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ABSTRACT

Microtubule (MT) dynamics are traditionally analyzed from
time lapse images by manual techniques that are laborious,
approximate and often limited. Recently, computer vision
techniques have been applied to the problem of automated
tracking of MTs in live cell images. Aside of very low signal
to noise ratios, live cell images of MTs exhibit severe clut-
ter for accurate tracing of MT body. Moreover, intersecting
and overlapping MT regions appear brighter due to additive
fluorescence. In this paper, we present a MT body tracing
algorithm that addresses the clutter without imposing direc-
tional constraints. We show that MT dynamics can be quan-
tified with enhanced precision, and novel measurements that
are beyond manual feasibility, can be obtained accurately. We
demonstrate our results on actual images of MTs obtained by
live cell fluorescence microscopy.

Index Terms— Biomedical image processing, Image line
pattern analysis, Object detection

1. INTRODUCTION

Microtubules (MTs) are filamentous cytoskeletal structures
composed of tubulin protein subunits. These subunits can
add on, or dissociate from, the tubulin polymer rapidly, mak-
ing MTs highly dynamic. Through these dynamic behaviors,
MTs are critically involved in many essential cellular func-
tions, such as chromosome segregation at mitosis and intra-
cellular cargo transport. The growing and shortening dynam-
ics of MTs are finely regulated by well known regulatory
mechanisms, for example, by the action of MT-associated
proteins. For additional background on MT structure and
function, see [1].

A large body of evidence, reviewed by Feinstein and Wil-
son [2] suggest that cell viability requires that MT dynam-
ics be properly regulated within a narrow range of activities.
Indeed, it has been hypothesized that inadequate regulation
of neuronal MT dynamics may underlie neuronal cell death
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in Alzheimer’s and related dementias. Additionally, drug in-
duced modulation of MT dynamics underlies the effective-
ness of various anti-cancer drugs, such as Taxol. For these
and a host of basic biology issues, the regulation of MT dy-
namics is a very active area of research in modern cellular
biology.

A key tool of MT dynamics research is to track individual
MT tips from time lapse images, Fig.1, and quantitatively de-
scribe MT behavior under different experimental conditions.
Traditional MT dynamics parameters consist of statistics de-
rived from the growth and shortening events between con-
secutive frames. In general, tracking is a largely manual and
laborious task. While MT body tracking is highly desired to
assess MT behavior, it is beyond manual feasibility. For ex-
ample, with accurate body tracking, it would be possible to
quantitatively study MTs that take part in neuronal growth-
cone path finding. Recently suggested methods for automat-
ing MT tracking are limited to MTs in isolated areas. Track-
ing performance, especially body tracking, considerably de-
grades with intersecting and occasionally overlapping MTs,
which are very common in live cell images of MTs. There-
fore, automated tracking methods can immediately benefit
from accurate tracing of individual MTs in live cell images.

In this paper we address the shortcomings due to clutter.
In doing so, we avoid imposing curvature constraints on the
MT body. Curvature based techniques, e.g. [3], are effective
in tracing relatively isolated curvilinear structures. However,
the main challenge of live cell MT images is the frequent in-
tersections that cause intensity variations along the MT body
because of additive fluorescence. Moreover, measuring cur-
vature is one of the goals, which ideally should not be con-
strained. We demonstrate our tracing algorithm on actual MT
image sequences obtained from [4] and [5], resulting in accu-
rate traces.

The rest of this paper is organized as follows. In Sec-
tion 2, we review past work and discuss associated problems.
In Section 3, we describe the proposed tracing algorithm. In
Section 4, we describe the dataset used in this work. In Sec-
tion 5, we present our tracing results and conclude in Section
6 with discussion and future directions.
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Fig. 1. Consecutive MT frames from time lapse images.

2. RELATED WORK

Depending on the exact experimental procedures and equip-
ment, acquired MT images change considerably in quality
and content. In this study, we consider only live cell im-
age sequences acquired by fluorescence microscopy. This
microscopy technique is preferred over newer alternatives,
such as the laser scanning confocal microscopy, typically for
faster acquisition speed. However, resulting images suffer
from fluorescence aberrations and distortions in the optical
path, Fig.2. Each frame represents a projection image, in
which various MTs appear as intersecting. Furthermore, in-
tersections may exhibit higher intensity levels. Thus, intensity
variations on MT bodies are expected. The general problem
of MT segmentation remains a very difficult task.

MTs appear as open ended curves in images, where one
end (plus end) is visible and dynamic and the other end (mi-
nus end) is assumed to be fixed near the nucleus and not vis-
ible due to saturation, Fig.1. The MT shape is likely to be a
result of interfering (but invisible) cellular organelles. There-
fore, constrained curve models should not be preferred in trac-
ing MT bodies.

Recent publications on MT detection and tracking include
[6,7]. In [8], MTs are searched in a constrained space for
tracking in subsequent frames. In [7], MTs tips are detected
by a Gaussian filter and tracked by establishing correspon-
dences in subsequent frames. The proposed approach is sen-
sitive to tips that move out of focus between frames. The au-
thors address this issue by using a graph matching algorithm
in [6]. In both [6] and [7], to trace the MT bodies, the authors
use active contours that are initialized between the plus end
and an estimated point on the MT, found by the Fast March-
ing (FM) algorithm [10]. The proposed use of FM is sensitive
to MT intersections and overlaps as it favors higher intensity
levels (caused by intersecting or overlapping MTs) in com-
puting the geodesic distance. In this paper, we provide an
algorithm directly addressing this issue.

3. TRACING MT BODY

In live cell MT images, intersecting M T regions appear brighter
than individual MTs due to additive fluorescence, Fig.2(a).
Furthermore, MT segmentation is difficult; typical estimates
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show gaps on MT bodies, Fig.2(b).

Fig. 2. (a) Overlapping MTs appear brighter than individual
MTs. (b) Binarization of (a) shows gaps on MT bodies.

Consequently, calculating the geodesic with FM on the
original or on any grayscale filter response favors overlaps
over individual MT bodies in tracing, Fig.3. With high over-
laps and intersections among MTs, tracking methods are lim-
ited to the single MT segments that appear in isolation. Fur-
thermore, interaction between MTs in subsequent frames may
cause the MT body estimation to fail, in which case the pri-
mary dynamic parameters are computed erroneously, Fig.4.

MT,

Fig. 3. Diagram of overlapping MTs stealing MT trace.

The problem is the use of FM as a geodesic distance trans-
form, as opposed to determining the shortest path between
two known points. We propose to use the geodesic distance
between known points, while weighting the paths with a quan-
tity that is (conditionally) independent of the intensity levels
along the MT body. Note that performing FM on a binary
mask in order to rigidly constrain the geodesic on the MT
body would fail whenever there are gaps in the mask along
the MT body. However, a binary mask can be used as con-
ditionally independent weights. Thus, if /() is the intensity
along a MT body, and B(-) denotes the binary transform, we
obtain weights W (-) such that the trace extracted by 7°(.) as
a function of W satisfies T'(W|B) = T(W|B, I).

(b)

Fig. 4. Original (a) and consecutive frames with overlaid geo-
desic MT bodies (b-c), resulting in error in growth.



Given a MT frame F'(x, y), prior to tracing of MT bodies,
we first reveal the curvilinear structures by filtering F(z, y)
with a second order derivative of Gaussian filter G;,e(x, Y)
with scale o and different orientations 6. Here, note that scale
is selected as o = 2 considering the approximate width of a
MT body. Let filter output is represented with Fi.(x,y).

"

Fe(z,y) = max (F(z,y) * Ggy(,y)) M

Thinned binary mask, B(z, y), is calculated based on F,
which consists of one pixel wide paths representing the coarse
estimate of the MT polymers. Line ends on B(x,y) are then
marked as tip positions, tip, = (27}, yt;,), wheren € {1..N'}
and N denotes the number of tip positions.

For each MT tip position, tip,,, we obtain a B’(z,y) by
removing tip,, from the B(z,y). Next, we extract all geo-
desic paths gp, i from the tip,, to the set of all candidate end
points endy, = (z*_, yk ), k € {1..K} such that
{(x]ecnd? ySnd) : B/(xlecnch ysnd) 7é 0}

By this procedure, we formulate the MT tracing as finding
the best gp,i at a predefined length. To find the best path,
JPnk+, We compute the support s,,x for gp,.x as

Spk = E

(z,y)€EgPnk

B'(z,y). @

We declare the path gp,,; with maximum support as the
initial trace at the predefined length.

gPnk+ = AIMAX Spj 3
9Pnk

Finally, we use an active contour as described in [6], to
adjust the initial trace gp,,x~ with the MT body. Note that the
best path, gp,;+, may include sections where it may corre-
sponds to more than one MT in the image. Resolution of this
issue is ultimately important in tracking multiple MTs and

should be separately addressed in a postprocessing step.

4. DATASETS

In this study, we used images from [4] and [5]. In [4], the
authors investigate the hypothesis that resistance to taxol may
involve altered expression patterns among the different tubu-
lin isotypes. Chinese hamster ovary (CHO) cells were mi-
croinjected with rhodamine-labeled tubulin. A total of 111
image sequences were acquired using fluorescence microscopy
with 100x objective lens (1000x magnification). 3146 frames
were captured at 4 second intervals, from five different con-
ditions. 287 MTs were manually tracked from 65 sequences,
with an average of 4.41 MTs per image sequence.

In [5], the authors examine the abilities of different iso-
forms of the MT-associated protein tau to regulate MT dy-
namics. The MCF7 human breast cancer cell line was trans-
fected with an EGFP-tubulin plasmid and subsequently mi-
croinjected with tau. Images were captured with an inverted
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fluorescence microscope with a 100x objective lens (1000x
magnification). 31 frames were acquired at 4 second intervals
from 6 different conditions. A total of 122 image sequences
were recorded. 213 MTs were manually tracked from 63 se-
quences, with an average of 3.38 MTs per image sequence.
Further details can be found in respective studies.

For the purposes of evaluating the MT tracing algorithm,
we visually selected 8 best sequences from both studies. 32
MTs were manually traced in randomly selected frames. These
datasets, as well as the manually extracted traces are available
through [11].

5. RESULTS

The selection of an appropriate path length is application de-
pendent. For very short lengths, the proposed algorithm would
be equivalent to FM. In MT images, very long lengths are not
suitable since the minus ends of MTs reach quickly into ex-
treme clutter.

For the tracing accuracy of the suggested method, we eval-
uated the proposed algorithm against manually traced MTs.
The average trace length was obtained from the manual traces.
We provide sample results of our algorithm in the typical
(Fig.5 — 8) and an ambiguous case (Fig.9) out of the 32 MTs
described in the previous section.

Fig. 5. Original MTs (a) and (d), results of geodesic paths (b)
and (e), and corresponding results of the proposed algorithm

(c) and (f).

(a) (b) (©

Fig. 6. Original MTs (a), results of geodesic paths (b), and
corresponding results of the proposed algorithm (c).

In Fig.9, while the best path, gp,,x~, may not correspond
to the targeted MT body, the first two gp,i clearly capture



(a) (b) (©)

Fig. 7. Original MTs (a), results of geodesic paths (b), and
corresponding results of the proposed algorithm (c).

(2) (b)

Fig. 8. Original MTs (a), resulting trace from the proposed
algorithm (b).

the trace of the actual MT. In such instances, additional in-
formation or use of heuristics may be beneficial to guide the
algorithm.

(b)

Fig. 9. Original MT (a) and top two gp,,. overlaid (b).
6. CONCLUSIONS

The primary indicators of MT dynamics are the growth and
the shortening amounts. By tracking only the MT tips, these
values are computed as approximations from the change in tip
positions, which is inaccurate as compared with the lengths
computed along the MT body. Furthermore, a MT body can
float and change shape in the cytosol from frame to frame,
inflating the approximation error.

With the proposed algorithm, we provide more accurate
traces of MT bodies in each frame for tracking the entire MT
body. Thus, MT body deformations and displacements can
now be quantified over time. Curvature, which is impracti-
cal to calculate manually yet biologically significant, can be
estimated along the body without applying prior constraints
during tracing the MT body. For measuring curvature, correct
tracing of the MT is essential.

The proposed algorithm can be applied to other types of
data, such as neurons for neurite outgrowth studies or blood
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vessels, as well as non-biological images for segmentation of
thin curvilinear structures. In order to trace multiple MTs si-
multaneously, overlapping paths may be identified by using
the algorithm in a global optimization procedure. MT track-
ing methods should directly benefit from accurate traces of
MT bodies, specifically when temporal information is used to
determine overall path consistencies.
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