
Probabilistic Occlusion Boundary Detection on Spatio-Temporal Lattices

M.E. Sargin, L. Bertelli, B.S. Manjunath and K. Rose
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

{msargin,lbertelli,manj,rose}@ece.ucsb.edu

Abstract

In this paper, we present an algorithm for occlusion
boundary detection. The main contribution is a probabilis-
tic detection framework defined on spatio-temporal lattices,
which enables joint analysis of image frames. For this
purpose, we introduce two complementary cost functions
for creating the spatio-temporal lattice and for performing
global inference of the occlusion boundaries, respectively.
In addition, a novel combination of low-level occlusion fea-
tures is discriminatively learnt in the detection framework.
Simulations on the CMU Motion Dataset provide ample ev-
idence that proposed algorithm outperforms the leading ex-
isting methods.

1. Introduction
Detection of object boundaries on natural images has

been studied extensively and found numerous applications
in computer vision. In these applications, salient objects
are often located on other objects or background when pro-
jected on the image plane. Therefore, occlusion provides
crucial information on detection and localization of bound-
aries. More specifically, occlusion information introduces
evidence to keep the relevant boundaries while rejecting the
irrelevant ones within the objects. This effect is illustrated
in Fig. 1, where the boundaries of occluding objects are of
interest.

Recently, there has been much interest in 3D scene
reconstruction from a single monocular image [21, 22,
6]. These studies employed a graphical model driven by
monocular cues for reconstruction. The cues were designed
to mimic human perception. However, for some cases, even
human observers cannot infer depth ordering from a single
image. We believe that motion of the camera or the objects
help to resolve these disambiguities by providing occlusion
information.

Detection of occluded regions is critical for accurate op-
tical flow computation. For this purpose, Lim et al. [10]
and Xiao et al. [27] integrated the motion estimation error,
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Figure 1. (a) An example frame from “rocking horse” se-
quence [25]. (b) Corresponding ground truth. (c) Canny edges.
Notice that not all the apperiance boundaries are occlusion bound-
aries. (d) The output of proposed occlusion boundary detector.

the former within a bi-directional Bayesian framework and
the latter within a variational formulation. Later on, Sand
and Teller [20] added divergence of the motion field in their
variational framework. Their work was motivated from the
well-known fact that motion discrepancies occur at the oc-
clusion boundaries. Thompson et al. applied filtering to find
these discrepancies [26]. Then, Black and Fleet introduced
a Bayesian framework to track motion discontinuities [3].

Layered motion segmentation is another major applica-
tion where occlusion detection has received significant at-
tention [28, 23, 16]. These studies used occluded regions
to improve segmentation accuracy. In a similar scenario,
edges, corners and t-junctions on the spatio-temporal do-
main are used to detect occlusions [1, 5], considering that
the image sequence is represented as a spatio-temporal vol-
ume.



In this paper we introduce a probabilistic occlusion
boundary detection framework defined on spatio-temporal
lattices. The proposed framework enables combining oc-
clusion information across multiple frames for robust detec-
tion. The main contributions can be summarized as follows.

• We define and minimize a probabilistic cost function
for generating a spatio-temporal lattice, to be used as a
sparse representation of the input data. In this setting,
motion information is introduced from the first stage
of the computational pipeline and cues extracted from
multiple frames are combined in a principled way.

• A discriminative learning method is used to discover a
novel combination of low-level occlusion features that
help differentiate between occlusion and appearance
boundaries.

• We exploit the data representation as a lattice structure,
to introduce a probabilistic cost function for perform-
ing global inference of the occlusion boundaries. Junc-
tions on the lattice are used as the elements of a graphi-
cal model, where the discriminative decisions are used
as unary potentials and pairwise potentials are learnt
from the data.

The rest of this paper is organized as follows. In Section
2, we introduce the probabilistic cost function to extract
the spatio-temporal lattice. Low-level occlusion features
are described in Section 3. In Section 4, we explain the
probabilistic cost function to perform global inference. Ex-
perimental results are presented in Section 5, followed by
conclusion in Section 6.

2. Spatio-Temporal Lattice Generation
We initially generate a sparse representation of the im-

age sequence through over-segmentation. This representa-
tion provides coherent local regions in the spatial domain
which are linked in the temporal domain. We will refer to
these elements as stempels (Spatio-TEMPoral-ELements).
We require stempels to have a rectangular lattice topology,
to enable efficient inference over a graphical model. There-
fore, stempel representation is a major departure from the
earlier approaches [25], which allows us to perform feature
extraction and specific higher level reasoning on the tempo-
ral domain as well.

Moore et al. introduced an algorithm in [15] for generat-
ing super-pixel lattices of still images, and proposed the 3D
extension. The algorithm consists of successively partition-
ing the image into horizontal and vertical layers. The im-
age is partitioned into layers recursively using a graph-cut
based greedy scheme. This approach, the so-called divide
and conquer heuristic, first partitions the image into two
layers. The layers are then recursively partitioned into two,

Figure 2. The factor graph: Variables and the factors are repre-
sented by circles and squares, respectively.

resulting in four layers and so on. The heuristic tries to solve
easy local problems and lacks a cost function for joint parti-
tioning of all layers. Instead, we propose a novel layer par-
titioning algorithm that optimizes a globally defined proba-
bilistic cost-function. This cost function also enables us to
fuse the optical flow information into the framework such
that temporal coherence of the stempels is achieved.

We make use of the factor graphs while defining the
probabilistic cost-function used to compute the spatio-
temporal lattice. We will first introduce a generic notation
for the factor graphs and then provide the application spe-
cific components, since a similar cost-function will be ap-
plied for higher level reasoning in Section 4.

2.1. Factor Graphs
In graphical models, global joint probability of the vari-

ables can be written as a product of local joint probabilities
that involves only a subset of the variables. These simpler
functions are referred to as factors. Such factorization can
be visualized using a factor graph where the factors are con-
nected to its variables. The reader is referred to [8] for de-
tailed review on factor graphs.

In this paper, we use the factor graph depicted in Fig. 2.1
where each variable at node i takes value in a finite set rep-
resenting “states”: qi ∈ {1, . . . , N}. The variables are as-
sociated with two types of factors. The first type is denoted
by φi, which is associated with a single variable at node i.
The second one is denoted by ψi,j , which is associated with
a pair of variables at nodes i and j. In the factor graph, we
wish to find the optimal state of the system, q∗, that maxi-
mizes the joint probability of the variables q = {qi}:

q∗ = argmax
q

P (q) (1)

P (q) =
1
Z

∏

i

φi(qi)
∏

i,j

ψi,j(qi, qj). (2)

Here, Z is the normalization constant, which is also known
as the partition function of statistical physics. This max-



imization problem can be solved effectively using well
known methods such as loopy belief propagation [8], loop-
corrected belief propagation [14] or turbo decoding [17].

2.2. Factors for Probabilistic Layer Partitioning
Assume that we want to partition an image into L vertical

layers. We perform this partitioning by assigning to each
pixel i a state qi ∈ {1, . . . , 2L − 1}. In this representation,
odd states are for layer pixels and even states are for the
layer boundary pixels. The factors are defined such that the
layer boundaries cover as many boundary pixels as possible,
while maintaining the layer topology and 8-connectivity.

The probability that a pixel i is on a boundary, denoted
Pb(i), can be obtained using the derivation of [11] or [12].
Since we want the layer boundaries cover as many boundary
pixels as possible, we define the single variable factors as
follows:

φi(qi) =

{
Pb(i)Pp(i|qi) qi even
1 qi odd

(3)

Here, Pp(i|qi) is the prior probability that node i is on a
boundary that separates layers qi/2 and qi/2 + 1 (by intro-
ducing this term, lattice regularization is obtained). Notice
that we defined the single variable factors in terms of prob-
abilities only for the layer boundary states. The factors for
the layer states are simply set to 1. The latter is in fact anal-
ogous to non-emitting states in the Hidden Markov Models
[18].

The layer topology is maintained using the factors con-
necting the horizontal pairs of nodes. Assuming that we are
moving on a row from left to right, we only allow the states
of pixels to increase by at most one and to maintain the same
value only in the case of layer states. This guarantees that
the boundaries are one pixel thick. More formally, we can
write the horizontal factors as follows:

ψh
i,j(qi, qj) =

{
δqi,qj−1, qi even
αδqi,qj +(1−α)δqi,qj−1, qi odd

. (4)

Here, δm,n is the Kronecker delta function:

δm,n =

{
1 m = n

0 m #= n
. (5)

The parameter α, is set considering the expected thickness
of layers. The effect of horizontal factors is illustrated as a
state diagram of a finite state machine in Fig. 3.

The vertical factors enforce the 8-connectivity of the ver-
tical layer boundaries by only allowing certain state transi-
tions, while moving from top to bottom on each column.
As illustrated in Fig. 4, given the horizontal position of the
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Figure 3. State diagram for vertical layer partitioning while mov-
ing from left to right on each row. States are named so that the sk

is the kth state.
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Figure 4. Three possible labeling schemes for the last row, given
the middle row. Note that the system is first order Markovian since
the allowed horizontal positions for the s2 on the last row is inde-
pendent of the first row given the middle row.

vertical boundary state on the middle row, there are only
three possible positions for the vertical boundary state on
the last row that the 8-connectivity is satisfied. This is re-
flected on the vertical factors such that, while moving from
top to bottom on each column, states of pixels can change
by at most one. More formally, we can write the vertical
factors as follows:

ψv
i,j(qi, qj) = βδqi,qj +0.5(1−β)(δqi,qj−1+δqi,qj+1). (6)

Here, the parameter β adjusts the rigidity of the vertical
layer boundaries. High valued β forces the boundaries to
follow straight lines on the vertical axis. Similar to the hor-
izontal factors, the effect of vertical factors is illustrated in
Fig. 5.
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Figure 5. State diagram for vertical layer partitioning while mov-
ing from top to bottom on each column.

2.3. Joint Layer Partitioning of the Image Sequence
Given a sequence of images, we apply the horizontal

and vertical probabilistic layer partitioning successively on
a reference image, where overlapping stripes are used to
compute the regularization prior Pp(i|qi) in (3). The refer-
ence frame can be selected arbitrarily, although a common
practice is selecting the one in the middle of the sequence.



Once the layers for the reference image are obtained, the
rest of the images can be partitioned using the optical flow
information to compute the prior probability Pp(i|qi), i.e.,
the probability that pixel i is on a layer boundary with state
qi. Let di,qi be the distance of pixel i to the nearest pixel
in the current image, which is covered by any one of the
optical flow vectors pointing from pixels with state qi in the
reference image. Subsequently, Pp(i|qi) is obtained from
di,qi as follows:

Pp(i|qi) ∝ exp(−di,qi). (7)

A sample spatio-temporal lattice, which is obtained using
the proposed algorithm, is illustrated in Fig. 6.

3. Feature Extraction
Let I(x, t) be the image at time t where x is the spatial

coordinates. We extract dense low-level occlusion features
from I(x, t) based on the optical flow vector field, D(x),
calculated between I(x, t) and I(x, t + ∆t). We use the
method of [2] for robust optical flow calculation.

3.1. Low-Level Occlusion Features
The first low-level occlusion feature is inspired by the

work in [27], where occluded pixels are detected in varia-
tional optical flow scenario by simply considering the fol-
lowing quantity:

f1(x, t, t + ∆t) = ‖I(x, t)− I(x + D(x), t + ∆t)‖. (8)

The second feature is computed following [20], where
the divergence of the optical flow vector field is used to de-
tect the occluded pixels:

f2(x, t, t + ∆t) = |∇ · D(x)|. (9)

The third feature is inspired by [5], where the authors
suggest that the edges and corners in the spatio-temporal
domain correspond to the occluded pixels. These points of
interest are detected using the minimum eigenvalue λmin(·)
of the gradient structure tensor:

f3(x, t, t+∆t) = λmin((∇I(x, t)⊗∇I(x, t)) ∗K(x, σ)).
(10)

The operators⊗ and ∗ represent outer product and convolu-
tion with a kernel, respectively, and the kernel is Gaussian:

K(x, σ) =
1

2πσ2
exp(−xT x

2σ2
). (11)

We also propose to use the Frobenius norm of the gradient
of the optical flow field in order to capture motion disconti-
nuities:

f4(x, t, t + ∆t) = ‖∇D(x)‖F . (12)
Together with the motion-based occlusion features, we use
the probability of a pixel at (x, t) being a boundary pixel,
Pb(x, t) as the last occlusion feature using the method of
[11].

3.2. Features on the Spatio-Temporal Lattice
Let the image sequence consist of 2T + 1 frames, where

the frames are indexed by t ∈ {−T, . . . , T}. We obtain
the stempel boundaries using the the algorithm described in
Section 2 with the reference frame at t = 0. Since the stem-
pel boundaries coincide in the temporal domain, we extract
low-level occlusion features on multiple reference frames
and combine the corresponding features in the temporal do-
main. This makes the system more robust over the single
reference frame case, which will be shown in Section 5.

Low-level occlusion features are defined over a pair of
frames and extracted per-pixel. The pairs considered for
feature extraction are illustrated in Fig. 7. For each pair, we
combine each feature in the spatial domain by averaging
them on stempel boundaries. Then, all the corresponding
features in the temporal domain are combined by concate-
nation.

Figure 6. Stempel boundaries.

t=−T t=−1 t=0 t=+1 t=+T

. . . . . .

Figure 7. Pairs of frames considered for feature extraction. Ideally,
there are 4T 2 + 2T possible pairs. Although, practically, some of
the pairs can be pruned to reduce complexity.

4. Learning and Global Inference
We consider two classes, namely occlusion (o) and no-

occlusion (ō). We train a Support Vector Machine (SVM)
classifier [4] using the features extracted on the stempel
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Figure 8. Toy problem for the global inference. (a) Square ob-
jects. The occlusion order is encoded by the intensity of objects.
(b) P (o|fk) corrupted by additive white Gaussian noise. (c) Maxi-
mum likelihood detection of the occlusion boundaries. Notice the
spurious boundaries forming open contours and the gaps on the
desired contours. (d) Output of the global inference.

boundaries. Let fk be the occlusion features extracted on
the stempel boundary k. Given fk and the SVM model,
the posterior probability of k being an occlusion boundary,
P (o|fk), is obtained using the method of [7].

Decision making on each stempel boundary using
P (o|fk) assumes that all boundaries are independent. This
assumption does not hold in natural images since the bound-
aries of occluding objects tend to form closed contours. The
dependency can be exploited to eliminate mislabeled spuri-
ous boundaries or to complete contours. A simple example
for this is illustrated in Fig. 8.

Global dependency between the stempel boundaries can
be decomposed into local dependencies of neighboring
boundaries with the help of the lattice topology. In the
rectangular lattice, junctions are the points where 4 stem-
pel boundaries meet. Accordingly, a junction can be in 24

states considering the configurations of the stempel bound-
aries (See Fig. 9).

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 9. Possible states for a junction. Dark and dashed bound-
aries represent the boundaries labeled as o and ō respectively.

Note that this representation brings redundant informa-
tion since the stempel boundaries are shared by two junc-

tions. Spatial continuity of the boundary labels is in fact
maintained with this redundancy as we will see later.

4.1. Factors for Global Inference
Decomposition of the global dependency of the stempel

boundaries into local dependency of the junctions enables
us to use the factor graph described in Section 2.1 for solv-
ing the global inference problem. In this case, single vari-
able factors represent the probability of a junction i being
in state qi. This probability can further be decomposed into
product of the boundary probabilities joining at junction i,
which are indexed with N(i).

φi(qi) =
∏

k∈N(i)

P (qi|fk) (13)

The factors with pair of variables represent the joint
probability of the neighboring junctions such that the spa-
tial continuity of the boundary is maintained. The poten-
tials of joint junction configurations are learnt from the data
considering the rates of occurrence. The horizontal and the
vertical factors are again considered separately since the de-
pendency between states are different for vertical and hori-
zontal neighbors.

5. Experimental Results
In this section, we demonstrate the performance of the

proposed framework. First, we incrementally illustrate the
gain of each contribution listed in Section 1. We then com-
pare the proposed algorithm with leading existing methods.

Recently, Stein et al. introduced the CMU Motion
Dataset [25] to show the effectiveness of motion cues for
boundary detection. The dataset is publicly available [24]
and it contains 30 short image sequences with the ground
truth indicating the occlusion boundaries. The experimen-
tal procedure can be summarized as follows. First, spatio-
temporal lattices with 24×32 stempels are generated on the
image sequences. On the stempel boundaries, low-level oc-
clusion features are extracted using the methods described
in Section 3. These features are then used to train an SVM
model with radial basis function kernel. Finally, the inde-
pendent decisions for stempel boundaries are combined in
the global inference module as explained in Section 4.

Turbo decoding [17] is used to perform inference on the
factor graphs described in Section 2 and Section 4. In turbo
decoding, rows and columns of the factor graph are alter-
nately processed, and these horizontal and vertical inference
processes “communicate” through their posterior probabil-
ities. While the method does not guarantee convergence to
the global optimum, the inference is effective and highly
parallelizable since each row (or column) can be processed
independent of the other rows (or columns).



The accuracy of the detection is quantified by precision,
p, and recall, r. Precision is the probability that a pixel
indicated as a boundary pixel by the segmentation algorithm
is truly a boundary pixel. Recall is the probability that a true
boundary pixel in the ground truth is correctly detected by
the algorithm. These two measures are obtained using the
algorithm described in [13]. One can finally combine p and
r to get the F -measure, F = 2pr/(p + r).
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Figure 10. Precision and recall curves on the CMU Motion Dataset
[25]. The results show that combining low-level occlusion features
on the spatio-temporal lattice, improves the performance over the
features with single reference frame. The performance is further
increased by the global inference.

The gain of each contribution on the overall perfor-
mance is illustrated in Fig. 10. The baseline is the indepen-
dent decisions (without global inference) based on the fea-
tures extracted only on the reference frame (without spatio-
temporal feature combination). Combining the features,
which are extracted on multiple reference frames improved
the performance. The improvement was expected because
multiple observations on the spatio-temporal lattice make
the system more robust to noise, motion estimation error,
etc. The best results are obtained when the global inference
is applied on the decisions with the spatio-temporal feature
combination. The performance improvement is primarily
due to the fact that the spurious and missing stempel bound-
aries are addressed in the global inference by the configu-
rations of neighboring stempel junctions (See Fig. 12 and
Fig. 13).

We also compared the proposed method with leading ex-
isting methods on the same dataset. The precision and recall
curves of [25] and [19] are roughly illustrated in Fig. 11
together with our best configuration. Here, note that [19]
focuses on generic boundary detection and does not incor-
porate the temporal information to detect occlusions. As an
additional reference point, the matting algorithm described
in [9] was tested to yield (p = 0.35, r = 0.20). This in-
ferior performance is primarily due to the fact that the mat-
ting algorithm attempts to cut out the object from the scene
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Figure 11. Precision and recall curves from Ren [19] and Stein et
al. [25] together with the proposed method.

without considering occlusion information. In this sense,
one can think of it as “region based” segmentation. How-
ever, our application is “edge based” i.e., only the occluding
boundaries are of interest.

6. Conclusion
We presented an algorithm to detect the occlusion

boundaries given a sequence of frames. Our contribution
is three-fold. First, a probabilistic cost function is intro-
duced to generate the spatio-temporal lattice on a sequence
of frames. Second, a novel combination of features on the
spatio-temporal lattice is learnt discriminatively. Finally,
the independent decisions for boundaries are combined in
a probabilistic model to perfom global inference.
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