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Abstract

Microtubules (MTs), one of three major cytoskeletal
components, serve numerous critical functions in cells.
Mechanistically, MTs are not static polymers; rather, they
can be very dynamic and their precise patterns of growing
and shortening behaviors are critical to their many func-
tions. Among the challenges confronting modern molecular
cell biology is to accurately and thoroughly quantify the dy-
namic behaviors of cellular MTs under a variety of exper-
imental conditions. MTs in living cells are generally visu-
alized by time-lapse fluorescence microscopy. They appear
as thin, hair-like structures, a subset of which are actively
changing length. These length changes are generally mea-
sured manually. This task is not only laborious but has the
potential for inadvertent bias and error. Here, we present
a fully automated and robust approach to detect and track
MT dynamics that is not only faster than the present manual
approach, but it also provides significantly more and higher
quality data, which in turn enables novel analyses to be per-
formed. The proposed tracking algorithm addresses issues
such as fast growth and shortening of the MTs–often more
than 10 pixels from frame to frame, and frequent occlusion
and high clutter, using a spatiotemporal contour tracking
approach. Experimental results show that highly accurate
tracking results can be obtained in a fully automated man-
ner. The output of our tracking method is currently being
used in building descriptive mathematical models for cap-
turing the MT dynamics.

1. Introduction

Microtubules (MTs) are cylindrical, cytoskeletal protein
polymers found in essentially all eukaryotic cells. They are
essential for numerous critical cellular functions, includ-
ing cell division, various intracellular transport processes,
cell movement and cell shape changes. Especially notable
among these many functions is the essential role of MTs
in separating metaphase chromosomes to the two daugh-
ter cells during cell division. Recent work has demon-
strated convincingly that proper regulation of the growing

and shortening dynamics of MTs is essential in order to
achieve proper chromosome segregation (reviewed in [14]).
Indeed, the highly effective anti-cancer drug taxol works
because it suppresses microtubule dynamics sufficiently to
interfere with normal chromosome segregation. Recent
work has also suggested that mis-regulation of MT dynam-
ics may underlie Alzheimer’s disease and related dementias
(reviewed in [8]). Thus, the regulation of MT dynamics is a
key element in both normal and pathological cell biology.

Investigators generally visualize MT dynamics using
time-lapse fluorescence microscopy. As examples, the im-
ages used in this manuscript are taken at 4 second intervals,
with about 30-60 frames per stack (i.e., video sequence) of
images. Fig.1 shows an example frame in such a sequence.
The image frames have a dimension of 512× 600 with a
spatial resolution of 1.32µm per pixel (approximately). The
observations that are of interest here include the growth and
shortening of these tiny hair-like structures over a period of
time. These events occur by addition or loss of monomeric
subunits of the MT, known as tubulin.

A typical study of MT characterization would involve
imaging the MTs to generate several stacks that are then
analyzed to quantify the growth and shortening events. This
second step is mostly done manually, by tracking individual
microtubule tips, one at a time, over the entire video. From
this tip location data, one can then compute statistics such
as average growth and shortening. It is fair to say that this
is the current state of the art in a typical biology lab (note
that there are some recent studies that mark and track MTs
using speckle microscopy [5]; however, one can not track
the tips alone and tracking the MTs, including their tips,
is important in biology.) The obvious problems with such
manual analyses include:

• The manual tracking task is time consuming, laborious
and subjective. This limits the number of MTs being
tracked in a cell to a small number, typically about 5
MTs per video. Hence the complete dynamic behavior
of MTs in a cell is not fully captured.

• Only the tip is tracked, leading to inaccurate length es-
timates when the MT shape is not linear. Besides, since
the body of the MT is not captured, no inferences can be
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(a)

(b) (c)
Figure 1. (a) An example frame of an MT video (b)-(c) A zoom-in
on the same area in both frames 4 and 24 of the sequence. The
small windows show the high level of noise, and contrast and illu-
mination changes between the two frames. MTs are the hair like
structures. (See the supplementary videos)

made about shape changes under different experimental
conditions.

The main contribution of this paper is the development
of a fully automated method to detect and track MTs in a
video sequence. In this work, the MT detection and track-
ing problems are cast in a novel way as a spatiotemporal
graph matching problem. We provide quantitative perfor-
mance evaluation on MTs with known (manually gener-
ated) ground-truth data that support the robustness of the
proposed tracking method. More importantly, the detection
and tracking further facilitates new analysis that are not cur-
rently feasible with the existing manually tracked results.
For example, accurate localization of the entire MTs en-
ables shape computations and studying neighboring effects
of the MTs in their growth and shortening. To the best of
our knowledge, this is the only fully automated method for
tracking such structures that can handle occlusions and in-
tersections. The tracking software would be made available
on our web site soon.

In the next section we review the related work on micro-
tubule detection and tracking. Sections3 gives an overview
of the proposed tracking technique. Section4 presents the
approach for detecting MT tips. Section5 details the spa-
tiotemporal matching of MT tips. The MT body formation
and experimental results are presented in section6. Finally,
conclusions and future work are discussed in section7.

2. Related Work

Tracking thin hair like structures such as microtubules,
in a noisy microscopy video poses several challenging prob-
lems.
• MTs appear as tubular structures in the image frames.

The shape of MTs vary within the same cell widely. An
accurate estimation of the length of the MT should take
into account the curvilinear structure. The currently
widely used manual tip tracking and computing the as-
sociated statistics ignores this effect.

• MTs undergo large changes in length from frame to
frame because of growth or shortening at either MT
end. The large change in length, together with frequent
occlusions, pose significant problems to any tracking
method.

• The images of MTs have low signal-to-noise ratio and
exhibit nonuniform illumination both spatially and tem-
porally.

Our contributions directly address the above issues. In
reviewing the related work, we first provide an overview
of the state-of-the-art in MT tracking and discuss tracking
related research as applicable to our proposed methodology.

2.1. Microtubule detection and tracking

In the literature few papers [3, 4, 6, 10, 12, 13] have ad-
dressed the MT detection and tracking problems. In [4], a
graph searching algorithm is applied to manually selected
microtubule ending points, and the shortest path is com-
puted to extract the central axis of the microtubule. In [12],
the authors propose to automate the microtubule segmen-
tation by extending the active shape model using a higher
order boundary model, and Kalman filtering to utilize the
shape information along the longitudinal direction of the
MTs. In [13], the authors propose an automated approach
to extract the microtubule tip with a coarse to fine scale
scheme consisting of volume enhancement and tip segmen-
tation. In [10], the microtubules are extracted in terms
of consecutive segments by solving Hamilton-Jacobi equa-
tions. The algorithm extracts the microtubule starting from
a manually selected tip. All of the above methods have only
addressed the MT detection problem without handling the
tracking of MTs.

In [6], an initial point is selected on a microtubule and
iteratively gives a stack of points representing the micro-
tubule using tangent constraints. Once the microtubule is
detected, it is tracked in time while constraining the search
space in a normal direction around microtubule points.
Though the tracking algorithm is automated, the authors
report difficulties in handling MT intersections and do not
present quantitative tip tracking performance results. The
main issue with their approach is that MT tracking is per-
formed using a local measure of consistency that can lead to
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problems at intersection. In this work, we propose a global
multiframe approach to resolve tracking conflicts. The work
in [3] presents a framework for detecting and tracking im-
ages of linear structures in differential interference contrast
(DIC) microscopy. The tracking of the movements of MT
segments is performed using a sum of squared (brightness)
differences algorithm based on an initial manual input.

2.2. Detection and Tracking of Curvilinear struc-
tures

Curvilinear structures detection and tracking represent
important computer vision problems for applications such
as road detection, mammographic image analysis, fiber
identification, fingerprint image analysis, and MTs and
actin filaments identification. Many techniques have been
proposed in the literature to detect curvilinear structures
such as scale space approaches with Gaussian derivatives
[17], anisotropic Gauss filtering [9], fusion of two local line
detectors followed by a global Markov random field [25],
and using differential geometric properties of images [23].
For the problem of correspondence of curvilinear structures
between sets of images, algorithms have been proposed in
the literature for applications such as tracking and 3D re-
construction. In the majority of approaches, lines are first
detected and then line properties such as orientation, posi-
tion, width and center lines are used for the matching pro-
cess [15,18].

In all of these techniques, a threshold is used to bina-
rize the line detector response prior to matching between
the images. In real life noisy video sequences, it is very
likely that the required threshold will vary from frame to
frame, thus causing a possible loss of the tracked curvilinear
structure. Instead of tracking using the binarized response,
we propose to use an active contour framework that uses
the continuous line detector response to detect and track the
curvilinear structures.

2.3. Active contour tracking approaches

Active contours are curves deforming in the image plane
according to image features and internal smoothness con-
straints. They have been used previously for object tracking
applications. We will classify these approaches based on
two features: 1) explicit motion estimation to predict object
position from frame to frame, and 2) capability to handle
the multi-objects.

The simplest case is when a single object/region is
tracked without any motion estimation [20, 24]. The sec-
ond class uses motion estimation technique for tracking a
single region [1, 2]. The third category handles explicitly
the multi-object case but does not use motion estimation as-
suming high enough frame rate giving small displacements
from frame to frame [11, 19]. The last class uses motion
estimation and is addressing the issue of tracking interact-
ing objects as in [7]. Since we are concerned with track-

ing multiple MTs in a video with large interframe changes,
our proposed method falls into the last category of contour
tracking. However, we use a multiframe motion estimation
that can resolve tracking conflicts in a more systematic fash-
ion.

3. Overview of the approach

We model a microtubule in a video frame as an open
curveC(s) wheres ε [0, 1] is the curve parameter (see fig.
2). Due to the highly dynamic nature of MTs and their
frequent intersections, a spatiotemporal tracking algorithm
based on deformable contours is an effective strategy. We
propose to use an active contour based on line features to
capture deformations of the microtubule in a given frame.
The active contour is an open curve in this case with one
end fixed and the other - the tip- is free to move.

Figure 2. MT model as an open curve with only one moving end
(the tip) superimposed on a video frame .

Since, the MT tip can be changing its location in ev-
ery frame, we need to estimate the motion of the tip. We
proceed to detect the tips in a given frame and match tips
between subsequent frames that belong to the same MT.
Hence, the main modules of the proposed tracking approach
shown in fig.3 are:
• Tip detection: Given a MT video, we design a tip detec-

tor generating the locations of MT tips in every frame.
Note that the number of the detected tips in every frame
need not to be equal.

• Multiframe tip matching to generate tracks: Given the
detected tips in every frame, we need to match tips be-
tween frames to form MT tracks. We formulate this
problem as a graph matching one, by considering all tips
from all the frames simultaneously. The advantage of
spatiotemporal matching of tips is that it enforces con-
tinuity of tracks, and is able to handle missing tips in
some frames due to noise and to discard false positives.

• Extracting MT bodies: We propose an active contour-
based approach to track the full body of the microtubule
based on the tip locations in a given microtubule track.
Being able to track changes in the full body of the MT
instead of just the tip location enables a better estimate
of the MT length. Furthermore, we can now study shape
changes in MTs which can not be performed based on
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tip tracking only.

Figure 3. The block diagram of the proposed tracking technique.

4. Microtubule Tip Detection
Given a video frame, MT tips are detected which will

be tracked subsequently. We are usually interested in MTs
growing or shortening near the cell membrane. We first
extract a band around the cell membrane -the MT layer-
through temporal clustering in the frequency domain.

4.1. Extracting MT layer by temporal clustering

A microtubule video ofT frames can be considered as
a spatiotemporal volume. At each pixel location(x, y) on
the first frame, we construct a vectorF (x, y) in the time
direction, thus it will have a dimensionality ofT . We con-
struct a feature vector fromF (x, y) by taking the FFT. The
motivation behind using a frequency based representation
of the volume is to partition the MT video into regions of
different spatial activity patterns. We retain the magnitudes
of the coefficients only. We discard the DC component for
intensity invariance and take the first half of the FFT coeffi-
cients. We end up representing the whole video volume by
FFT vectors. We then cluster these FFT vectors using a K-
means algorithm intoV clusters corresponding to regions
of varying activity in the cell. Finally, we extract the clus-
ters corresponding to the region of highest activity, which
we call the microtubule layer. An example of the extraction
of the microtubule layer is shown in fig.4.

4.2. Ridge-based detection of MT

After extracting the MT layer, a filtering approach is
used to detect the MT tips in this layer. Our algorithm
for tip detection starts by extracting a binary mask showing
the locations of microtubule polymer. The basic assump-
tion about MTs that enables extracting a binary mask of
microtubule locations is that MTs look like black curvilin-
ear structures on a light background in an ideal scenario.
A second derivative of Gaussian kernel matched to image
locations at different orientations should reveal this tubular
structure while eliminating background noise. Let the in-
tensity function in the window of interestW be denoted as
IW , the output after filtering the window is then:

If
W (x, y) = max

θ
(IW (x, y) ∗G′′

σ,θ(x, y)) (1)

(a) (b)

(c)
Figure 4. Extracting the microtubule layer through temporal clus-
tering. (a) One of the image frames from the video, (b)K-means
clustering into 5 clusters including one for the background and (c)
The region of the frame corresponding to the microtubule layer.
(other parts are shown in white)

whereG′′
σ,θ(x, y) is a second derivative of Gaussian ker-

nel with scaleσ and orientationθ at position(x, y). σ is
chosen experimentally based on the microtubule width. An
example of finding the maximum of a second derivative of
Gaussian convolved with the image at all pixel locations is
shown in Fig5.

(a) (b) (c)
Figure 5. A windowIW in a video frame, (b) the filter outputIf

W

and (c) binarization.

4.3. Detecting MT Tips

The binary MT mask computed based on second deriva-
tive of Gaussian filtering is thinned to generate one pixel
width lines. A test is performed at every white pixel loca-
tion to check if the pixel is a line ending. Mimicking the
manual method to select MT tips that are free of too much
clutter, we filter out tips that are in locations where the ratio
of MT polymer to non-polymer masses is less than a thresh-
old - we take it 0.3 experimentally. An example of MT tip
detection is shown in figure6.

4
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Figure 6. An example of MT tip detection in a frame.

5. Spatiotemporal tip matching

Having generated a set of tips in every frame of the MT
video, we seek to match corresponding tips between frames
to form MT tracks. One possibility is to track tips from
frame to frame. However, due to the low signal to noise ra-
tio in the images, this is likely to fail. Instead, we consider
matching tips from all the frames directly in a spatiotempo-
ral manner. The main advantages of this approach are:
• It can handle missing tips due to noisy conditions by

allowing the final MT tracks to skip frames in between.

• It can potentially remove spurious tips found if the
noise/ loss in signal does not occur repeatedly at nearby
locations.

At the end of the tip matching over all the frames, we
can select the longest tracks for further processing, since
short tracks are likely to be due to noise. It is worth noting
that the computed tracks in this manner can start and end
at any given frame of the video sequence, can have arbi-
trary lengths, and can be skipping frames in the middle. We
formulate the problem of tip matching as a graph matching
one.

5.1. Graph-based Formulation

Consider an MT video of lengthT frames. Let us de-
note Ni to be the number of tips detected in framei for
1 ≤ i ≤ T . Denote the tip detected in a frame asthi with
the subscript corresponding to the frame number and the
superscript corresponding to the tip number in framefi,
thush has the range1 ≤ h ≤ Ni. We construct a graph
G = (V,E) whose verticesV correspond to the detected
tips in every frame and the edgesE represent similarity be-
tween vertices. The edge weights of the graph represent the
matching gain of corresponding two tips in different frames.
In order to allow MT tracks to skip some frames, we include
edges between tips in non-consecutive video frames. An ex-
ample of a graph used for tracking MTs is shown in fig.7
with a possible solution of tip matching.

5.2. Similarity metric proposed

The main metric which defines the matching of tips for
the video frame is the similarity measure linking tips in dif-
ferent frames. Consider two tipsthi andtrj in two separate

(a) (b)
Figure 7. (a) An example graph whose vertices are the tips detected
in every frame of video (here shown for a length 4 video) and (b)
a possible maximal matching solution. Note that the tracks can
be of different lengths, start and end at arbitrary frames, and skip
frames in between.

framesfi andfj . For example, one can use:

Sim(thi , trj) =
1

1 + d(thi , trj)
(2)

whered(., .) is the Euclidean distance. However this will
have problems in cases of tips of different MTs coming
close to each other. A better alternative is to consider a
distance constrained on the MT body, such as a geodesic
distance. We consider the cases of growth and shortening
of an MT between two different frames as in Fig.8. For the
MT growth, we project the location of the tip on framefi

to the same location on framefj . We then compute the first
geodesic distancedgeod1(t

h
i , trj) as shown on Fig.8. For the

MT shortening case, we back-project the location of the tip
on framefj to the same location on framefi. We then com-
pute the second geodesic distancedgeod2(t

h
i , trj) as shown

on Fig.8. Note that, for a given MT, we do not have a-priori
information on whether it is growing or shortening. Finally
the similarity metric -edge weight on the graphG - used
between the two tipsthi andtrj is computed as follows:

Sim(thi , trj) = e−min(dgeod1 ,dgeod2 ) (3)

(a) (b)
Figure 8. Illustration on how the similarity weight between ver-
tices of the graph is computed between tips in two different frames
fi andfj (see text for explanation). (a) case of shortening and (b)
case of growing.

5.3. Maximum matching on the graph

Given the graphG of MT tips as vertices and the edge
weights as defined in (3), we compute a maximum weight
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matching of the tips which correspond to MT tracks. From
graph theory, we know that avertex disjoint path coverC
is a covering ofG where each vertex ofG is in some path
of C and each vertex belongs to one path only. The weight
of a path cover is the sum of weights of edges on the path
cover. Given an initial graphG, the problem of finding the
best MT tracks corresponds to finding themaximum weight
path coverof G with the weights defined by the similarity
in (3). Formally, a maximum weight path coverC(G) is a
path cover which satisfies:

C(G) = arg max
Ci

W (Ci) (4)

whereW (Ci) =
∑

euvεCi
Sim(euv) andu, v are two ver-

tices inG for which the similarity is computed as in (3).
We proceed to compute the maximum weight path cover

as suggested in [22]. Let us define a split graphGsplit cor-
responding toG as a bipartite graph with partite vertix sets
V+ andV−. V+ andV− are copies of the verticesV . An
edgeeuv between two verticesu andv in G has the same
weight as the edgeeu+v− in Gsplit. The edges of maximum
matching of the bipartite split graphGsplit correspond to
the edges of maximum path cover ofG.

6. MT body formation based on geodesics

After computing the maximum weight match for the
constructed graph of tips, we can use the MT tracks formed
by the matched tips to compute dynamic parameters of im-
portance of MTs such as growth and shortening rates. How-
ever, the MT length estimation based on tip location only
is inaccurate when the body of the MT is not linear or in
case of lateral motion. A better alternative would be to ex-
tract the MT body and use it in the computation of the MT
length. Furthermore, we can study the effect of different ex-
perimental subjects on the curvature of the MT, which was
not possible before. Consider for example an extracted MT
track with a starting framefk. We proceed as follows to
compute the MT body in the first framefk of this track.

Denoting the location MT tip of interest aststart, the
goal is to find a pointtend on the MT to form the body. For
this purpose, let us define first the setP of points satisfying:

P = {ti∀(
ti∫

tstart

If
W (s)ds) < ξ} (5)

whereIf
W (.) is as defined in (1). In other words, the set of

pointsP is the one for which the geodesic distance from
the tip tstart is below the thresholdξ determined experi-
mentally. Using the setP , we definetend which maximizes
the following:

tend = arg max
cand∈P

‖tstart − tcand‖2 (6)

This is equivalent of finding the path with minimum curva-
ture originating from the tip. We then use a gradient descent
to trace the MT body from the tip to the ending point deter-
mined on the MT. The procedure of tracing the MT body is
depicted in fig.9. Note that we consider the ending point
on the MT to be fixed along the MT track for the remaining
frames. For subsequent frames, the problem of extracting
the MT body is thus transformed into deforming the body
between the fixed ending point and the tip detected using
the spatiotemporal matching. The deformation of the MT
body is carried out using an active contour method based on
line features, as explained below.

(a) (b) (c)

(d) (e)
Figure 9. MT body formation in the first frame of a track (a) A
window around the considered tip in the track with tip overlaid
as a black square on the window, (b) The filtering result of the
window used as an input to the geodesic distance transform, (c)
The distance transform from the tip with darker values denoting
smaller distances, (d) points satisfying a distance threshold less
than 1, (e) The extracted MT body.

6.1. Active contour for MT deformation

“Snakes” are deformable contours that are initialized on
the image plane and allowed to evolve under the influence of
a set of internal and external forces. Let the contour be rep-
resented parametrically asC(s) wheres ε [0, 1], an energy
functional that needs to be minimized is defined as follows:

E(C(s)) =

1∫
0

(Eint(C(s)) + Eext(C(s))) ds (7)

whereEint(C(s)) is the internal snake force composed of
a balanced weight of tension and rigidity of the contour.
Since we are interested in tracking MTs that appear as
curvilinear structures in an imageI(x, y), we useridge (ac-
cordinglyvalleys) features as the external forceEext(C(s)).
Ridge features can be detected using a second order deriva-
tive of a GaussianG′′

σ(x, y). Consider the following exter-
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MT Video # MTs µerror σerror

1 10 2.25 2.64
2 16 2.85 4.36

Table 1. MT tip tracking performance. The duration of the MT
video tracks is 25 frames.

nal force:

∇Eext = w1 (−∇L) + w2 Lsign(〈−∇L,
−→
N 〉)

−→
N (8)

where the first term:

−∇L(x, y) = −∇ 1
1 + |G′′

σ(x, y) ∗ I(x, y)|2

is a gradient vector field created from the line detector
response|G′′

σ(x, y) ∗ I(x, y)|. The purpose of this vec-
tor field is to pull the active contour towards the de-
sired curvilinear structure of the MT. The second term
L.sign(〈−∇L,

−→
N 〉).

−→
N is a balloon-based term used to

speed convergence of the contour and to help moving the
contour in smooth areas (with the sign term inspired by the
work of [16]).

6.2. Tracking Results and Quantitative Perfor-
mance Evaluation

We have applied our automated tracking algorithm on
250 MT videos, generating on average 20-25 MT tracks per
video. In our implementation of the spatiotemporal graph
matching, we allowed up to three missing frames between
tips of the same MT track. For the computation of the
geodesics, we used the Fast Marching algorithm [21]. The
complete tracking of MTs within a video of 30 frames takes
approximately 30 minutes using a Matlab implementation
on a 3 GHz P-IV machine with 1G RAM. fig.10 and11
show example results on some of the frames. Note that there
are three generated MT tracks one for each of the MTs in
fig. 10. More results are supplemented as videos with the
paper submission. To evaluate the tracking performance of
MTs, we manually tracked MT tips in two video sequences.
The tip tracking performance is shown in table1. The aver-
age MT track duration in these videos is 25 frames.

The computed errors appear very reasonable and accept-
able for further manual/computer analysis. As we men-
tioned before, there are no currently publicly available
methods and datasets where such a performance has been
documented. We plan to provide on the Internet both the
datasets (with known MT trajectories) as well as our soft-
ware implementation for use by other researchers.

7. Conclusions
We have presented in this paper a novel, fully automated,

tracking technique for MTs. The technique is based on a

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 10. Example frames (5,12,18, and 27) from automatically
computed MT tracks.

spatio-temporal contour tracking approach that can handle
missing features and resolve tracking conflicts. For the first
time in the published literature, we presented quantitative
evaluation of the tracking performance for a set of manu-
ally tracked MTs. By generating a large number of full-
body MT tracks, very useful and previously non-acquirable
data can be harvested. Example applications include: 1)
Quantifying the effect of different experimental conditions
on MT shape since we have full body tracking, and 2) Mod-
eling the full time series of the MT tracks using statistical
tools to better understand the underlying cell mechanisms
regulating MT behavior.
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