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ABSTRACT

We present a method to compute the steganographic capacity for im-
ages, with odd-even based hiding in the quantized discrete cosine
transform domain. The method has been generalized for varying
orders of co-occurrence statistics for statistical restoration based
steganography. We further utilize this capacity estimate to hide the
maximum possible data per individual frequency stream, while en-
suring that the first order histograms of individual frequency coef-
ficients remain matched. We also show that certain frequency com-
ponents are more useful for steganalysis after first order statistical
restoration is performed for a certain band of select frequencies.

Index Terms— steganography, steganographic capacity, ste-
ganalysis, statistical restoration, individual compensation

1. INTRODUCTION

Steganography is the art of secure communication where the very
existence of the communication cannot be detected while steganaly-
sis is the art of detecting the presence of the secret communication.
The steganographer has two conflicting requirements - he has to im-
perceptibly embed a certain amount of data in an innocuous looking
host signal (the cover), and also ensure that there is minimal sta-
tistical difference between the cover and the stego (signal contain-
ing hidden data). The concept of ε-secure steganography was intro-
duced by Cachin [1]. He proposed an information-theoretic model
for steganography where security is assured if the relative entropy
(Kullback-Leibler divergence) between the cover and stego is less
than a predefined constant ε. Cachin’s work thus provides a theoret-
ical framework to define the steganographic security.

Fridrich et al [2] have defined “steganographic capacity” as fol-
lows - for a host signal, it is the maximal message length that can be
embedded without producing perceptually or statistically detectable
distortions. It generally depends on the hiding method. Chan-
dramouli et al [3] have analyzed capacity estimation for Least Sig-
nificant Bit based image steganography, where the cover is assumed
to follow a zero mean Gaussian distribution.

In [4], we had obtained a secure hiding rate for the quantization
index modulation (QIM) scheme [5], with the cover signals being
generated from Gaussian distributions. The statistical restoration
method that we had described in [6, 7] was used for steganogra-
phy. The framework is general enough to be used for other hiding
methods. In this paper, we consider odd-even based embedding in
the block-based quantized discrete cosine transform (DCT) domain.
We present the analysis for the optimum hiding fraction for the first
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order histogram matching case and then show its generalization for
higher orders of co-occurrence statistics.

In [6, 7], we had presented a steganographic scheme where the
first order probability mass function (PMF) of the block-based quan-
tized DCT coefficients lying in a certain frequency band and with
magnitudes less than a certain threshold was statistically restored.
We call this method - total compensation. We have generalized this
method to allow for compensation along individual frequency com-
ponents, the hiding rates being such that individual 1-D PMFs are
restored. We then show that after performing total compensation
based steganography and using individual coefficients for steganaly-
sis, detection becomes easier only for certain frequency coefficients.

2. PROBLEM FORMULATION

Let the input feature set available for hiding be X . We divide it
into two disjoint sets - H for hiding and C for compensation, as
in (1). We call the hiding fraction λ, which equals |H|

|X| , where |E|
denotes the cardinality of a given set E. Let the feature set obtained
after hiding and compensation be Y , as in (1); the part available for
hiding, H , is changed to Ĥ and the compensation part C is changed
to Ĉ for histogram matching. We divide the feature set into bins
and find their respective bin-counts (number of terms per bin). The
normalized bin-count is regarded as the PMF. The aim is to find the
maximum hiding fraction λopt (5), which maximizes |H|, subject to
the constraint that enough terms are left for compensation so that the
PMF of the feature set, before and after hiding, denoted by PX and
PY , respectively, remains the same. Let BX(i) denote the number
of elements which gets mapped to the ith bin of X .

X = H ∪ C, Y = Ĥ ∪ Ĉ, H ∩ C = φ, Ĥ ∩ Ĉ = φ (1)

Ĥ ∩ Ĉ = φ ⇒ BY (i) = BĤ(i) + BĈ(i), ∀ i (2)
To obtain PY = PX , we need BY (i) = BX(i), ∀ i (3)

⇒ BĈ(i) = {BX(i)−BĤ(i)} ≥ 0, ∀ i (4)

λopt = arg max
λ=

|H|
|X|

{|H| = |Ĥ| : BX(i)−BĤ(i) ≥ 0, ∀ i} (5)

For a dataset X , BX(i) is known; after data hiding and changing H

to Ĥ , BĤ(i) can be found - thus, BĈ(i) can be computed using (4).
As shown in (4), perfect restoration is possible only if the required
number of terms in every bin of Ĉ is non-negative. As λ increases,
the distance between the two PMFs PX and PY increases and there
are less number of terms available for compensation.



3. ODD-EVEN BASED HIDING FRAMEWORK

The luminance part of the image is used for hiding. We divide the
luminance image into 8×8 blocks, perform block-wise DCT, divide
element-wise by a certain quality factor matrix and then select a cer-
tain frequency band for hiding. The DCT coefficients thus selected
are rounded off to produce the quantized DCT (QDCT) based dataset
X . For hiding, we use odd/even embedding (a simple version of
QIM) to convert the terms to their nearest odd or even integer, de-
pending on whether the input bit is 1 or 0, respectively. Suppose, a
QDCT term is 4 and we wish to embed 0 - then the QDCT term gets
mapped to the nearest even number, which is 4. For embedding 1, we
use a dither sequence, with numbers in the range [-0.5,0.5] which are
produced by a pseudorandom generator, to decide whether to map 4
to 3 or 5.

To embed 1 → q = round(p + 1−mod(p− δ, 2)), (6)
to embed 0 → q = round(p + 1−mod(p + 1− δ, 2)) (7)

where p, the original QDCT term, is mapped to q, δ denotes the cor-
responding number obtained from the dither sequence, “mod(p,2)”
is the remainder obtained after dividing p by 2 and “round” denotes
the rounding off operation. If p is an even(odd) number and 1(0) is
to be embedded, it is mapped to (p − 1) or (p + 1) depending on
whether δ belongs to the range (0,0.5] or [-0.5,0], respectively.

Let λ be the common hiding fraction for all bins. Let X(i) and
Ĥ(i) denote the elements mapped to the ith bins of X and Ĥ , re-
spectively. Now, assuming an equal number of 0’s and 1’s in the
input message that affects the elements in X(i), λ

4
fraction of coef-

ficients from X(i) gets transferred to both Ĥ(i + 1) and Ĥ(i− 1).
Also, λ

2
fraction of coefficients is moved to Ĥ(i). Explanation - let

the value of the input QDCT coefficient be i, an even number, and
if the input bit is 0, the output term, obtained using (7), is i itself.
Since about half the bits in the input sequence are 0, about λ

2
terms

in X(i) are moved to Ĥ(i). If the input bit is 1, the output term gets
mapped to the nearest odd number, which can be (i− 1) or (i + 1),
depending on whether the dither value (δ in (6)) is positive or nega-
tive. By a similar logic, λ

4
fraction of terms from bins X(i− 1) and

X(i + 1) will be shifted to Ĥ(i). Thus, based on this analysis, the
number of terms in Ĥ(i) is as follows:

BĤ(i) ≈ λBX(i)

2
+

λBX(i− 1)

4
+

λBX(i + 1)

4
(8)

To reiterate, the main assumptions behind this analysis are : the input
message has equal number of 0’s and 1’s and the dither values are
equally likely to be positive or negative. The assumptions are valid
only if both the message and the dither sequence are long enough
(minimum image size considered is 256×256). The goodness of
this assumption is experimentally verified in Sec. 7.

4. COMPUTING THE OPTIMAL HIDING FRACTION AND
RATE FOR 1-D HISTOGRAM BASED COMPENSATION

While computing the 1-D histograms for QDCT coefficients, we
only consider those with magnitude less than a certain threshold T .
Since the distribution of the QDCT coefficients is very peaky near
0 and falls off sharply for higher values, higher valued terms may
be ignored in PMF estimation. For a given T , there are (2T + 1)
bins from [−T, T ], and we optimally hide in all the bins, except the
two extreme ones. For the (−T )th and T th bins, perfect compensa-
tion may not be possible as we consider neighboring bins at one side

only. From (4) and (8), considering the ith bin, the hiding fraction λ
needs to satisfy:

BĤ(i) ≤ BX(i) ⇒ λ ≤
(

BX(i)
BX (i−1)

4
+ BX (i)

2
+ BX (i+1)

4

)
(9)

For ease of notation, we define

λi =

(
BX(i)

BX (i−1)
4

+ BX (i)
2

+ BX (i+1)
4

)
(10)

It is to be noted that the whole analysis, especially, the expression for
BĤ(i) (8) as was derived in Sec. 3, assumed an equal hiding fraction
for all the bins. For the ith bin, λi can be viewed as BX (i)

B
Ĥ

(i)
where

BĤ(i) is computed using a hiding fraction of unity. In Sec. 5, we
shall be using this notation for BĤ for the higher order cases. The
effective hiding fraction λ?(T ), for a given T , is the minimum of all
these λi terms (since the hiding fraction λ ≤ λi,∀i, using (9) and
(10)).

λ?(T ) = min
−T<i<T

{λi : λi > 0}. (11)

The condition (λi > 0) in (11) ensures that the hiding fraction will
not be reduced to zero for bins with no elements. This may lead
to PMF mismatches in bins with no elements before hiding but the
mismatch is unlikely to be statistically and steganalytically signif-
icant, and hence not too useful for detection. Also, just as for the
equal number of 0’s and 1’s assumption in Sec. 3, the experimental
results in Sec. 7 indicate that it is a valid assumption for the first
order histogram matching case.

Once we select a certain frequency band for hiding after perform-
ing block-wise DCT, the maximum fraction of the terms which can
actually be used for hiding at a given threshold under the statisti-
cal restoration constraint is called the “rate” for that threshold. Let
G(T ) denote the fraction of terms available for hiding at threshold
T , while the hiding rate corresponding to a threshold T is R(T ).

G(T ) =
X

−T<i<T

PX(i) (12)

R(T ) = λ?(T ).G(T ) (13)

where PX is the PMF of X . As T increases, G(T ) increases while
λ?(T ) decreases, since we are finding the minimum value over a
larger set of T ’s (11). We vary the thresholds and select the threshold
Topt for which the rate is maximized.

Topt = arg max
T

R(T ) (14)

Thus, the maximum attainable rate for the QDCT based feature set
using odd-even embedding and first-order compensation is R(Topt),
computed using (10)-(14).

5. EXTENSION FOR THE HIGHER ORDER STATISTICS

In the odd-even based hiding scheme, let us consider two coefficients
at a time (2-D co-occurrence scenario). Let the two terms have val-
ues i and j respectively. If we call this pair as (i, j), then owing
to an incoming bit, the new coefficient pair can be (i′, j′) where
i′ ∈ {i − 1, i, i + 1} and j′ ∈ {j − 1, j, j + 1}. We now obtain
the optimum hiding fraction, given a certain threshold T , in a man-
ner identical to the 1-D steganography case. Let BX(i, j) denote the



bin-count in the (i, j)th bin of X .

BĤ(i, j) =
X

(i′,j′)∈D8\D4

BX(i′, j′)
16

+

X

(i′,j′)∈D4

BX(i′, j′)
8

+
BX(i, j)

4
(15)

λi,j(T ) =
BX(i, j)

BĤ(i, j)
(16)

λ?(T ) = min
−T<i,j<T

{λi,j(T ) : λi,j(T ) > 0} (17)

The BĤ term in (15) is the bin-count for the (i, j)th bin of Ĥ com-
puted using a hiding fraction of 1. Then, (16) and (17) are just the
2-D versions of (10) and (11), respectively. In (15), the set of the
four nearest neighbors of the current 2-D point (i, j) is called D4

while the set of D4 and the four diagonal neighbors is called D8.
We now provide a generalization for the nth order co-occurrence

statistic. A single bin will consist of n elements, say (i1, i2, ..., in).
Since we perform odd-even based hiding, the i1 component can be
mapped to i1, (i1 − 1) or (i1 + 1) with probability 1

2
, 1

4
and 1

4
,

(valid under the same two assumptions as in Sec. 3) respectively.
Thus, (i1, i2, ..., in) can be mapped to (i1 +δ1, i2 +δ2, ..., in +δn),
where δj ∈ {−1, 0, 1}, 1 ≤ j ≤ n.

f(0) =
1

2
, f(1) =

1

4
, f(−1) =

1

4
(18)

BĤ(i1, i2, ..., in) =
X

δ1

X

δ2

...
X

δn

[f(δ1)f(δ2)...f(δn)]×

BX(i1 + δ1, i2 + δ2, ..., in + δn) (19)

For the co-occurrence order n = 1 and 2 in (19), we compute BĤ

using (8) and (15), respectively. The optimal hiding fraction, λ?(T )
can be computed as in (16) and (17) for the 2-D case, by taking
the ratio of the BX and the BĤ terms, and finding the minimum
over a range specified by T . The hiding rate and optimal threshold
estimates, R(T ) and Topt, can then be obtained, using (13) and (14),
respectively.

6. VARIATION OF OPTIMUM HIDING PARAMETERS
WITH ORDER OF CO-OCCURRENCE STATISTICS

As we proceed from 1-D to 2-D co-occurrence statistic for the
QDCT coefficients, the number of coefficients per bin decreases -
the total number of coefficients remains the same but the number of
bins in the 2-D case is the square of the number of bins in the 1-D
case. Thus, there are many empty 2-D bins. We put a tolerance limit
(p%) on the number of bins in X with zero elements. We gradually
increased the threshold T from 1 till we found there were more than
p% bins which had zero elements. Let the threshold corresponding
to p% bins having zero elements be Tp. We now vary the threshold
from 1 to Tp and find the threshold Topt (14) at which the hiding rate
R(T ) (13) is maximum. We use p = 5 in the experiments (Table 1).

For generating the QDCT terms for the luminance part of an im-
age, we use a quality factor of 75. We consider the first 19 AC
DCT coefficients that occur during zigzag scan, for a 8×8 block, for
hiding and compensation. We limit the range of allowed threshold
values to 30. For every image, after computing the QDCT terms
X , BX(i) is computed for all the bins for a certain threshold T
(i ∈ [−T, T ]). The hiding fraction λ?(T ) is obtained using (11).
The maximum attainable rate R(Topt) is then computed using (14).

We repeat this process for higher orders of co-occurrence statistics.
In Table 1, we quantify the steganographic capacity in 3 ways: firstly,
the maximum attainable rate R(Topt), next, the bits hidden per pixel
in the image and lastly, the total number of bits embedded in the im-
age. The experiment is performed on 4500 images and the optimal
hiding parameters, averaged over the entire set, are reported.

Table 1. Variation of the optimum hiding threshold, fraction and
capacities with the order of co-occurrence, being averaged over 4500
images - since the threshold can assume only integer values, Topt,
after averaging, is changed to the nearest integer higher than it.

Order Topt λ?(Topt)% R(Topt) Bits/pixel Bits hidden (×103)
1 27 48.434 0.502 0.141 25.120
2 6 29.895 0.264 0.074 13.242
3 3 8.253 0.057 0.016 2.895

The maximum allowed hiding fraction expectedly decreases as
we compensate for higher orders of co-occurrence. The amount
of data that we need to hide decides the maximum order of co-
occurrence upto which we need to compensate.

7. HIDING AND COMPENSATION - PER INDIVIDUAL
QUANTIZED DCT COEFFICIENT

The steganographer may consider a certain band of QDCT terms for
hiding in the “total compensation” procedure - mentioned in Sec. 1.
The steganalyst is however free to choose a feature of his choice -
e.g. he may consider first order histograms corresponding to each
individual frequency coefficient stream. For each individual stream,
there may be PMF mismatches between a cover and the correspond-
ing stego image. However, machine-learning based steganalysis will
be able to detect the hiding only if the mismatches are consistent
enough across images. Here, for the total and individual compen-
sation cases, we embed the maximum possible data while ensuring
that first order restoration is still possible for the entire frequency
band based histogram and for each individual frequency band based
histogram, respectively, using (11).

We use 4500 images for the experiments - half for training and
the other half for testing. Both the training and testing sets have
half the images as cover and the other half as stego. During the
training phase, we develop separate support vector machine (SVM)
classifiers trained on each individual QDCT stream. The SVM clas-
sifiers are then used to distinguish between cover and stego images
in the testing phase. After hiding, we compensate using firstly, the
total compensation scheme and secondly, the individual compensa-
tion method. We hide data in those QDCT coefficients whose mag-
nitude is less than 30. The QDCT features are generated using the
same parameters (19 AC DCT terms) as in Sec. 6. We compute
the probabilities of missed detection (Pmiss) and false alarm (PFA)
after performing histogram-based steganalysis using the individual
QDCT streams. For undetectable hiding, the total detection error
Ptotal = (PFA + Pmiss) should be close to 1.

The Ptotal term is found to be close to 1 for all the 19 AC DCT
streams for individual compensation - indicating undetectable hid-
ing. The fact that the optimal hiding fraction based scheme turns
out to be undetectable shows that the assumptions (mentioned in
Sec. 3) based on which the hiding parameters were derived are prac-
tically justified. After performing total compensation and using
individual QDCT streams for detection, we found that the Ptotal

term varies for different QDCT streams. We compute the dif-
ference between the Ptotal values, averaged over all the test im-



ages, for the individual and total compensation cases, for each of
the 19 streams. Let QDCT(i, j) denote the QDCT stream corre-
sponding to the ith row and jth column of the 8×8 QDCT matrix
(1≤ i, j ≤8). The difference in Ptotal is significantly greater than
0 for certain streams (0.21-QDCT(1, 2), 0.10-QDCT(1, 3), 0.15-
QDCT(1, 5), 0.44-QDCT(1, 6)) while it is very close to 0 for the
remaining 15 terms. In Fig. 1, a high difference, as in (a) and (b),
indicates that individual stream based steganalysis is able to detect
total compensation based hiding for these streams while a small
difference, as in (c) and (d), suggests that explicit compensation
is not needed for these streams to avoid detection. Thus, we ob-
serve that total compensation based hiding is most detectable when
QDCT(1, 6) is used for steganalysis.
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Fig. 1. Average detection error (Ptotal), averaged over all the test
images, computed for different QDCT streams after statistical com-
pensation: “Individual” and “Total” refer to the individual and total
compensation schemes, respectively.

To explain the superior performance of QDCT(1, 6) over other
streams, we compute the PMF difference between the original im-
age’s QDCT stream and the data-embedded (and compensated)
QDCT stream, for each individual stream and for both the compen-
sation methods. We present examples of the average PMF differ-
ence (averaged over the test stego images) in Fig. 2. We observe that
whenever the PMF difference is consistently high for the low magni-
tude bins, i.e. {−1, 0, 1}, it reflects in increased detection accuracy
(Fig. 2(b)) - this occurs due to the peaky nature of the PMF near 0.
While the peak PMF difference is as low as 3×10−3 for QDCT(5, 1)
(Fig. 2(a)), it is as high as 0.10 for QDCT(1, 6) (Fig. 2(b)). The PMF
of QDCT(1, 6) is found to be much more peaky compared to that of
other frequency streams. As the PMF of a certain frequency coeffi-
cient X becomes more peaky near 0, BX(0) becomes much greater
than BX(1) and BX(−1). Using (10), the hiding fraction λi for
i = {−1, 1} becomes very small due to the dominance of BX(0).
The effective hiding fraction λ?(T ) (11) for QDCT(1, 6) will there-
fore be much smaller compared to other frequency streams, whose
PMF is less peaky. When “total compensation” is performed, we
consistently hide much more data in QDCT(1, 6) than is permitted

by λ?(T ) (11); hence, statistical restoration cannot compensate for
the mismatched PMF and this leads to enhanced detection.
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Fig. 2. Comparison of PMF differences, after statistical restoration,
for individual and total compensation based methods, for different
QDCT streams: here, “Orig”, “Indiv” and “Total” refer to the orig-
inal PMF, PMF after hiding and individual compensation, and PMF
after hiding and total compensation, respectively.

8. CONCLUSION

Here, we have demonstrated a method to compute the maximum hid-
ing fraction and hiding rate for odd-even based hiding for quantized
DCT coefficients such that the hiding remains undetectable after first
order statistical restoration. The method has been generalized for
higher orders of co-occurrence statistics. From a steganalyst’s per-
spective, we have looked at first order histograms of individual fre-
quency streams. We have observed that a certain quantized DCT
stream (pertaining to the 1st row and 6th column per 8×8 block)
is particularly effective for first order steganalysis. There is a direct
relationship between the peaky nature of the PMF of an individual
quantized DCT stream and its usefulness in first order steganalysis.
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