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Modeling and Detection of Geospatial Objects
Using Texture Motifs

Sitaram Bhagavathy, Member, IEEE, and B. S. Manjunath, Fellow, IEEE

Abstract— We propose the use of texture motifs, or charac-
teristic spatially recurrent patterns for modeling and detecting
geospatial objects. A method is proposed for learning a texture
motif model from object examples and detecting objects based
on the learned model. The model is learned in a two-layered
framework—the first learns the constituent “texture elements” of
the motif and the second, the spatial distribution of the elements.
In the experimental session, we first demonstrate the model
training and selection methodology for different objects given
a limited dataset of each. We then emphasize the utility of such
models for detecting the presence or absence of geospatial objects
in large aerial image datasets comprising tens of thousands of
image tiles.

Index Terms— geospatial object, object detection, object model

I. INTRODUCTION

Aerial and satellite images of the earth (or geospatial
images) are critical sources of information in diverse fields
such as geography, cartography, meteorology, surveillance,
city planning. These images contain visual information about
various natural and man-made features on or above the surface
of the earth. Manual annotation of geospatial images covering
even a relatively small area of the earth is a tedious task.
This has necessitated research into automated annotation of
geospatial images. An important component of this research
comprises object detection methods, which are model-driven
methods that seek to identify probable locations of specified
features of interest or objects in geospatial images. For ex-
ample, detection of buildings and roads is a useful step in
cartography. Detection of objects such as harbors, airports, golf
courses, housing colonies, vineyards, and parking lots is useful
for updating geographical databases such as the Alexandria
Digital Library (ADL) Gazetteer [1] which index the loca-
tions of several object types. Automated object detection is
an important step toward an object-based representation of
geospatial images.

The detection of geospatial objects with simple geometric or
shape models such as buildings [2], [3], [4], [5], [6], roads [7],
[8], [9], and other small objects [10], [11] has been explored
adequately in the literature. This is not the case for compound
objects, such as harbors and golf courses, characterized by
several “parts” and their spatial layout. For example, harbors
contain boats and golf courses contain trees and grass, both
with a distinct spatial arrangement (Fig. 1).
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Fig. 1. Examples of geospatial objects: (a) a harbor, (b) a golf course, (c)
a housing colony, and (d) a parking lot. The white borders show the extent
of the object in the image.

There are two domains in which visual structure in images
can be analyzed, namely the spatial domain (pixel intensities),
and the frequency domain (fourier spectrum). The former has
been the preferred domain for describing the structure of
compound geospatial objects. Spatial analysis methods have
been proposed for describing the constituents and layout of
such objects. These methods usually divide an image into
spatial units (closed regions, lines, etc.) through image seg-
mentation or edge detection/linking. Spatial relations between
units are analyzed using relational models such as production
systems [12], semantic networks [13], [14], human-specified
constraints or rules [15], [16], and evidential reasoning [17].

There are several obstacles to using strictly spatial analysis
for the modeling and detection of compound objects. 1)
Compound geospatial objects often contain a large number
of parts, e.g. a harbor may contain hundreds of boats. 2)
The structural relations among parts are often loose and vary
from one object instance to another. In order to robustly
recognize an object, this variation has to be accounted for.
3) Geospatial images are highly detailed, usually on the order
of thousands of pixels in each dimension. These factors reduce
the appeal of strictly spatial domain analysis methods for
detecting compound objects.

In this paper, we propose solutions that combine informa-
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tion from the spatial and frequency domains. These utilize
joint space-frequency analysis techniques developed in the
framework of texture analysis. The importance of texture as
a visual cue for object detection has long been acknowledged
in computer vision. Mahmood [18] showed that texture-based
attentional selection could reduce the combinatorial search
that occurs during object detection. Braithwaite and Bhanu
[19] use tuned Gabor filters for detecting objects in infrared
images with strongly oriented and periodic features. They
demonstrate the detection of a tank by using a filter manually
tuned to the frequency corresponding to the periodic pattern
of the rows of wheels. Jain et al. [20] use Gabor filters to
derive features which are then utilized for segmenting objects,
such as tanks, cars, and fingerprints, in complex backgrounds.
Although they demonstrate success in segmenting objects in a
scene, the problem of actually detecting a specified object is
not addressed. Schmid [21] proposed a method to construct
models for objects with texture-like visual structure given
positive and negative example images. Schmid uses rotation-
insensitive features which could be a disadvantage if orienta-
tional relationships between spatial patterns is important.

The role of image texture in geospatial image analysis has
mostly focussed on the classification of certain types of land-
cover such as terrain types, crops, and urban settlements (for
example, [22], [23], [24], [25], [26], [27], [28]). In this paper,
we extend the use of texture analysis to model-driven detection
of compound geospatial objects such as harbors, golf courses,
and so on. In a nutshell, this paper proposes methods that apply
frequency-domain texture analysis to address the problems of
1) detecting compound objects in geospatial images, and 2)
learning appearance models for such objects from examples.

The organization of this paper is as follows. Sec. II in-
troduces the concept of texture motifs and its application to
object modeling and detection in geospatial images. Sec. III
lays down the fundamentals of texture analysis using Gabor
filters. Sections IV, V, and VI describe the method used for
learning a model for a texture motif given object examples.
Sec. VII provides the experimental results which include
model training using examples and application of the learned
models to the detection of geospatial objects in large aerial
image datasets. Sec. VIII concludes with a discussion of future
research directions.

II. TEXTURE MOTIFS FOR OBJECT DETECTION

Texture analysis provides a framework for the efficient
analysis of recurrent and possibly regular arrangements of
image primitives. At a lower-level, such primitives may be
a set of local intensity patterns including edges, bars, and
smooth regions. At a higher level, they may correspond to
physical features such as cars, boats, trees, water, and so on,
by whose repetitive spatial arrangements, several geospatial
objects are formed. Consider the harbor object which contains
the recurrent pattern formed by the arrangement of boats and
water. Harbors may be detected by detecting boats via their
model shapes after segmentation, and finding those that occur
in certain regular arrangements which are modeled a priori.
This is how spatial analysis methods discussed earlier would

proceed. However, the description and detection complexity
could be significantly reduced by using frequency-domain tex-
ture analysis. There are many advantages in using frequency-
domain texture analysis to describe spatially recurrent pat-
terns. 1) Frequency-domain texture analysis is generally less
computationally expensive than image segmentation and edge
detection/linking, especially for large and highly detailed
geospatial images. 2) Texture analysis using a Gabor filter
bank provides a compact description of visual structure present
in a neighborhood. 3) Texture can gracefully handle variation
in object appearance. Texture analysis can capture regularity
in a pattern as well as tolerate a degree of randomness. For
example, the boats in a harbor are moored with approximately
the same distance to each other but with some variance.

Several geospatial objects contain recurrent spatial patterns
with distinct visual appearance. For example, observe the
patterns in a harbor (Fig. 1) formed by the arrangement of
boats and water, and that formed by the arrangement of trees
and grass in a golf course. These patterns enable most humans
to easily recognize the corresponding object, provided that
they have seen it before (even if only briefly). Such spatially
recurrent patterns that are characteristic of an object are termed
the texture motifs of the object. Thus, the pattern formed
by boats and water is a texture motif of a harbor, and the
arrangement of trees and grass is a texture motif of a golf
course. The problem of detecting objects can now be translated
to that of detecting their texture motifs.

The concept of texture motifs leads to texture-based com-
putational models for many objects, which can be applied to
object detection. This approach offers a powerful alternative to
shape-based and edge-based models, which are prohibitively
expensive to compute, due to the level of complexity and detail
often found in geospatial objects. Of course, not all geospatial
objects contain texture motifs. We restrict our treatment to
those that do. Examples of objects with texture motifs include
golf courses, harbors, trailer parks, vineyards, and airports.

III. GABOR FILTERS AND VISUAL STRUCTURE

Spatially recurrent patterns have the property of being dis-
tinctive in both their spatial appearance and in their frequency
distribution. Thus the spatial appearance of such patterns can
be studied via their frequency domain characteristics. By
performing texture analysis using Gabor filters at different
scales and orientations, these patterns can be efficiently 1)
described in the frequency domain, and 2) localized in the
spatial domain.

Texture analysis is performed by applying a bank of scale
and orientation selective Gabor filters to an image. These filters
are constructed as follows [29]. A two-dimensional Gabor
function g(x, y) can be written as:

g(x, y) =
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A class of self-similar functions referred to as Gabor wavelets
is now considered. Let g(x, y) be the mother wavelet. A
Gabor filter bank can be obtained by appropriate dilations and
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translations of g(x, y) through the generating function:

gs,k (x, y) = a−sg (x′, y′) , a > 1
x′ = a−s (x cos θ + y sin θ) and (2)
y′ = a−s (−x sin θ + y cos θ)

where s ∈ 0, . . . , S−1, k ∈ 0, . . . K−1, and θ = kπ/K is the
orientation of the filter w.r.t. the vertical. The indices k and
s indicate the orientation and scale of the filter respectively.
K is the total number of orientations and S is the total
number of scales in the filter bank. The filter bank parameters
{σx, σy, a,W} are computed by the method described in [29],
given the input specifications S, K, and the upper and lower
center frequencies, Uh and Ul.

The texture in the neighborhood of a pixel is represented
by an SK-dimensional feature vector obtained by convolving
the image with a Gabor filter bank at S scales and K
orientations. Let c(x) denote the feature vector extracted from
the neighborhood of pixel x = [x y]T . This feature vector is
given by

c(x) = [F0,0(x) F0,1(x) . . . FS−1,K−2(x) FS−1,K−1(x)]T ,
(3)

where Fs,k(x) is the filter output at pixel x, obtained by
convolving the image I(x) with the filter gs,k(x). In other
words, Fs,k(x) = |gs,k(x) ∗ I(x)|.

Texture descriptors derived from Gabor filter banks have
been widely used for browsing and similarity retrieval in image
databases [30], [31], [32], [33]. Gabor filter-based texture
analysis has the ability to describe higher-order structure in
objects. We exploit this ability to address the problem of
visually detecting geospatial objects containing texture motifs.
Consider, for example, the harbor object. By choosing Gabor
filters at appropriate scales and orientations, it is possible
to localize the pattern of boats parked side by side and the
pattern corresponding to the rows of boats. It is thus possible
to localize these patterns in the spatial domain without having
to perform image segmentation or edge detection/linking. This
implies a decrease in the complexity of object description and
search.

IV. LEARNING OBJECT MODELS FROM EXAMPLES

The problem of learning models for objects is posed as a
problem of learning a representation for the texture motifs
of the objects from low-level texture features extracted from
examples.1 Building on the work done in [34], this section
presents a probabilistic framework for this learning problem.
We ask ourselves the following question.

How do we represent the visual appearance of a texture
motif, say, the arrangement of boats and water in a harbor?

There are different aspects that constitute this appearance.
Firstly, there are the local intensity variations that form textural
elements such as flat areas, bars, edges, and so on. These
can be interpreted as the low-level building blocks of the
motif. For example, they may correspond to water, boats,

1An object “example” here refers to an image containing an instance of
the object, along with a binary mask that isolates the object region from the
background (see Fig. 3).

and edges between them. It has been shown in the previous
section that these local intensity variations can be effectively
captured and described by low-level texture features based on
Gabor filters at multiple scales and orientations. Assuming that
the texture features generated by different elements populate
different volumes of the texture feature space, it is possible
to statistically learn the elements of a pattern. In this work, a
semi-supervised statistical approach is adopted for this task.
This forms the first layer of the overall representation of the
texture motif.

The second layer of the representation is the spatial dis-
tribution of low-level texture elements in the motif, since
this influences its distinct visual appearance. A Gaussian
mixture model (GMM) for this is learned from examples
using features derived from histograms of texture elements in
spatial neighborhoods. Confidence measures generated using
this model are then used for detecting object presence.

V. LEARNING THE TEXTURE ELEMENTS OF A MOTIF

Suppose we are given M examples of an object that contains
one or more texture motifs. Let us further assume that all
the motifs are formed by a spatial combination of Nt texture
elements. Then the Nt elements are learned from low-level
texture features extracted from the examples, in order to arrive
at the first layer of representation. Let us uniformly sample a
number of texture features (usually proportional to the size of
the example) from each of the M object examples. If the object
consists of multiple texture elements, the sampled vectors form
several clusters in the texture feature space. Let each cluster
be considered to represent a distinct texture element.

It can be argued that as M becomes large, the Nt largest
clusters formed by the sampled vectors correspond to the
texture elements in the object. The argument is justified thus.
The more examples a texture element appears in, the more
the evidence in favor of it being an important texture element
of the object. If an element occurs in very few examples, it
is less likely to be critical to the description of the object.
With increasing M , clusters formed by features occurring in
a majority of examples are expected to become dominant. On
the other hand, clusters formed by features that occur in just
a few examples become relatively smaller.

In this work, Gaussian mixture models (GMM) are ap-
plied to solve the clustering problem in a semi-supervised
approach. Mixtures of Gaussians have been used to model
image feature distributions for a variety of research objectives.
In [35], texture-based image segmentation is performed by
clustering texture feature vectors using mixtures of Gaussians.
In the Blobworld system [36], mixtures of Gaussians are used
to derive image descriptors for content-based retrieval. The
Expectation-Maximization (EM) algorithm is used to discover
the feature vector groupings that correspond to the visual blobs
in an image. There are several factors that motivated us to
use a GMM to cluster texture features instead of the simpler
K-means algorithm. Firstly, a GMM accounts for the density
of each cluster. This is important because the feature vectors
from different textures are observed to have different densities
of distribution in the feature space. Secondly, GMM has a
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parametric representation that allows easy model comparison.
Finally, the EM framework can be extended to elegantly handle
rotations of textural patterns (Sec. V-D).

We model texture features that occur in an object as a
GMM with Nt Gaussian components. Each component in the
GMM corresponds to one texture element. In other words, the
features corresponding to each texture element is assumed to
be follow a Gaussian distribution. It is also possible to train
the GMM with a N ′

t > Nt components and choose the Nt

most probable ones as corresponding to the texture elements.
In this work, the choice of Nt is made by the user based on
experimental evidence. As will be described in Sec. VII-A, the
modeling parameters including Nt are chosen to obtain the
“best” object detection performance in terms of precision and
recall. The best parameters are chosen from a set of candidate
parameters determined by the user based on visual inspection
of the object examples.

A. The GMM Framework

Assuming that there are Nt texture elements in an object,
the probability density function of c(x) (or simply c) can thus
be expressed as a mixture distribution,

pt(c) =
Nt∑
j=1

Pt(j)pt(c|j), (4)

where pt(c|j) is the conditional pdf of the feature c generated
by the jth texture element and Pt(j) is the prior probability of
the jth element. The subscript t is used to clarify that we are
learning the texture elements. This subscript is applied to all
parameters and probabilities in the first layer of texture motif
representation.

The conditional pdf pt(c|j) is Gaussian and is given by

pt (c|j) =
exp

[
− 1

2 (c− µtj)
T Σ−1

tj (c− µtj)
]

(2π)d/2 |Σtj |1/2
, (5)

where d is the dimensionality of c. The number of elements
Nt along with the distribution means and covariance matrices
are the parameters that specify the object model Θt. In other
words,

Θt = {(Pt (j) ,µtj ,Σtj) ; j = 1 . . . Nt} . (6)

The EM algorithm [37] is used to estimate the GMM pa-
rameters from training data, which are obtained from object
examples as described in the following section.

Note that the texture element model Θt is learnt separately
for each object and not over all objects. A high number of
texture elements (Nt) is needed to describe texture motifs
across all objects. As will be seen later, Nt determines the
dimensionality of the second layer of texture motif represen-
tation. A small Nt is desirable with regard to the complexity
and reliability of the next learning stage. Therefore, we learn
texture elements in an object-specific manner.

(a) (b)

Fig. 2. Sampling methodology: (a) Uniform random sampling of pixels
from the golf course object. The pixels around which the texture features are
sampled are marked as dots. (b) Illustration of the valid sampling region. To
prevent the square Gabor kernel from exceeding the object border (dot-dash
line), its center (pixel x) should stay within the short-arrows line.

B. Feature Sampling for GMM Learning

The training set for an object consists of a set of examples
or instances, such as those shown in Fig. 3. Each instance is
provided as an image and an associated mask delineating the
object region. The texture samples for training the GMM are
drawn from pixels strictly inside the object regions, as depicted
in Fig. 2(a). Of course, texture is a neighborhood property,
not a pixel property. The texture features are generated by
convolving the image with square Gabor filter kernels. Let sf

be the kernel size, i.e. the length of its side in pixels. We
need to make sure that the sampled texture features are not
“corrupted” by intensity variations outside the object region.
This implies that if the kernel is centered at an object pixel,
no part of it should project outside the object (Fig. 2(b)). This
results in the exclusion of a band of pixels at the borders of
the object region. The width of this band is sf/

√
2 pixels

in the worst case when the border is parallel to a diagonal
of the kernel, and sf/2 pixels in the best case when it is
parallel to a side of the kernel. The object region minus this
band is termed the valid sampling region. In practice, the valid
sampling region is obtained by morphological erosion of the
binary mask image with a square structuring element of side
sf pixels.

Let the training set for an object be denoted by O =
{Rv,1, Rv,2, . . . , Rv,No

} where Rv,i is the valid sampling
region of the ith example and No is the number of training
examples of the object. From each example i, ni = β|Rv,i|
features are sampled uniformly, where |Rv,i| is the number
of pixels in Rv,i and β is chosen according to the acceptable
complexity (depending on available CPU speed, memory, etc.)
of the GMM learning task. The training data for learning the
GMM is obtained from the union of the sampled features from
each example in the training set. Thus the GMM is learned
from a total of

∑
i ni sampled features.

Having obtained this training data, the EM algorithm [37]
is used to estimate the parameters of the GMM, which are
given by (6). A K-means clustering process is applied to
bootstrap the EM algorithm. After the learning process, each
Gaussian component in the mixture represents one texture
element in the object. The prior probability of each component
gives information about the relative contribution of that texture
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(a) (b)

(c) (d)

Fig. 3. Examples from a training set for the “harbor” object (left column)
and the “golf course” object (right column). The borders of the object regions
(masks) are indicated in white.

element in forming the object.

C. Texture Element Labeling

After a GMM has been learned for an object, a maximum
a posteriori (MAP) classifier is used to label any pixel x to
its generating texture element i∗(x), as follows.

i∗(x) = arg max
1≤i≤Nt

Pt (i|c(x)) , (7)

where Pt(i|c(x)) is the probability that the feature vector c(x)
came from the ith Gaussian component of the GMM. The
posterior probabilities Pt(i|c(x)) are obtained using Bayes’
rule as follows,

Pt(i|c) =
pt(c|i)Pt(i)∑
i pt(c|i)Pt(i)

. (8)

Fig. 4 shows the texture element labels assigned to a harbor
training image, using GMMs learned from the harbor examples
in Fig. 3. Different labelings are shown for the same image,
obtained by learning GMMs with different Nt (number of
components). The function pt(c(x)) gives the density in the
feature space at the point corresponding to c(x). However, the
magnitude of pt(c(x)) does not directly convey the confidence
of a pixel belonging to the object. A reason for this, in addition
to the curse of dimensionality, is that the texture elements
of harbor occur in other regions as well. This is clear by
observing the top and bottom rows in Fig. 4. Therefore, it
is the spatial arrangement of these elements that distinguish
harbors from other objects.

(a) (b)

(c) (d)

Fig. 4. The texture element labelings for the harbor image in Fig. 3(e), with
Nt = 2 (top row), and Nt = 6 (bottom row). Each color corresponds to
a label. The top row shows the labels inside the object and the bottom row
shows the overall labelings.

D. A Note on Rotation Invariance

A major obstacle in learning the texture elements with the
above GMM formulation is that the texture features c(x)
(given by (3)) are derived from orientation-selective Gabor
filters and are therefore sensitive to the orientation of the tex-
ture element (and therefore the motif/object). Texture elements
recurring in several examples can be learned consistently only
when the objects in the examples have similar orientations.
This is the case with the harbor examples in Fig. 3, but often
in practice the training examples have arbitrary orientations.

Suppose the texture features are derived from Gabor filters
oriented at 30◦ intervals, i.e. 0◦, 30◦, 60◦, and so on. Then a
30◦ rotation of the texture is equivalent to a circular shifting
of the feature vector components at each scale. Hence, the
features sampled from a textural pattern of varying orien-
tation form multiple clusters in the feature space. In order
to handle objects with varying orientations, the number of
Gaussian components in the GMM has to be adjusted to take
into account the additional clusters formed by variation in
orientation. Then the following question arises. Which clusters
are associated with the same texture element, i.e. caused by
a rotation of the same element? This is a difficult question to
answer. Furthermore, to model motif appearance at different
orientations, it is necessary to augment the training set by
considering all orientations of the training instances. This
increases the complexity of the learning process.

Alternatively, Newsam [38] has proposed a variation to
the EM algorithm that takes the orientation of a texture into
account while training a GMM. By treating the (discretized)
orientation of a pattern as a missing variable in the EM
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framework, the equivalence between rotated patterns is learned
automatically. In the resulting GMM, each Gaussian com-
ponent corresponds to a cluster of “orientation-normalized”
features. This variation to the EM algorithm is described
below.
The Orientation-Normalized GMM [38]

The conditional probability of a feature vector c, given that
it is generated from component j and its orientation index is
k, is written as

pt (c|j, k) =
exp

[
− 1

2 (ck − µtj)
T Σ−1

tj (ck − µtj)
]

(2π)d/2 |Σtj |1/2
. (9)

The term ck is the vector c circularly shifted by k orientations
where k ∈ {1, ..,K}. Note that the orientation k is with re-
spect to the normalized orientation of the mixture component.
The pdf of the feature distribution in an object class is modeled
as a Nt-component GMM,

pt (c) =
1
K

K∑
k=1

Nt∑
j=1

pt (c|j, k) Pt(j), (10)

where we have assumed that the orientation k is independent
of j and equiprobable (in the absence of a priori information).

Each component represents a single texture element
in a manner oblivious to its orientation. This
model is completely specified by the parameters
Θt = {(Pt (j) ,µtj ,Σtj) ; j = 1 . . . Nt}. A modified version
of the EM algorithm is used to estimate the parameters of the
GMM. Rotation is taken into account by modifying the EM
algorithm to include the orientation k of the feature vector as
additional missing data.

The procedure in (7) for labeling each pixel x to its texture
element i∗(x) has to modified as well. It becomes

i∗(x) = arg max
1≤i≤Nt

[
max

k
Pt (i|ck(x))

]
, (11)

where
Pt(i|ck) =

pt(c|i, k)Pt(i)∑
i pt(c|i, k)Pt(i)

, (12)

assuming that the orientations k are equiprobable.

VI. SPATIAL DISTRIBUTION OF TEXTURE ELEMENTS

It can be observed from Fig. 4 that the spatial configuration
of the labels inside the “boats and water” texture motif of the
harbor region is quite different from that outside. Then, the
task of the second layer is to describe this spatial configuration
of labels, and model its variation within the motif. A simple
method of describing the spatial distribution of labels is by the
use of a spatial histogram, as shown in Fig. 5. The descriptor at
a pixel x, denoted as h(x), is the vector of normalized frequen-
cies of texture element labels in a square window centered at
x. In other words, h(x) = [h1(x) h2(x) . . . hNt(x)]T where
hl(x) is the normalized frequency of label l in the window.
Obviously, the dimensionality of the above descriptor is Nt,
the total number of texture element labels.

The texture element label i∗(x) at a pixel x is given by (11).
If we temporarily write i∗(x) as i∗(x, y) (since x = [x y]T ),

Fig. 5. The spatial histogram of texture element labels is built by taking a
square window of size sh around pixel x. The normalized frequencies of the
Nt = 6 labels inside the window forms a 6-dimensional vector h(x).

then i∗(x + xo, y + yo) is the label at an offset of (xo, yo)
from x. Let Il(z) be an indicator function that is 1 if z = l
and 0 otherwise. Then hl(x) can be computed as

hl(x) = hl(x, y) =
1

s2
h

sh−1
2X

xo=− sh−1
2

sh−1
2X

yo=− sh−1
2

Il(i
∗(x+xo, y +yo)),

(13)
where sh (usually an odd number) is the length of the side of
the square window around pixel x (Fig. 5). The scale of the
description depends on the value of sh. Note that the spatial
histogram feature h(x) is non-directional and coarse because
it only gives an idea of the relative presence of the labels in
a 2-D neighborhood of a pixel.

A. Learning the Second Layer

Once again, the GMM is employed to model the variation
of h(x) in the object region. Let the variation in the spatial
configuration be modeled by a GMM with Ns components as
follows,

ps(h) =
Ns∑
j=1

Ps(j)ps(h|j), (14)

where the conditional pdfs ps(h|j) are Gaussian, given by

ps (h|j) =
exp

[
− 1

2 (h− µsj)
T Σ−1

sj (h− µsj)
]

(2π)Nt/2 |Σsj |1/2
. (15)

The model for the second layer of representation is then
specified by

Θs = {(Ps (j) ,µsj ,Σsj) ; j = 1 . . . Ns} . (16)

The subscript s here is used to clarify that we are learning the
spatial distribution of the texture elements in the motif.

The training data is obtained by sampling spatial histograms
h(x) around several pixels x inside the object region. The
procedure for sampling and creating the training data for the
GMM is similar to that in Sec. V-B. The valid sampling
region in this case is obtained by morphological erosion of the
binary mask image using a square structuring element with
a side length of max(sf , sh) pixels, i.e. the larger between
the filter kernel size and the spatial neighborhood size. This
ensures that neither the texture features nor the histograms at
the sampled pixels are influenced by non-object pixels. The
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sampling parameter β is again chosen appropriately, and need
not be the same as the value chosen for the first layer. After
creating the training data, the GMM is learned via the EM
algorithm. It should be clear that, since the features are non-
directional, the conventional GMM formulation is used and
not the orientation-normalized version.

Having learned Θs, the density function ps(h(x)) can
be interpreted as the confidence of finding at a pixel x,
the spatial configuration corresponding to the learned texture
motif. Experimental results indicate that ps is a good measure
for the confidence of a pixel belonging to a texture motif
(or the object containing the motif). The importance of the
spatial arrangement of texture elements for describing a motif
is evident from this.

VII. EXPERIMENTAL RESULTS

This section comprises two parts. The first one concerns
the evaluation of the trained models, using a limited dataset
of object examples, it order to select the best model for a real
application. The second part discusses a real application of the
selected model, which is to drastically reduce the manual labor
involved in ascertaining the presence and location of specified
objects in large aerial image datasets.

A. Results on Training and Model Selection

The primary dataset chosen for our study consists of
aerial images drawn from the Digital Orthophoto Quarter-
Quadrangle (DOQQ) coverage of California, which is avail-
able through the Alexandria Digital Library (ADL). The
ADL Gazetteer [1] is a resource that provides georeferencing
information for several objects (synonymous with feature types
in [1]). Several instances of objects such as harbors, golf
courses, and airports, can be located through the Gazetteer.
The corresponding aerial images are then extracted from the
ADL DOQQ coverage. Each object instance used for training
is provided in two pieces: a) a rectangular image region
containing the object, and b) a manually created binary mask
defining the object region.
Model Evaluation Methodology:

Suppose, for an object of study, we have a training set and
a test set of example images, with their corresponding masks.
From the training set, the GMMs Θt and Θs are learned as
described in Sections V–VI. The specifications of the Gabor
filter bank used for extracting texture features, c(x) in (3), are
S = 5, K = 6, Ul = 0.05 and Uh = 0.4 (see Sec. III). The
filter kernel size sf (see Fig. 2) is set to 75 pixels, so as to
support the filter with the largest spatial extent, in the filter
bank. In the testing stage, the learned models are applied to
each instance of the test set in three steps as follows.

1) Application of Θt to obtain the texture element labels
i∗(x) as described in Sec. V-C. Note that in practice,
the orientation-normalized GMM is used and the labels
are obtained using (11).

2) Computation of the spatial histogram features h(x) from
the label field i∗(x), as described in Sec. VI.

3) Application of Θs to obtain the confidence measure
ps(h(x)), as described in Sec. VI-A.

The main tool used for evaluating the performance of the
proposed approach is the precision-recall graph. These are
obtained by computing precision and recall while varying the
threshold to on the confidence measure, ps(h(x)). Let Io(x)
be an indicator function, which has a value 1 if pixel x lies
inside the object region (defined by the user-provided masks)
and 0 if it does not. Let us define another indicator function
Ito

(x) thus,

Ito(x) =
{

1, if ps(h(x)) > to
0, else. (17)

Now, for a given to, precision P(to) and recall R(to), are
defined as,

P(to) =

P
i Io(xi)Ito(xi)P

i Ito(xi)
and R(to) =

P
i Io(xi)Ito(xi)P

i Io(xi)
, (18)

where xi are indexed over all the pixels in the test images,
both inside and outside the object region. Therefore, precision
tells us how many pixels are correctly identified as belonging
to the object. The recall tells us how many pixels belonging
to the object are correctly identified as such. The precision-
recall graph plots P(to) against R(to) while varying to. It
displays the tradeoff between precision and recall at different
thresholds.
Results:

Two geospatial objects are selected for comprehensive
testing of the proposed modeling approach. These are golf
courses and harbors. The dataset for golf courses contains
nine instances, and that for harbors contains six. Since the
datasets are small, the experimental methodology employs
cross-validation techniques. Cross-validation implies that each
instance is used in turn for testing, while being excluded from
the training set. This technique enables more comprehensive
testing on all the instances, which is not possible by rigidly
partitioning the dataset into one training set and one test set.
The cross-validation strategy is applied as follows. The nine
instances in the golf course dataset are randomly partitioned
into three sets of three instances. Each set is used in turn
as the test set, while the training set comprises the union of
the remaining sets. Similarly, cross-validation for harbors is
done by dividing the dataset into two sets of three instances.
In the end, we shall have tested and obtained ps(h(x)) for
all instances in the dataset. The precision-recall graph is then
plotted by applying (18) to the aggregated test results, for
different to.

Fig. 6(a) shows the precision-recall graph for the golf course
dataset, for different modeling parameters (Nt, Ns, and sh). A
plot that lies entirely above another is better, since it implies
a higher precision and recall for all thresholds. Therefore,
the aim is to attain “higher” plots by choosing modeling
parameters wisely. In practice, the plots may intersect one
another. When this happens, the model is chosen according
to the relative merits of the intersecting plots, e.g. the one
that gives higher precision at the required recall rate. It can be
observed from Fig. 6(a) that the best overall model (among
the ones considered) has parameters Nt = 6, Ns = 3, and
sh = 161.

For object detection, a proper threshold to has to be chosen
that results in a high confidence of detecting the object (high
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Fig. 6. (a) Precision-recall curves with different modeling parameters for
the golf course dataset, and (b) F-measure Fα(to) for different α computed
using the golf course dataset with modeling parameters Nt = 6, Ns = 3,
and sh = 161.

recall) and a low false-alarm rate (high precision). All pixels
x that have ps(h(x)) > to shall then be denoted as object
pixels. Often, the choice if to is based on a trade-off between
precision and recall. This process is simplified by means of the
F-measure [39] which combines precision and recall into one
measure that depends on to. The F-measure is the harmonic
mean of precision and recall, and is defined as,

Fα(to) =
1

1
1+α

“
α

P(to)
+ 1
R(to)

” =
(α + 1)P(to)R(to)

R(to) + αP(to)
, (19)

where α ∈ [0,+∞) is the relative weight placed on precision
over recall. Fig. 6(b) plots Fα(to) against to for different
α values, choosing Nt = 6, Ns = 3, and sh = 161.
The threshold value t∗o corresponding to the peak of the
plot (with desired α) is chosen for object detection purposes.
Fig. 7 shows the detected golf course regions using t∗o, for
α = 10 and α = 2. The correctly detected regions are the
ones inside the object regions specified by the black borders.
Note that with a lower α, recall is higher at the expense of
precision resulting in both a higher detection rate and false-
alarm rate. Note also that the many of the falsely detected
regions correspond to a trees-and-grass texture motif quite
similar to that found in golf courses.

Fig. 8(a) shows the precision-recall graph for the harbor
dataset, for different modeling parameters (Nt, Ns, and sh).
The best model parameters (among the ones considered) in
this case are Nt = 3, Ns = 1, and sh = 51. For this model,
Fig. 8(b) plots Fα(to) against to for different α values. The
threshold value t∗o corresponding to the peak of the plot (with
desired α) is chosen for object detection purposes. Fig. 9
shows the detected harbor regions using t∗o, for α = 10 and
α = 2. Note a lower α leads to a higher detection rate at the
expense of increasing the false-alarm rate.

Fig. 10 and Fig. 11 demonstrates object detection in
larger geospatial images containing several object instances.
Fig. 10(a) shows a large image containing several golf
courses. The object regions are delineated with white borders.
Fig. 10(b) shows the detected golf course regions following
the application of the two-layered texture motif model for golf
courses. Similarly, Fig. 11(a) shows a large image containing
several harbors. Fig. 11(b) shows the detected harbor regions
using the texture motif model for harbors. It can be observed in
both cases that most of the object regions are reliably isolated.

Fig. 7. The left column shows the detected golf course regions using the
threshold t∗o chosen from Fig. 6(b) for α = 10 (with Nt = 6, Ns = 3,
and sh = 161). The right column shows the detected golf course regions for
α = 2 (with Nt = 6, Ns = 3, and sh = 161). The borders of the desired
object regions are marked in black.
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Fig. 8. (a) Precision-recall curves with different modeling parameters for the
harbor dataset, and (b) F-measure Fα(to) for different α computed using the
harbor dataset with modeling parameters Nt = 3, Ns = 1, and sh = 51.

B. Results on Pruning Large Datasets

Geographic databases such as the Alexandria Digital Library
(ADL) Gazetteer [1] index the locations of several object
types, including harbors, golf courses, and airports. However,
instances of these objects are currently manually located and
indexed. The manual labor involved in this process could
be greatly reduced by applying model-driven approaches for
automatically identifying probable locations of objects. This
results in the elimination of many areas that, with high
probability, do not contain the object. The resulting pruned
dataset is much smaller than the original, making it much
easier for manual verification of object presence.

The object modeling and detection approach presented in
this paper is very useful in this regard. In the following, we
shall demonstrate that our approach is capable of significantly
pruning a dataset of images while looking for an object. For
this purpose, we choose four objects: harbors, golf courses,
housing colonies, and parking lots. Examples of these objects
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Fig. 9. The left column shows the detected harbor regions for α = 10 (with
Nt = 3, Ns = 1, and sh = 51). The right column shows the detected harbor
regions for α = 2 (with Nt = 3, Ns = 1, and sh = 51). The borders of the
desired object regions are marked in black.

(a) (b)

Fig. 10. (a) A large geospatial image containing several golf course regions
(denoted with white borders); (b) The detected golf course regions with the
application of the two-layered texture motif model.

are shown in Fig. 1. In the case of the last two objects, only the
parameters of the selected model are mentioned and the results
of detailed evaluation of different models are not presented.
Methodology:

The images are divided into tiles of size Nts ×Nts pixels,
with an overlap of Nol pixels between adjacent tiles. For a
given object, groundtruth information is created by labeling
each of these tiles as 1 or 0 depending on whether the object
is present in the tile or not. Let Ti be the ith tile in the dataset,
with Gi ∈ {0, 1} denoting its groundtruth label. Suppose we
apply an object detection algorithm on tile Ti, and get the
“decision” Di ∈ {0, 1}. In other words, Di = 1 if an object
is detected by the algorithm in tile Ti, and Di = 0 if not.

We demonstrate the performance of the detection method
by plotting the fraction of false alarm tiles (false alarm rate)
with that of missed tiles (miss rate) from the dataset. Ti is a
false alarm tile if Gi = 0 and Di = 1, i.e. an object is detected
when in fact it is not present in the tile. Ti is a missed tile if

(a) (b)

Fig. 11. (a) A large geospatial image containing several harbor regions
(denoted with white borders); (b) The detected harbor regions with the
application of the two-layered texture motif model.

Gi = 1 and Di = 0, i.e. an object is not detected but it does
exist in the tile. Both false alarms and misses are undesirable.
Pruning a dataset is often a tradeoff between the two.

Let fmiss(to) and ffa(to) denote the fraction of missed
and false alarm tiles respectively for a threshold to on the
confidence measure, ps(h(x)) in (14). These are computed as

fmiss(to) =
1
N

∑
i

(1−Di(to))Gi, and (20)

ffa(to) =
1
N

∑
i

Di(to)(1−Gi),

where N is the total number of tiles in the dataset. Di(to) = 1
if an object is detected at tile Ti given the threshold to. In our
experiments, we set Di(to) = 1 if at least Dmin pixels in
Ti have a confidence measure greater than to. Dmin is set at
200 pixels for both golf courses and harbors. In practice, if
a tile Ti has Di(to) = 1, then we set the detection labels
of the neighboring tiles to also be 1. This is done in order
to avoid tiles being missed on account of their overlapping a
small portion of the object. If a neighboring tile contains a
larger portion of the object, its confidence is inherited by the
current one. The “false alarm vs. missed” plot for an object is
obtained by varying to and recording the corresponding values
of ffa(to) and fmiss(to).
Results:

For harbors and golf courses, the dataset consists of large
aerial images (of resolution 1 m/pixel) from the ADL DOQQ
collection, each with a typical size close to 7500×6600 pixels.
Nts is set to 1024 pixels and Nol = 512 pixels. For housing
colonies, the dataset consists of large aerial images (of 1-
m/pixel resolution) of the Santa Barbara region, taken from
airplanes. These images have dimensions close to 5000 pixels.
A similar dataset is used in the case of parking lots, except
that the images are of 0.5 m/pixel resolution. For the latter
two objects, Nts = 128 and Nol = 0.

Fig. 12(a) shows the false alarm vs. missed plot in the case
of the golf courses. A total of 157 DOQQs were considered,
of which 20 contained one or more golf courses. Among the
22530 resulting tiles, 350 are given a groundtruth label of 1
since they overlap a golf course. The diagonal line connecting
the 1’s denotes the expected plot for a random detection
decision, i.e. the worst possible plot. A plot that dips close
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to the origin is considered good since, at certain thresholds, a
low rate is obtained for both false alarms and misses. From
Fig. 12(a), it can be seen that no golf course tiles are missed
at a false alarm rate of 43.22%. In other words, 56.78% of
the tiles are eliminated without missing any golf course tiles.
However, if we relax the acceptable miss rate to 14.57%, then
the false alarm rate drops to 25.51%.

Fig. 12(b) shows the false alarm vs. missed plot in the case
of the harbors. A total of 214 DOQQs were considered, of
which 24 contained one or more harbors. Among the 30765
resulting tiles, 313 are given a groundtruth label of 1 since
they overlap a harbor. From Fig. 12(b), it can be seen that no
harbor tiles are missed at a false alarm rate of 56.17%. In other
words, 43.83% of the tiles are eliminated without missing any
harbor tiles. However, if we relax the acceptable miss rate to
9.46%, then the false alarm rate drops to 16.29%.

Fig. 12(c) shows the false alarm vs. missed plot in the
case of the housing colonies. The parameters of the selected
housing colony model used in this experiment, are Nt = 6,
Ns = 1, and sh = 51. A total of 44 aerial images were
considered and all barring four contained housing colonies.
Among the 54501 resulting tiles, 6442 are given a groundtruth
label of 1. The missrate is very close to zero (0.42%) at a false
alarm rate of 60.26%, which means that about 40% of the
tiles are eliminated with a negligible number of missed tiles.
However, if we relax the acceptable miss rate to 10.76%, then
the false alarm rate drops to 17.81%.

Fig. 12(d) shows the false alarm vs. missed plot in the
case of the parking lot object. The parameters of the selected
parking lot model used in this experiment, are Nt = 8,
Ns = 3, and sh = 61. A total of 4 aerial images were
considered, all of which contain at least one parking lot.
Among the 4900 resulting tiles, 243 are given a groundtruth
label of 1. It can be seen that no parking lot tiles are missed
at a false alarm rate of 38.33%. In other words, 61.67% of
the tiles are eliminated without missing any parking lot tiles.
However, if we relax the acceptable miss rate to 15.64%, then
the false alarm rate drops to 21.69%.

Thus an effective pruning of large datasets is achieved, re-
ducing the manual labor involved in ascertaining the presence
and location of geospatial objects.

VIII. CONCLUSION AND FUTURE WORK

This paper introduces the concept of texture motifs enabling
model-driven detection of geospatial objects. Texture motifs
of an object are spatially recurrent patterns that are character-
istic to the object. Such spatial patterns can be observed in
geospatial objects such as golf courses, harbors, and airports.
Detection of an object then reduces to detecting one or more
of its texture motifs. This is done by learning an appearance
model for texture motifs from object examples. Object models
based on texture motifs provide a powerful alternative to
shape-based and edge-based models, which are prohibitively
expensive to compute, due to the level of complexity and detail
often found in geospatial objects.

The second contribution of this paper is a semi-supervised
framework for learning a two-layered model for texture motifs

of an object from examples. The first layer learns the local in-
tensity variations in the motif that form textural elements such
as flat areas, bars, edges, and so on. These can be interpreted
as the low-level building blocks of the motif. This layer is
learned by clustering Gabor filter outputs sampled from the
object examples in a rotation-invariant manner. The second
layer of the representation learns the spatial distribution of
low-level texture elements in the motif, since this influences its
distinct visual appearance. A Gaussian mixture model (GMM)
for this is learned from examples using features derived
from histograms of texture elements in spatial neighborhoods.
Confidence measures generated using this model are then used
for detecting object presence.

The quality of the models are evaluated on the basis of
their application to object detection. Experimental results
demonstrate that such a modeling approach is quite effective
in detecting complex geospatial objects. We illustrate the
usefulness of our approach in reducing the manual labor
involved in identifying object locations in large aerial image
datasets.

Finally, it should be observed that though texture is an
important feature in object detection, it is by no means the
only one. The combination of texture with other features,
such as color and shape, should increase the robustness of
object detection. Knowledge-guided segmentation schemes
[40] could be explored as a means of combining different
features and models, with the goal of improving both the
reliability and precision of object detection.
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[13] B. Nicolin and R. Gabler, “A knowledge-based system for the analysis of
aerial images,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 25, no. 3, pp. 317–329, 1987.

[14] F. Quint, Recognition of structured objects in monocular aerial images
using context. Mapping buildings, roads and other man-made structures
from images, Ed. F. Leberl. Mnchen, 1997, pp. 213–228.

[15] J. David M. McKeown, J. Wilson A. Harvey, and J. McDermott, “Rule-
based interpretation of aerial imagery,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 7, no. 5, pp. 570–585, September
1985.

[16] J. David M. McKeown, W. A. Harvey, and L. E. Wixson, “Automating
knowledge acquisition for aerial image interpretation,” Computer Vision,
Graphics and Image Processing, vol. 46, pp. 37–81, 1989.

[17] T. Matsuyama and V. Hwang, SIGMA: A knowledge-based aerial image
understanding system. Advances in computer vision and machine
intelligence, Plenum Press, 1990.

[18] S. T. F. Mahmood, “Attentional selection in object recognition,” Ph.D.
dissertation, MIT, Cambridge, 1993.

[19] R. N. Braithwaite and B. Bhanu, “Hierarchical Gabor filters for object
detection in infrared images,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition, 1994, pp. 628–631.

[20] A. K. Jain, N. K. Ratha, and S. Lakshmanan, “Object detection using
Gabor filters,” Pattern Recognition, vol. 30, no. 2, pp. 295–309, February
1997.

[21] C. Schmid, “Constructing models for content-based image retrieval,” in
Proceedings of the International Conference on Computer Vision and
Pattern Recognition, 2001, pp. 39–45.

[22] J. S. Weska, C. R. Dyer, and A. Rosenfeld, “A comparative study
of texture measures for terrain classification,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 6, no. 4, pp. 269–285, 1976.

[23] J. Carr, “Spectral and textural classification of single and multiple band
digital images,” Computers & Geosciences, vol. 22, pp. 849–865, 1996.

[24] C. Zhu and X. Yang, “Study of remote sensing image texture analy-
sis and classification using wavelet,” International Journal of Remote
Sensing, vol. 19, no. 16, pp. 3197–3203, 1998.

[25] S. Berberoglu, C. Lloyd, P. Atkinson, and P. Curran, “The integration of
spectral and textural information using neural networks for land cover
mapping in the Mediterranean,” Computers & Geosciences, vol. 26, pp.
385–396, 2000.

[26] T. Wassenaar, J. Robbez-Masson, P. Andrieux, and F. Baret, “Vineyard
identification and description of spatial crop structure by per-field
frequency analysis,” International Journal of Remote Sensing, vol. 23,
no. 17, pp. 3311–3325, 2002.

[27] T. Ranchin, B. Naert, M. Albuisson, G. Boyer, and P. Astrand, “An
automatic method for vine detection in airborne imagery using wavelet
transform and multiresolution analysis,” Photogrammetric Engineering
& Remote Sensing, vol. 67, no. 1, pp. 91–98, 2001.

[28] V. Karathanassi, C. Iossifidis, and D. Rokos, “A texture-based classi-
fication method for classifying built areas according to their density,”
International Journal of Remote Sensing, vol. 21, no. 9, pp. 1807–1823,
2000.

[29] B. S. Manjunath and W. Y. Ma, “Texture features for browsing and
retrieval of image data,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 8, pp. 837–842, August 1996.

[30] S. Newsam, L. Wang, S. Bhagavathy, and B. S. Manjunath, “Using
texture to analyze and manage large collections of remote sensed image
and video data,” Journal of Applied Optics: Information Processing,
vol. 43, no. 2, pp. 210–217, January 2004.

[31] T. Quack, U. Monich, L. Thiele, and B. Manjunath, “Cortina: A system
for large-scale, content-based web image retrieval,” in ACM Multimedia,
October 2004.

[32] W. Y. Ma and B. S. Manjunath, “Netra: a toolbox for navigating large
image databases,” Multimedia Systems, vol. 7, no. 3, pp. 184–198, May
1999.

[33] W.-Y. Ma and B. S. Manjunath, “A texture thesaurus for browsing large
aerial photographs,” Journal of the American Society for Information
Science, vol. 49, no. 7, pp. 633–48, May 1998.

[34] S. Bhagavathy, S. Newsam, and B. S. Manjunath, “Modeling object
classes in aerial images using texture motifs,” in Proceedings of the
International Conference on Pattern Recognition, August 2002.

[35] R. Manduchi, “A cluster grouping technique for texture segmentation,”
in Proceedings of the International Conference on Pattern Recognition,
2000, pp. 1060–1063.

[36] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik,
“Blobworld: A system for region-based image indexing and retrieval,”
in Proceedings of the International Conference on Visual Information
Systems, 1999, pp. 509–516.

[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
estimation from incomplete data via the EM algorithm,” Journal of the
Royal Statistical Society, vol. Series B, 39, no. 1, pp. 1–38, 1977.

[38] S. Newsam and B. S. Manjunath, “Normalized texture motifs and
their application to statistical object modeling,” in CVPR Workshop on
Perceptual Organization in Computer Vision (POCV), June 2004.

[39] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Butterworths, 1979.
[40] B. Sumengen, S. Bhagavathy, and B. S. Manjunath, “Graph partitioning

active contours for knowledge-based geospatial segmentation,” in Pro-
ceedings of the IEEE CVPR Workshop on Perceptual Organization in
Computer Vision, June 2004, pp. 54–54.


