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ABSTRACT

In steganography (the hiding of data into innocuous covers for se-
cret communication) it is difficult to estimate how much data can
be hidden while still remaining undetectable. To measure the in-
herent detectability of steganography, Cachin [1] suggested theε-
secure measure, whereε is the Kullback Leibler (K-L) divergence
between the cover distribution and the distribution after hiding. At
zero divergence, an optimal statistical detector can do no better
than guessing; the data is undetectable. The hider’s key question
then is, what hiding rate can be used while maintaining zero diver-
gence? Though work has been done on the theoretical capacity of
steganography, it is often difficult to use these results in practice.
We therefore examine the limits of a practical scheme known to
allow embedding with zero-divergence. This scheme is indepen-
dent of the embedding algorithm and therefore can be generically
applied to find an achievable secure hiding rate for arbitrary cover
distributions.

1. INTRODUCTION

Steganography is the application of data hiding for the purpose of
secret communication. The steganographer’s goal is to embed as
much data as possible without the existence of this data being de-
tectable. Intuitively, there is a tradeoff between the amount of data
embedded and the risk of detection, however it is difficult to ac-
curately characterize this tradeoff. In preventing detection from a
steganalyst, the steganographer has the disadvantage of not know-
ing the detection method that will be used, and so must assume
the steganalyst is using the best possible detector. To measure the
capabilities of an optimal statistical detector, Cachin [1] suggested
the ε-secure measure. Hereε is the Kullback-Leibler (K-L) di-
vergence between the cover distribution and the distribution after
hiding. The performance of an optimal statistical test is bound by
this divergence, and thereforeε serves as a succinct measure of
the inherent detectability of steganography. At zero divergence, an
optimal statistical detector can do no better than guessing; the data
is undetectable. The hider’s key question then is, what hiding rate
can be used while maintaining zero divergence?

In [2], Moulin and Wang derive an expression for perfectly se-
cure capacity, the theoretical maximum hiding rate under the con-
straint of zero divergence. Additionally they provide an example
achieving this capacity in the binary-Hamming channel. However
it is difficult to extend these results to more complex hiding sce-
narios.
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Rather than deriving the theoretical capacity, we instead seek
to derive the achievable hiding rate for a known statistical restora-
tion method capable of hiding with zero K-L divergence [3]. This
method is independent of the embedding algorithm (e.g. LSB, spread
spectrum, QIM). Therefore this derivation can be generically ap-
plied to find a secure hiding rate that is known to be achievable
in practice. As an example, we apply this analysis to quantiza-
tion index modulation (QIM) hiding in randomly generated Gaus-
sian covers, and find 30% of the available coefficients can be used
while guaranteeing zero divergence 90% of the time.

2. HIDING RATE FOR ZERO K-L DIVERGENCE

We first briefly outline the idea of statistical restoration we use as
the basis of our analysis. The basic idea is to hide as usual in some
proportion of the symbols available for hiding (e.g. pixels, DCT
coefficients) and use the remaining to match the density function
to that of the cover, and thus achieve zero Kullback-Leibler di-
vergence. A similar approach was used by Provos to correct his-
tograms [4]. The advantage of our approach is its applicability to
continuous data. We earlier presented an application of this ap-
proach to reduce K-L divergence [5] and have since extended this
method to reduce the divergence to zero. For details and experi-
mental results see [3].

Practically speaking, the steganalyst does not have access to
continuous probability density functions (pdf), but instead calcu-
lates a histogram approximation. Our data hiding is secure if we
match the stego (data containing hidden information) histogram to
the cover histogram using a bin size, denotedw, the same size as,
or smaller than, that employed by the steganalyst. We stress that
all values are present and there are no “gaps” in the distribution
of values; however, within each bin the data is matched to the bin
center. A key assumption is that for small enoughw, the distribu-
tion is uniformly distributed over the bin, a common assumption
in source coding [6]. Under this assumption, we can generate uni-
formly distributed pseudorandom data to cover each bin, and still
match the original statistics. LetfX(x) be the cover pdf andfS(s)
the pdf of the stego data. ForI bins centered att[i], i ∈ [1, I] with
constant widthw, the expected histogram for data generated from
fX(x) is:

P E
X [i] =

Z t[i]+w/2

t[i]−w/2

fX(x)dx

with a similar derivation ofP E
S [i] from fS(s). The superscriptE

denotes that this is the expected histogram, to discriminate it from
histograms calculated from random realizations. Letλ ∈ [0, 1) be
the ratio of symbols used for hiding. Denoting the cover histogram



as PX [i], and the standard (uncompensated) stego histogram as
PS [i], we have the following constraint:λ ≤ PX [i]

PS [i]
, [5] which

gives us an upper limit on the percentage of symbols we can use for
hiding, and from this the rate. Additionally, to prevent decoding
problems at the intended receiver (see [5] for details), a worst-case
λ is chosen:λ∗ , mini

PX [i]
PS [i]

.

2.1. Distribution of Hiding Rate

Our goal is to characterize the rate guaranteeing zero divergence
for a given cover distribution and hiding method. In practice, be-
cause the data is random, we find a rate that satisfies the zero di-
vergence criteria with a pre-determined probability. To do this, we
need to find the distribution of the minimum of the histogram ratio,
λ∗ for a given cover pdf,fX(x). Our approach is to first find the
distribution of the ratioPX [i]

PS [i]
over all bins, and from this find the

distribution ofλ∗.
We note that histograms calculated from real data vary for

each realization. In other words, the number of symbols in each
bin i, NPX [i], is a random variable. Be analyzing the distribution
of these random variables, we can find the distribution of the ra-
tio PX [i]

PS [i]
. Let VX [i] = NPX [i] be the number of symbols from

fX(x) falling into bin i, thenVX [i] has binomial density func-
tion PVX [i] = B{N, P E

X [i]} [7]. Similarly if VS [i] is the num-
ber of symbols per bin for data fromfS(s), it is distributed as
B{N, P E

S [i]}. See Fig. 1 for a schematic of finding the distribu-
tion of the bins of a histogram.
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Fig. 1. Each realization of a random process has a slightly different
histogram. The distribution of the number of elements in each bin
is binomially distributing according to the expected value of the
bin center (i.e. the integral of the pdf over the bin).

We now defineΓ[i] , VX [i]
VS [i]

= PX [i]
PS [i]

. The cumulative distri-
bution ofΓ[i], FΓ[i](γ) = P (Γ[i] ≤ γ), is given by

FΓ[i](γ) =

NX
k=0

bγkcX
l=0

PVS [i](k)PVX [i](l)

Ultimately, we wish to find the distribution of the minimum
Γ over all bins, giving us a statistical description ofλ∗, our zero-
divergence hiding rate. The cumulative distribution ofλ∗ is the

distribution ofmini Γ[i] given by

Fλ∗(γ) = 1−

(Y
i

ˆ
1− FΓ[i](γ)

˜)

and the density can be found by differentiating. To summarize,
given the pdfs of cover and stego,fX(x) andfS(s), we can find
the distribution ofλ∗: the proportion of symbols we can use to
hide in and still achieve zero divergence. Using this, the sender and
receiver can choose ahead of time to use a fixedλ that guarantees
zero-divergence (i.e.λ ≤ λ∗) within a desired probability. In
Section 2.3 we illustrate this analysis with an example, but first we
examine the factors affecting the rate.

2.2. General Factors Affecting the Hiding Rate

By examining the derivation of the distribution ofλ∗, we can pre-
dict the effect of various parameters on the hiding rate. The key
factors effecting the payload are:

1. Cover and stego pdfs,fX , fS : Obviously the “closer” the
two pdfs are to one another, the less compensation is re-
quired, and the higher the rate. The difference between the
pdfs depends on the hiding scheme.

2. Number of samples,N : The greater the number of sam-
ples, the more accurate our estimates of the samples per bin.
Therefore it is easier to guarantee aλ to be safe with given
probability, and so the hiding rate is higher. The number of
samples is mostly a function of the size of the image.

3. Bin width, w, used for compensation: Bin width is im-
portant to guaranteeing security, but the effect of bin width
is not immediately clear. In general the net effect, an in-
crease or decrease inE{λ∗}, depends on the distributions.
Fortunately for the steganographer, the steganalyst can not
choose an arbitrarily small bin size in order to detect, as the
mean integrated square error (MISE) of the detector’s esti-
mate of the pdf is not simply inversely related to bin width
[7]. In other words, the steganalyst also faces a challenge
in choosing an appropriate bin size.

2.3. Maximum Rate of Perfect Restoration QIM

We now apply the analysis to a specific method of embedding:
dithered quantization index modulation (QIM), [10]. The basic
idea of QIM is to hide the message data into the cover by quantiz-
ing the cover with a choice of quantizer determined by the mes-
sage. The simplest example is so-called odd/even embedding.
With this scheme, a continuous valued cover sample is used to
embed a single bit. To embed a 0, the cover sample is rounded to
the nearest even integer, to embed a 1, round to the nearest odd
number. The decoder, with no knowledge of the cover, can decode
the message so long as perturbations (from noise or attack) do not
change the values by more than 0.5. Since the cover data is quan-
tized, the stego data will only have values at the quantizer outputs.
If quantized data is not expected, then steganalysis is trivial: if data
is quantized it has hidden data. One solution to this is to dither the
quantizer, that is, shift the intervals and outputs by a pseudoran-
dom sequence known by the encoder and decoder. The resulting
output no longer “looks” quantized. It is this dithered QIM we
examine here. For a given cover pdffX(x) we can calculate the
expected stego pdffS(s) from the cover pdf [8, 9]. Briefly, the



cover pdf is convolved with a rectangle function, so the resulting
stego pdf is a smoothed version of the original.

In the context of QIM hiding we can more explicitly charac-
terize the factors affecting the amount of data that can be safely
embedded. Since we can calculatefS from fX , of this pair we
need only examine the cover pdf. Distributions of typical hiding
medium, particularly transform domain coefficients, are sharply
peaked, and these peaks tend to become smoothed after hiding. For
a particular distribution,σ/∆ is an important parameter charecter-
izing the detectability of QIM [8]. For largeσ/∆, the cover pdf is
flat relative to the quantization interval, and less change is caused
to the original histogram by hiding, and the expectedλ∗ is large.

Of all the factors, onlyw and∆ are in the hands of the steg-
anographer. Decreasing∆ increasesσ/∆, and therefore the safe
hiding rate. However, decreasing∆ also increases the chance of
decoding error due to any noise or attacks [10]. Thus if a given
robustness is required,∆ can also be thought of as fixed, leaving
only the bin width. For QIM hiding in Gaussians and Laplacians,
we found that decreasing the bin sizew led to a decrease inλ∗,
suggesting that the steganographer should choose a largew. How-
ever, as mentioned before,w should be chosen carefully to avoid
detection by a steganalyst using a smallerw.

We presently examine an idealized QIM scheme, followed by
an extension to a practical QIM scheme which prevents decoder
errors. As an illustrative example, we provide results derived for
hiding in a Gaussian, but note the approach can be used for any
fX(x).

Figure 2 is the density ofΓ[i], fΓ[i](γ) for all i and a range of
γ, for QIM hiding in a zero-mean unit-variance Gaussian. From
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Fig. 2. The pdf ofΓ, the ratio limiting our hiding rate, for each bin
(coeff. value)i. The expectedΓ drops as one moves away from
the center. Additionally, at the extremes, e.g.±4, the distribution
is not concentrated. In this example,N = 50000,σ/∆ = 0.5, and
w = 0.05.

this density we can see the relationship betweenΓ and bin cen-
ter. For bins located near zero,Γ[i] has a probability concentrated
above 1 (though obviously we can not embed in more than 100%
of the coefficients). For bins a bit further from the center, the ex-
pected value forΓ drops. Since the effect of dithered QIM is to
smooth the cover pdf this result is not surprising. The smoothing
moves probability from the high probability center out towards the
tails. Though this result is found for hiding in a Gaussian, we ex-
pect this trend from any peaked unimodal distribution, such as the
generalized Laplacian and generalized Cauchy distributions often
used to model transform coefficients [11]. Near the ends, e.g.±4,
Γ is distributed widely over all possible values. So while it is pos-

sible to have a very highγ here, it is also possible to be very low;
i.e. the variance is very high. The solution we study is to hide
only in the high probability region; after hiding, only this region
needs to be compensated. This introduces a practical problem, the
decoder is not always able to distinguish between embedded coef-
ficients and non-embedded. We address this issue below, but first
we examine the ideal case.

Despite the reduction in the number of coefficients we are hid-
ing in, our net rate may be higher due to a higherλ∗, whereλ∗ is
redefined asλ∗ , mini∈H

PX [i]
PS [i]

whereH is the hiding region, de-

fined asH , [−T, T ] andT is the hiding threshold. The net hid-
ing rate, no longer simply equivalent toλ∗, is nowR = λ∗G(H)

whereG(H) ,
P

i∈H PX [i]. In practice the encoder and decoder
can agree on aλ which leads to perfect restoration within a pre-
determined probability, 90% for example. From the distribution of
λ∗, theλ guaranteeing perfect restoration with a given probability
can be found for each threshold. These 90%-safeλs decrease as
the threshold is increased, as seen in Fig. 3, along with an example
of deriving the 90%-safeλ for the threshold of 1.3. The net effect
of an increasingG(T ) and decreasing safeλ is a concave function,
as in Fig. 4 from which the maximum rate can be found.
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Fig. 3. On the left is an example of finding the 90%-safeλ for a
threshold of 1.3. On the right is safeλ for all thresholds, with 1.3
circled.

In Fig. 4 we show the relationship between the chosen thresh-
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Fig. 4. Finding the best rate. By varying the threshold, we can find
the best tradeoff betweenλ and the number of coefficients we can
hide in.

old and the rate allowing perfect histogram matching in 90% of
cases. In this case, the maximum rate is 0.65 bits per coefficient.
So, using a threshold of 1.3 and aλ of 0.81 (from Fig.3), the hider



can successfully send at a rate of 0.65, and the histogram is per-
fectly restored nine times in ten.

2.4. Rate of QIM With Practical Threshold

As noted above, there will inevitably be ambiguity at the decoder
with values near the threshold. In the region near the threshold, the
decoder does not know if the received value is a coefficient that
originally was below the threshold and is now shifted above the
threshold after hiding and dithering, or is simply a coefficient that
originally was above the threshold and contains no data. There-
fore a buffer zone is created near the threshold: if, after hiding,
a coefficient would be shifted above the threshold, it is instead
skipped over. To prevent creating an abrupt transition in the his-
togram at the buffer zone, we dither the threshold with the dither
sequence [3]. Since the decoder knows the dither sequence, this
should not introduce ambiguity. This solution clearly results in a
different stego pdf,fS(s). In the region near the threshold, there
is a blending offX(x) and a weakened (integrated over a smaller
region) version of the standardfS(s). Beyond the threshold re-
gion, the original coefficients pass unchanged and the statistics are
unaffected. The cost of this practical fix is a greater divergence
betweenfS andfX , resulting in a lower overall rate.

As with the ideal threshold case, we can calculate aλ guar-
anteeing perfect restoration a given percentage of the time. Gen-
erally the expectedΓ is increased near the threshold, however it
drops quickly after this.

Finally Table 1 shows the 90%-safe rate for various thresholds.
Here we would choose a threshold of 1, to achieve a rate of 0.3,
about half the rate of the ideal case.

Threshold vs. Rate
Threshold 1 2 3

G(T ) 0.66 0.94 0.99
90%-safeλ 0.45 0.25 NA
Safe rate 0.30 0.24 0

Table 1. An example of the derivation of maximum 90%-safe rate
for practical integer thresholds. Here the best threshold isT = 1
with λ = 0.45. There is no 90%-safeλ for T = 3, so the rate is
effectively zero.

We have compared the derived estimates to Monte Carlo sim-
ulations of hiding and found the results to be as expected for dif-
ferent parameters (n, w, σ/∆). We therefore have an analytical
means of prescribing a choice ofλ andT for maximum hiding rate
guaranteeing perfect restoration within a given probability. For ex-
perimental results of a practical implementation of the restoration
scheme, please see [3].

3. CONCLUSION

We have analyzed a hiding scheme designed to avoid detection by
eliminating divergence between the statistics of cover and stego.
We derive expressions to evaluate the rate guaranteeing secure
(ε = 0) hiding within a specified probability for practically re-
alizable statistical restoration mechanism. In a specific example,
we find for QIM hiding in Gaussian covers, about a third of the co-
efficients can be used and still achieve zero divergence nine times
in ten.

4. REFERENCES

[1] C. Cachin, “An information theoretic model for steganog-
raphy,” Int’l Workshop on Information Hiding, LNCS, vol.
1525, pp. 306–318, 1998.

[2] P. Moulin and Y. Wang, “New results on steganographic ca-
pacity,” in Proceedings of Conference on Information Sci-
ences and Systems (CISS), 2004.

[3] K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath,
and S. Chandrasekaran, “Provably secure steganography:
Achieving zero K-L divergence using statistical restoration,”
in Proceedings of ICIP, Atlanta, Georgia, USA, Oct 2006.

[4] N. Provos, “Defending against statistical steganalysis,” in
10th USENIX Security Symposium, Washington DC, 2001.

[5] K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath, and
S. Chandrasekaran, “Statistical restoration for robust and se-
cure steganography,” inProceedings of ICIP, Genoa, Italy,
Sep 2005.

[6] A. Gersho and R.M. Gray,Vector quantization and signal
compression, Kluwer Academic Publishers, 1992.

[7] D. W. Scott, “On optimal and data-based histograms,”
Biometrika, vol. 66, no. 3, pp. 605–10, 1979.

[8] K. Sullivan, Z. Bi, U. Madhow, S. Chandrasekaran, and B. S.
Manjunath, “Steganalysis of quantization index modulation
data hiding,” inProceedings of ICIP, Singapore, Oct 2004.

[9] M. T. Hogan, N. J. Hurley, G. C. M. Silvestre, F. Balado, and
K. M. Whelan, “ML detection of steganography,” inProc.
SPIE Symp. on EIS&T, San Jose, CA, Jan 2005.

[10] B. Chen and G.W. Wornell, “Quantization index modulation:
A class of provably good methods for digital watermarking
and information embedding,”IEEE Trans. Info. Theory, vol.
47, no. 4, pp. 1423–1443, May 2001.

[11] A. Srivastava, A.B. Lee, E.P. Simoncelli, and S.-C. Zhu, “On
advances in statistical modeling of natural images,”Jour-
nal of Mathematical Imaging and Vision, vol. 18, pp. 17–33,
2003.


