limited many investigations to 2D characterization. Even
when considering just 2D information, a large number of
image sets have been collected with to describe trends in
material behavior that would be desirable to depict 3 dimen-
sions (Pilchak et al., 2013; 2016; Bridier et al., 2008; Clark
et al., 2012; Germain et al., 2008).

The appeal of synthetic microstructures for tasks like me-
chanical/electrical property modeling variability prediction,
and rare event characterization (Dawson & Boyce, 2015;
Lebensohn et al., 2012; Tu et al., 2019), has motivated
the creation of statistically-based microstructure generators
(Quey et al., 2011; Groeber & Jackson, 2014), but these
methods present challenges in terms of generation time
and imitation of local statistical features (Hémery et al.,
2019). As a result, there is growing interest in deep learning
for synthetic microstructure generation (Robertson et al.,
2023; Robertson & Kalidindi, 2022; Jangid et al., 2022b;
Senthilnathan et al., 2021; Hsu et al., 2020; Brust et al.,
2021; Kench & Cooper, 2021) using generative models,
which can be used to generate complex material structures
with lower cost burden. This materials problem has similari-
ties in data structure/modality to other 2D and 3D computer
vision tasks like robotics, LIDAR detection, and 3D image
reconstruction, all of which share the challenge of having
ground truth data that is difficult to collect. Significant
advancements in deep generative models have been made
in computer vision (Croitoru et al., 2023; Rombach et al.,
2022), but a fundamental requirement for designing deep
generative models is the availability of large numbers of
datasets for training the network. Unfortunately, collecting
microstructural information is more expensive and time-
consuming than conventional photography (Jangid et al.,
2023; Charpagne et al., 2021; Stinville et al., 2022; Rowen-
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Figure 1. TRIBEAM MICROSCOPE: 3D microstructure datasets
are obtained during a serial sectioning experiment. The TriBeam is
so named due to the presence of three beams: the electron, focused
ion, and laser. The electron beam is used to gather diffraction
patterns, whereas the laser beam is used to ablate the materials,
layer-by-layer. The ion beam can be used clean the laser ablated
surface in damage sensitive materials, if necessary.

horst et al., 2020; DeCost et al., 2017), as the most basic
light optical techniques still require careful material surface
preparation (e.g. polishing, chemical etching) for just a sin-
gle 2D image. Furthermore, these light optical techniques
cannot capture richer microstructure information like crys-
tallographic orientations and local chemistry, which require
even costlier and more involved methods.

Electron Back Scatter Diffraction (EBSD) (Schwartz et al.,
2009) is a widely used scanning electron microscopy (SEM)
technique that images a material surface to collect mi-
crostructure data that contains crystal orientation informa-
tion. Microstructure data describes the arrangement of crys-
talline structures in a material, where “crystalline” refers
to a collection of atoms exhibiting long-range periodic or-
der. For crystalline materials, the arrangement of atoms
significantly influences several material properties including
melting temperature, yield strength, ductility, and fatigue
resistance. Light optical microscopy and the resulting RGB
images have inadequate resolution to image atoms or to eval-
uate atomic arrangement. Therefore, we rely on X-ray or
electron diffraction to understand the arrangement. During
EBSD, a material is imaged one pixel at a time using a SEM,
and electrons are diffracted from the atoms in the crystal
according to Bragg’s law. These diffracted electrons are
collected on a detector producing a pattern called Kikuchi
bands, which are indexed into crystal orientations to extract
information about crystallographic arrangement. There are
several techniques to determine crystal orientation from a
Kikuchi pattern, including mathematical approximations of
band locations using Hough or Radon transforms (Krieger
Lassen et al., 1992; Adams et al., 1993), dictionary-based

spherical cross-correlation approaches that leverage simula-
tions of the electron-materials interactions (Jackson et al.,
2019; Lenthe et al., 2019), and network-based approaches
(Ding et al., 2021). The resultant data during EBSD is a
diffraction pattern at each pixel in an image, which is in-
dexed (mapped) into a crystal orientation represented as a
vector (e.g. quaternion, Euler angle).

One of the greatest limitations of both light optical mi-
croscopy and EBSD is that they can only gather 2D images
of materials that are fundamentally 3D. For both material
and component design, 3D microstructure data plays a criti-
cal role in property prediction by informing the connectivity
of grains and crystalline phases and characteristics of their
interfaces for a broad range of applications, from biomed-
ical to aerospace (National Research Council, 2008). As
a result, 3D microscopy techniques, like the TriBeam de-
picted in figure 1, have been developed for this purpose. The
TriBeam microscope is used to remove material in a layer-
by-layer fashion from the sample using a femtosecond pulse
laser, capturing images at the surface of each slice using an
electron beam and a suite of detectors (Echlin et al., 2021).
These slices are then aligned, indexed, and assembled into
a 3D volume following the pipeline process shown in fig-
ure 2. The TriBeam method has made 3D microstructure
collection more accessible (Echlin et al., 2021; Randolph
et al., 2018), but even with enhancements in detector speeds
and laser material removal rates, gathering this information
remains expensive, energy-intensive, and time-consuming.

Here we release for the machine learning commu-
nity an experimental microstructural dataset of a tita-
nium alloy, Ti-6Al-4V on BisQue (https://bit.ly/
Ti6Al4Vmicrostructure), a web-based cloud plat-
form. We discuss the representation methods and physics
needed to describe this microstructural dataset and design
physics-based generative models for creating new synthetic
microstructures. Our motivation for introducing 3D mi-
crostructure data to the machine learning community is to
empower the development of different physics-based deep
generative models for synthesizing microstructures, which
can be used to design new materials.

2. Microstructure Dataset
The Ti-6Al-4V material released here (https://bit.
ly/Ti6Al4Vmicrostructure) was obtained as a
standard grade, double-melt plate, with a thickness of ap-
proximately 0.5 inches (1.25 cm). TriBeam characteriza-
tion was used to construct 3D orientation maps of the heat-
treated equiaxed microstructure, as shown in figure 3. The
dataset resolution in the EBSD imaging plane is 0.6 mi-
crometers (x and y axis), and in the sectioning plane is 1
micrometer (z axis). Polycrystalline materials like Ti-6Al-
4V consist of a large number of subdomains called grains,
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Figure 2. MICROSTRUCTURE DATA COLLECTION PROCESS: Material researchers collect Kikuchi diffraction patterns for each (x, y,
z) coordinate of materials with the given step sizes (sx, sy, sz) in (x, y, z) axis. The Kikuchi diffraction patterns are then indexed to
determine the crystal orientation at each point. This information about crystal orientation is useful for predicting material properties. The
inverse Pole Figure (IPF) technique is used to visualize the 3D crystal orientation.

which are visible as regions of relatively uniform crystallo-
graphic orientation (uniform color) in figure 3. The dataset
presented here contains a total of 8893 grains, with 6645
unbiased grains (grains not at the volume edge). Differences
in material composition and processing can change grain
size (nm to mm range), morphology, and the distribution
of orientations in grain neighborhoods. The arrangement
and morphology of grains (and their orientations) can be
correlated with material properties like strength and con-
ductivity. For comparison, other 3D datasets of different
material systems exist in the literature that are also openly
accessible for use by this community (Stinville et al., 2022;
Shade et al., 2019).

In the remainder of this section, we will discuss the fun-
damentals of microstructure and orientation representation
from a computational perspective.

2.1. Orientation Representation

The orientation of a 3D point can be represented in many
ways, including Euler angles, rotation matrices, quaternions,
axis-angle pairs, and Rodrigues vectors. Each orientation
representation has distinct advantages and disadvantages in
terms of ease of use for different calculations and data visu-
alization, and there are packages available to readily convert
between them (Rowenhorst et al., 2015; De Graef). Within
these possible representations, quaternions are frequently
used to avoid ambiguity in 3D rotations (gimbal lock) in
tasks like software graphics, computer vision, and robotics.

Quaternions: A quaternion q is a four component number
of the form q = q0 + iq1 + jq2 + kq3, where imaginary
units (i, j, k) satisfy the following relationship:

i2 = j2 = k2 = ijk − 1 (1)

Unit quaternions can always be written in the form

q = cos
ω

2
+ sin

ω

2
(c1i+ c2j + c3k) (2)

where ci are the directions cosines of the rotation axis unit
vector n̂. Unit quaternions are located on the sphere S3

inside the 4D quaternion space.

Quaternion representation is preferable due to its simplicity
in computing orientation differences (misorienation) and
the ease of enforcing constraints for a valid unit quaternion
rotation. Furthermore, the only redundancy in quaternion
is that q = −q, which is computationally trivial to address.
The efficiency and lack of ambiguity in quaternion represen-
tations also make them well-suited to orientation expression
in neural networks, both for loss functions (Jangid et al.,
2022a) and network layer design (Parcollet et al., 2018).

2.2. Symmetry Space

Optically-gathered images commonly used in computer vi-
sion tasks encode color, intensity, or topographic informa-
tion as scalars at each pixel. On the other hand, crystallo-
graphic data encodes orientations as vector-based rotations
relative to a chosen reference frame. The range of possible
unique crystal rotations is constrained by the symmetry of
the crystal, such as body centered cubic (BCC), face cen-
tered cubic (FCC), or hexagonal close packed (HCP). Sym-
metry has a disruptive impact on learning with standard loss
functions (L-norms) because symmetry planes create dupli-
cates and discontinuities in rotation distance measurement.
Multiple-defined rotations are avoided through the funda-
mental zone convention, which is defined as the polyhe-
dron in Rodrigues space that encompasses all angles whose
distance is closer to the 0 rotation than to any symmetric
equivalent of the 0 rotation (Morawiec & Field, 1996). The
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Ti-6Al-4V microstructure dataset released here is an HCP
material (space group 194, point group 6/mmm), so it has
a total of 24 symmetry operators, of which only 12 do not
involve a change of handedness.

Figure 3. INVERSE POLE FIGURE (IPF) MAP OF TI-6AL-4V-
EQUIAXED MICROSTRUCTURE DATASET: The color represents
the orientation of crystal. Each grain of the same color has a
nearly identical crystallographic orientation. Rolling direction
(RD), transverse direction (TD) and normal direction (ND) refer-
ence arrows are also shown.

2.3. Visualization of Crystal Orientations

When orientation data is produced, real or synthetic, a means
of visualization is required, which is challenging, since
many orientation representations (quaternion, rotation ma-
trix, Rodrigues vector) do not directly translate into common
image formats. The most direct option is to convert orien-
tation output into a 3-channel form and map it directly to a
color scheme (RGB, HSV, YUV), but the presence of sym-
metry means small orientation changes often result in large
changes in color scale in this type of mapping, which can
create the appearance of noise even when data is correct. For
this reason, the Inverse Pole Figure (IPF) color scheme was
designed, which stereographically projects the fundamental
zone into 2D and maps a uniform RGB gradient onto it. An
IPF legend for HCP is shown in the bottom right of figure
3, and details of projection and color pattern choice are dis-
cussed in (Schwartz et al., 2009; Jackson et al., 2019; Nolze
& Hielscher, 2016). Even though this output is intuitive to
visualize, it is a projection that is fundamentally ambiguous
and not information preserving, so no learning or inference
should be done on IPF images as they cannot be converted
back into orientations.

3. Incorporation of Physics of Microstructure
Data into Generative Models:

The 3D arrangement of grains, phases, and interfaces con-
trols material properties, but collecting this information ex-
perimentally remains costly. Despite this, one advantage of

microstructure data over other 3D data is that its appearance
is inherently dictated by physical relationships that can be
incorporated into generative models to enable more realistic
output and reduce data burdens. Models like Generative Ad-
versarial Networks (GANs) have already been designed to
explore some aspects of 3D microstructure, including grain
and phase distribution, to varying degrees of success (Hsu
et al., 2020; Kench & Cooper, 2021; Jangid et al., 2022b),
but many open problems remain. Here, we present some ex-
amples of physics-based relationships that can be applied to
generative models for synthetic microstructures, including
as GANs, variational autoencoders, and diffusion models.

Crystal Symmetry: As previously discussed, symmetry
space constrains distance metrics, but can also be used to
simplify orientation representation space. One approach
is to incorporate symmetry directly into the loss function,
which is a softer constraint that does not increase inference
time (Jangid et al., 2022a). In a symmetry-based loss, the
orientation at every pixel is considered as a collection of
equivalent rotations across all symmetries and the loss dis-
tance is calculated as the minimum distance between the
ground truth value and any value within this collection. An-
other approach is to introduce symmetry directly into the
convolution kernels (Cohen et al., 2018; 2019). This ap-
proach is a stronger constraint, but may also increase the
inference time for the network.

Rotational Distance: The microstructure data contains in-
formation about the 3D orientation of crystals as normalized
vector expressions of rotations (unit quaternion rotations are
located on the S3 manifold in R4). Regardless of expres-
sion form, when evaluating network output against ground
truth, the most physically accurate distance metric is the
geodesic distance along the rotation sphere, rather than L-
norms. The rotational distance between two quaternions can
be computed as the following:

θ = 4 sin−1

(
deuclid

2

)
(3)

where, deuclid = ∥q1 − q2∥2. This approach requires some
approximations to resolve the discontinuities in the inverse
sine function, but it is appealing because it allows for direct
comparison of network error and experimental results.

Incorporation of Data Modalities into Network Architec-
ture: Similar to symmetry, crystal orientation representation
can be incorporated directly into network architectures to
improve performance and reduce complexity/data burdens.
For quaternions, approaches to this include the quaternion
convolution kernel (Parcollet et al., 2018) and quaternion
transformer (Jangid et al., 2023). As an example, quater-
nion convolution computes the Hamilton product between
input feature maps and kernel filters to better conserve data
representation. However, introducing non-linear activations
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Figure 4. TI-6AL-4V MICROSTRUCTURE DATASET ON BISQUE: Ti-6Al-4V 3D microstructure dataset can be accessed on our open
source web-based architecture ”BisQue”. The microstructure dataset are saved as hdf/dream3d format and can visualized using ”IPFColor”
field. The crystal orientations at each voxel is saved in ”EulerAngles” and ”Quaternions” fields. ”FeatureIds” field shows the location of
grains, and each grain has a distinct feature id.

is not straightforward, as the only functions that satisfy the
Cauchy-Riemann-Fueter equations for quaternions are lin-
ear or constant (Parcollet et al., 2020). Locally analytic
quaternion activation functions compatible with standard
backpropagation have been developed (De Leo & Rotelli,
1997; Isokawa et al., 2012), but the most straightforward
way to introduce non-linearity is element-wise, which does
not preserve inter-channel relationship.

4. Accessing 3D Microstructure Dataset:
In this section, the details of Ti-6Al-4V microstruc-
ture dataset, available on ”BisQue” (https://bit.ly/
Ti6Al4Vmicrostructure), are discussed. The phys-
ical dimension of the Ti-6Al-4V microstructure sample is
190 × 241 × 106 micrometers. In voxel-based representa-
tion, this 3d volume expands to 318 × 377 × 121 voxels,
where each voxel contains information about the crystal
orientation. All the relevant information for designing ma-
chine learning models relevant to this dataset is stored in
DataContainers/ImageDataContainer/CellData, as shown
in the figure 4. Each grain in the dataset is composed of
a collection of neighboring voxels that have similar crys-
tal orientations. In the dataset itself, each grain is labeled
with a unique positive integer value, termed a feature ID,
that is randomly assigned, starting at 1 (the integer value
0 is typically reserved for any void regions captured in the
dataset). There are a total of 8893 single grains in the 318
× 377 × 121 volume, and of those, 6645 grains are com-

pletely captured such that they do not come into contact
with the edge of the collection volume. Separating fully
captured grains from edge grains is not usually necessary
for voxel-based vision tasks, but is important for morpholog-
ical studies where flat surfaces created by sample edges can
lead to bias. The exact number of datapoints in the dataset
will vary depending on the features of interest being studied.
Any voxel level information will be stored in an array of
318 × 377 × 121 × [array depth]. Quaternion information,
for example, is collected at the voxel level, so the array of
quaternions in this dataset is of size 318 × 377 × 121 ×
4. However, there is also information that can be collected
at the grain level (also referred to as feature level), such as
the average orientation in each grain, or the volume of each
grain. Values like these would be stored as a list, with the
value for a given grain stored at the list index that matches
its integer feature ID.

In orientation space, the problem of generating synthetic
microstructures can be subdivided into the two distinct chal-
lenges of 2D and 3D microstructure generation. While
3D microstructure generation holds greater value for re-
searchers, designing physics-based generative models for
3D is hindered by the limited availability of real 3D data.
As a preliminary step towards working with 3D microstruc-
tures, 2D microstructure generation is often an essential
task. Because 3D EBSD datasets do not have any visual
perspective associated with them, they can readily be broken
up into a collection of correlated slices along orthogonal
directions for the purposes of 2D learning.

https://bit.ly/Ti6Al4Vmicrostructure
https://bit.ly/Ti6Al4Vmicrostructure
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Broader Impact
Since the 1990s, there have been several large-scale man-
ufacturing initiatives, including the Materials Genome Ini-
tiative (MGI) (National Science and Technology Council
(US), 2011) and Integrated Computational Materials En-
gineering (National Research Council, 2008), whose goal
has been accelerating the materials development process.
A key bottleneck of the current design process is the slow
pace of experimentation, motivating for simulations that
can replace or better target these costly steps. Generative
models for 3D microstructures can accelerate this process
by providing an efficient means of producing realistic in-
put to engineering component-scale models. With good
generative models, a single 3D microstructure dataset can
be used to create and test many synthetic variations, effec-
tively replacing hundreds of costly experiments. Generative
models for 3D microstructure also broaden research access
to 3D microstructures, which are difficult to gather experi-
mentally. Finally, physics-based network architectures built
for crystallographic rotations may also have translational
applicability in other fields that are dependent on rotational
inference.
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A. Appendix
The EBSD dataset presented in this work was processed using Dream3D ((Groeber & Jackson, 2014)), so the structure of the
set follows the HDF5 architecture and nomeclature conventions used for Dream3D files. Files with the .dream3d extension
are directly compatible with applications and packages used for HDF files (e.g. the HDF View software package or h5py in
Python), so these can readily be used to extract individual variables from the file for independent manipulation. The file
structure can also be visualized directly within the web-based BisQue infrastructure for convenience. A visualization of the
file directory from BisQue can be see in Figure 5, and a breakdown of variable definitions is available in Table 1.

Figure 5. FILE STRUCTURE OF TI-6AL-4V MICROSTRUCTURE DATASET ON BISQUE: .
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CellData
AverageEulers The average Euler angle for each voxel’s corresponding grain (See AvgEulers).
Confidence Index The confidence value for the Hough Transform indexing used to determine orientation.
Euler Angles Crystal orientation at each voxel using Bunge Euler angle representation.
FeatureIDs Integer identifier values for each grain. Void is feature 0. Others assigned randomly.
Fit Comparative quality metric between the indexed orientation and Hough transform (in degrees).
IPFColor RGB color mapping of crystal orientation using IPF projection
IPFColorAvg IPF projection mapping where each grain is colored by average orientation.
Image Quality Image quality metric. Larger values indicate better quality.
Mask Mask indicating regions of void. Void = 0, Solid = 1 (note: dataset contains no void).
Misorientation Color RGB color representation for relative misorientation, developed by (Patala et al., 2012).
Phases Voxel level numerical phase map. 1 = HCP α phase. 2 = BCC β phase.
Quaternions Crystal orientation at each voxel using quaternion representation.
SEM Signal Dataframe for storing equivalent SEM signal. Dataset is purely EBSD, so this is empty.
X Position The x-position of each voxel in the volume
Y Position The y-position of each voxel in the volume.

CellEnsembleData
CrystalStructures Dream3D internal value. Numerical labels for void, α, and β crystal structures.
LatticeConstants Lattice constants for associated labels in CrystalStructures
MaterialName String name labels for phases in CrystalStructures and LatticeConstants.

CellFeatureData
Active Internal label indicating which features are captured within the current dataset.
AvgEulers Average Euler angle orientation of each grain feature.
AvgQuats Average quaternion orientation of each grain feature.
Centroids Centroid of each grain in physical space (see SIMPL Geometry).
EquivalentDiameters Diameter in µm of each grain if it were approximated as a sphere of equivalent volume.
NumCells Number of voxels in each grain feature.
NumNeighbors Number of adjacent feature neighbors for each grain.
Volumes The volume of each grain in µm3

SIMPL Geometry
Dimensions Size of the dataset in voxels.
Origin Location of the physical space origin in in µm.
Spacing Physical x, y, and z size of each voxel in µm

Table 1. DESCRIPTION OF FILE STRUCTURE OF TI-6AL-4V MICROSTRUCTURE DATASET:


