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Abstract and shortening dynamics of MTs is essential in order to
achieve proper chromosome segregation (reviewed in [14]).
Microtubules (MTs), one of three major cytoskeletal Indeed, the highly effective anti-cancer drug taxol works
components, serve numerous critical functions in cells. because it suppresses microtubule dynamics sufficiently to
Mechanistically, MTs are not static polymers; rather, they interfere with normal chromosome segregation. Recent
can be very dynamic and their precise patterns of growing work has also suggested that mis-regulation of MT dynam-
and shortening behaviors are critical to their many func- ics may underlie Alzheimer’s disease and related dementias
tions. Among the challenges confronting modern molecular (reviewed in [8]). Thus, the regulation of MT dynamics is a
cell biology is to accurately and thoroughly quantify the dy- key element in both normal and pathological cell biology.
namic behaviors of cellular MTs under a variety of exper- Investigators generally visualize MT dynamics using
imental conditions. MTs in living cells are generally visu- time-lapse fluorescence microscopy. As examples, the im-
alized by time-lapse fluorescence microscopy. They appeagiges used in this manuscript are taken at 4 second intervals,
as thin, hair-like structures, a subset of which are actively with about 30-60 frames per stack (i.e., video sequence) of
changing length. These length changes are generally meaimages. Fig.1 shows an example frame in such a sequence.
sured manually. This task is not only laborious but has the The image frames have a dimension of 54500 with a
potential for inadvertent bias and error. Here, we present spatial resolution of 1.32m per pixel (approximately). The
a fully automated and robust approach to detect and track gbservations that are of interest here include the growth and
MT dynamics that is not only faster than the present manual shortening of these tiny hair-like structures over a period of
approach, but it also provides significantly more and higher time. These events occur by addition or loss of monomeric
quality data, which in turn enables novel analyses to be per- sybunits of the MT, known as tubulin.
formed. The proposed tracking algorithm addresses issues  a typical study of MT characterization would involve
such as fast growth and shortening of the MTs—often morejmaging the MTs to generate several stacks that are then
than 10 pixels from frame to frame, and frequent occlusion analyzed to quantify the growth and shortening events. This
and high clutter, using a spatiotemporal contour tracking second step is mostly done manually, by tracking individual
approach. Experimental results show that highly accurate microtubule tips, one at a time, over the entire video. From
tracking results can be obtained in a fully automated man- thjs tip location data, one can then compute statistics such
ner. The output of our tracking method is currently being a5 average growth and shortening. It is fair to say that this
used in building descriptive mathematical models for cap- s the current state of the art in a typical biology lab (note
turing the MT dynamics. that there are some recent studies that mark and track MTs
using speckle microscopy [5]; however, one can not track
the tips alone and tracking the MTs, including their tips,
1. Introduction is important in biology.) The obvious problems with such

. L . manual analyses include:
Microtubules (MTs) are cylindrical, cytoskeletal protein y

polymers found in essentially all eukaryotic cells. They are ® The manual tracking task is time consuming, laborious
essential for numerous critical cellular functions, includ- ~ and subjective. This limits the number of MTs being
ing cell division, various intracellular transport processes,  tracked in a cell to a small number, typically about 5
cell movement and cell shape changes. Especially notable ~MTs per video. Hence the complete dynamic behavior
among these many functions is the essential role of MTs ~ of MTs ina cell is not fully captured.

in separating metaphase chromosomes to the two daugh-e Only the tip is tracked, leading to inaccurate length es-
ter cells during cell division. Recent work has demon- timates when the MT shape is not linear. Besides, since
strated convincingly that proper regulation of the growing the body of the MT is not captured, no inferences can be
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(b) (©)
Figure 1. (a) An example frame of an MT video (b)-(c) A zoom-in

2. Related Work 162

Tracking thin hair like structures such as microtubules, 164

in a noisy microscopy video poses several challenging prob- 165
lems. 166
e MTs appear as tubular structures in the image frames. 167
The shape of MTs vary within the same cell widely. An 168
accurate estimation of the length of the MT should take 169
into account the curvilinear structure. The currently 170
widely used manual tip tracking and computing the as- 171
sociated statistics ignores this effect. 172

e MTs undergo large changes in length from frame to /2
frame because of growth or shortening at either MT

end. The large change in length, together with frequent */°
occlusions, pose significant problems to any tracking /°
method. Lrr
e The images of MTs have low signal-to-noise ratio and 1;2
exhibit nonuniform illumination both spatially and tem- 150
porally. 191

Our contributions directly address the above issues. In g,
reviewing the related work, we first provide an overview .
of the state-of-the-art in MT tracking and discuss tracking

on the same area in both frames 4 and 24 of the sequence. Th?elated research as applicable to our proposed methodology. .

small windows show the high level of noise, and contrast and illu-
mination changes between the two frames. MTs are the hair like

structures. (See the supplementary videos)

2.1. Microtubule detection and tracking 187

In the literature few papers [3, 4, 6,10,12,13] have ad- 188
dressed the MT detection and tracking problems. In [4], a 189

made about shape changes under different experimentagraph searching algorithm is applied to manually selected 190

conditions.

microtubule ending points, and the shortest path is com- 191

The main contribution of this paper is the development puted to extract the central axis of the microtubule. In [12], 192
of a fully automated method to detect and track MTs in a the authors propose to automate the microtubule segmen- 193
video sequence. In this work, the MT detection and track- tation by extending the active shape model using a higher 194
ing problems are cast in a novel way as a spatiotemporalorder boundary model, and Kalman filtering to utilize the 195
graph matching problem. We provide quantitative perfor- shape information along the longitudinal direction of the 196
mance evaluation on MTs with known (manually gener- MTs. In [13], the authors propose an automated approach 197
ated) ground-truth data that support the robustness of theo extract the microtubule tip with a coarse to fine scale 198
proposed tracking method. More importantly, the detection scheme consisting of volume enhancement and tip segmen- 199
and tracking further facilitates new analysis that are not cur-tation. In [10], the microtubules are extracted in terms 200
rently feasible with the existing manually tracked results. of consecutive segments by solving Hamilton-Jacobi equa- 201
For example, accurate localization of the entire MTs en- tions. The algorithm extracts the microtubule starting from 202
ables shape computations and studying neighboring effecta manually selected tip. All of the above methods have only 203
of the MTs in their growth and shortening. To the best of addressed the MT detection problem without handling the 204
our knowledge, this is the only fully automated method for tracking of MTs. 205
tracking such structures that can handle occlusions and in- In [6], an initial point is selected on a microtubule and 206
tersections. The tracking software would be made availableiteratively gives a stack of points representing the micro- 207

on our web site soon.

In the next section we review the related work on micro-

tubule detection and tracking. Sectidhgives an overview
of the proposed tracking technique. Sectibpresents the
approach for detecting MT tips. Sectiéndetails the spa-
tiotemporal matching of MT tips. The MT body formation
and experimental results are presented in se@idtinally,
conclusions and future work are discussed in section

tubule using tangent constraints. Once the microtubule is 208
detected, it is tracked in time while constraining the search 209
space in a normal direction around microtubule points. 210
Though the tracking algorithm is automated, the authors 211
report difficulties in handling MT intersections and do not 212
present quantitative tip tracking performance results. The 213
main issue with their approach is that MT tracking is per- 214
formed using a local measure of consistency that can lead to 215



problems at intersection. In this work, we propose a global ing multiple MTs in a video with large interframe changes,
multiframe approach to resolve tracking conflicts. The work our proposed method falls into the last category of contour
in [3] presents a framework for detecting and tracking im- tracking. However, we use a multiframe motion estimation
ages of linear structures in differential interference contrastthat can resolve tracking conflicts in a more systematic fash-
(DIC) microscopy. The tracking of the movements of MT ion.

segments is performed using a sum of squared (brightness)

differences algorithm based on an initial manual input. 3. Overview of the approach

2.2. Detection and Tracking of Curvilinear struc-
tures

We model a microtubule in a video frame as an open
curveC(s) wherese(0,1] is the curve parameter (see fig.

Curvilinear structures detection and tracking representfz)' Due _to the h!ghly dy”a”?'c hature IOf MI-(F.S anld th_er;r
important computer vision problems for applications such fequent intersections, a spatiotemporal tracking algorithm

as road detection, mammographic image analysis, fiberbased on deformable 9ontours is an effective_ strategy. We
identification, fingerprint image analysis, and MTs and propose to use an active contour based on line features to

actin filaments identification. Many techniques have been capture'deformanr?s of the m|cr0tubgle In a given frame.
proposed in the literature to detect curvilinear structures The gctlve contour Is an open curve in this case with one
such as scale space approaches with Gaussian derivativeesnOI fixed and the other - the tip- is free to move.
[17], anisotropic Gauss filtering [9], fusion of two local line
detectors followed by a global Markov random field [25],
and using differential geometric properties of images [23].
For the problem of correspondence of curvilinear structures
between sets of images, algorithms have been proposed in
the literature for applications such as tracking and 3D re-
construction. In the majority of approaches, lines are first
detected and then line properties such as orientation, posi- 3
tion, width and center lines are used for the matching pro- Figure 2. MT model as an open curve with only one moving end
cess [15,18]. (the tip) superimposed on a video frame .

In all of these techniques, a threshold is used to bina-
rize the line detector response prior to matching between  Since, the MT tip can be changing its location in ev-
the images. In real life noisy video sequences, it is very ery frame, we need to estimate the motion of the tip. We
likely that the required threshold will vary from frame to proceed to detect the tips in a given frame and match tips
frame, thus causing a possible loss of the tracked curvilinearpetween subsequent frames that belong to the same MT.
structure. Instead of tracking using the binarized response Hence, the main modules of the proposed tracking approach

C(0): Dynamic end

C{1): Fixed end

we propose to use an active contour framework that usesshown in fig.3 are:

the continuous line detector response to detect and track the
curvilinear structures.

2.3. Active contour tracking approaches

Active contours are curves deforming in the image plane
according to image features and internal smoothness con-
straints. They have been used previously for object tracking
applications. We will classify these approaches based on
two features: 1) explicit motion estimation to predict object
position from frame to frame, and 2) capability to handle

the multi-objects.
The simplest case is when a single object/region is

tracked without any motion estimation [20, 24]. The sec-
ond class uses motion estimation technique for tracking a e
single region [1, 2]. The third category handles explicitly
the multi-object case but does not use motion estimation as-
suming high enough frame rate giving small displacements
from frame to frame [11, 19]. The last class uses motion
estimation and is addressing the issue of tracking interact-
ing objects as in [7]. Since we are concerned with track-

Tip detection Given a MT video, we design a tip detec-
tor generating the locations of MT tips in every frame.
Note that the number of the detected tips in every frame
need not to be equal.

e Multiframe tip matching to generate track&iven the

detected tips in every frame, we need to match tips be-
tween frames to form MT tracks. We formulate this
problem as a graph matching one, by considering all tips
from all the frames simultaneously. The advantage of
spatiotemporal matching of tips is that it enforces con-
tinuity of tracks, and is able to handle missing tips in
some frames due to noise and to discard false positives.

Extracting MT bodies We propose an active contour-
based approach to track the full body of the microtubule
based on the tip locations in a given microtubule track.
Being able to track changes in the full body of the MT
instead of just the tip location enables a better estimate
of the MT length. Furthermore, we can now study shape
changes in MTs which can not be performed based on



tip tracking only.

MT layer Compute tips in Perform graph matching to
extraction all frames extract the “best” fracks
Use an active contour to Extract MT body using Fast
adjust the body at the frames Marching in the first frame of
of the tracks each track

(a) (b)

MT layer
shown in gray

Figure 3. The block diagram of the proposed tracking technique.

4. Microtubule Tip Detection

Given a video frame, MT tips are detected which will
be tracked subsequently. We are usually interested in MTs
growing or shortening near the cell membrane. We first
extract a band around the cell membrane -the MT layer-

(c)
N . Fi 4. E i he mi lel h h | clus-
through temporal clustering in the frequency domain. igure 4. Extracting the microtubule layer through temporal clus

tering. (a) One of the image frames from the video, (b)K-means

4.1. Extracting MT layer by temporal clustering clustering into 5 clusters including one for the background and (c)
o The region of the frame corresponding to the microtubule layer.

A microtubule video ofl’ frames can be considered as (other parts are shown in white)
a spatiotemporal volume. At each pixel locati@n y) on
the first frame, we construct a vectdl(x, y) in the time

direction, thus it will have a dimensionality @f. We con-  \yhere G/ »(z,y) is a second derivative of Gaussian ker-
struct a feature vector frorfi(z, y) by taking the FFT. The  ne| with scales and orientatiord at position(z,y). o is
motivation behind using a frequency based representationchosen experimentally based on the microtubule width. An
of the volume is to partition the MT video into regions of example of finding the maximum of a second derivative of

different spatial activity patterns. We retain the magnitudes Gaussian convolved with the image at all pixel locations is
of the coefficients only. We discard the DC component for shown in Figs.

intensity invariance and take the first half of the FFT coeffi-
cients. We end up representing the whole video volume by
FFT vectors. We then cluster these FFT vectors using a K-
means algorithm intd” clusters corresponding to regions

of varying activity in the cell. Finally, we extract the clus- [

ters corresponding to the region of highest activity, which I |

we call the microtubule layer. An example of the extraction
of the microtubule layer is shown in fig.

. . (@) (b) (c)
4.2. Ridge-based detection of MT Figure 5. A windowly in a video frame, (b) the filter output],

After extracting the MT layer, a filtering approach is and (c) binarization.

used to detect the MT tips in this layer. Our algorithm

for tip detection starts by extracting a binary mask showing

the locations of microtubule polymer. The basic assump- . .

tion about MTs that enables extracting a binary mask of 4.3. Detecting MT Tips

microtubule locations is that MTs look like black curvilin- The binary MT mask computed based on second deriva-

ear structures on a light background in an ideal scenario.tive of Gaussian filtering is thinned to generate one pixel

A second derivative of Gaussian kernel matched to imagewidth lines. A test is performed at every white pixel loca-

locations at different orientations should reveal this tubular tion to check if the pixel is a line ending. Mimicking the

structure while eliminating background noise. Let the in- manual method to select MT tips that are free of too much

tensity function in the window of intere$t” be denoted as  clutter, we filter out tips that are in locations where the ratio

Iy, the output after filtering the window is then: of MT polymer to non-polymer masses is less than a thresh-
old - we take it 0.3 experimentally. An example of MT tip

Iy (z,y) = max (I (2, y) * Gy o(z,y)) 1) detection is shown in figuré.



Figure 6. An example of MT tip detection in a frame. f, f, fy f, i f f5 f,

() (b)

. . . Figure 7. (a) An example graph whose vertices are the tips detected
S. Spatlotemporal tip matChmg in%very fsazne of vide% (r?eré)shown for a length 4 videg) and (b)

Having generated a set of tips in every frame of the MT @ possible maximal matching solution. Note that the tracks can
video, we seek to match corresponding tips between framede of di_fferent lengths, start and end at arbitrary frames, and skip
to form MT tracks. One possibility is to track tips from frames in between.
frame to frame. However, due to the low signal to noise ra-
tio in the images, this is likely to fail. Instead, we consider framesf; andf;. For example, one can use:
matching tips from all the frames directly in a spatiotempo- 1
ral manner. The main advantages of this approach are: Sim(th,t7) =

o ) L IS L 4 d(th e
e It can handle missing tips due to noisy conditions by +d )

2

177]

allowing the final MT tracks to skip frames in between. Whered(.,.) is the Euclidean distance. However this will

It can potentially remove fious tins found if the have problems in cases of tips of different MTs coming

* 't can potentially Ve spurious Hips found | close to each other. A better alternative is to consider a

n0|s§/ loss in signal does not occur repeatedly at nearbydistance constrained on the MT body, such as a geodesic
locations. . . distance. We consider the cases of growth and shortening
At the end of the tip matching over all the frames, We of an MT between two different frames as in F&y.For the

can select the longest tracks for further processing, sinceyiT growth, we project the location of the tip on franfe

short tracks are likely to be due to noise. It is worth noting {4 the same location on framyfe. We then compute the first

that the computed tracks in this manner can start and endgeodesic distancg,..q, (£, ) as shown on Fig. For the

. . . 20d1\"1 0 79
at any given frame of the video sequence, can have arbiyt shortening case, we back-project the location of the tip
trary lengths, and can be skipping frames in the middle. We 4, framey, to the same location on franfe. We then com-

formulate the problem of tip matching as a graph matching pute the second geodesic distanige, 4, (", t7) as shown

one. on Fig8. Note that, for a given MT, we do not have a-priori
) information on whether it is growing or shortening. Finally
5.1. Graph-based Formulation the similarity metric -edge weight on the graph- used

Consider an MT video of lengtii’ frames. Let us de-  between the two tipg' andt’ is computed as follows:
note N; to be the number of tips detected in fraréor T —min(d J )
1 < i < T. Denote the tip detected in a frame&swith Sim(ty,t}) = e geodr Gacods 3)
the subscript corresponding to the frame number and the
superscript corresponding to the tip number in frafpe d T
thush has the rangé < h < N;. We construct a graph

G = (V, E) whose verticed” correspond to the detected -~ — 8 \'
tips in every frame and the edgésrepresent similarity be- / ******* R / /

tween vertices. The edge weights of the graph represent the £ f; £ f;
matching gain of corresponding two tips in different frames.

In order to allow MT tracks to skip some frames, we include (@ ()
Figure 8. lllustration on how the similarity weight between ver-

edges between tips in non-consecutive video frames. An ex- ) Y .
ample of a graph used for tracking MTs is shown in fig. tices of the graph is computed between tips in two different frames

with a possible solution of tip matching. éf;gg(é{ggzsveintgxt for explanation). (a) case of shortening and (b)

5.2. Similarity metric proposed

The main metric which defines the matching of tips for 2-3- Maximum matching on the graph
the video frame is the similarity measure linking tips in dif- Given the graphG of MT tips as vertices and the edge
ferent frames. Consider two tip4 andt’ in two separate  weights as defined irgf, we compute a maximum weight
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matching of the tips which correspond to MT tracks. From This is equivalent of finding the path with minimum curva- 004
graph theory, we know thatertex disjoint path cove€’ ture originating from the tip. We then use a gradient descent 295
is a covering ofG where each vertex af is in some path  to trace the MT body from the tip to the ending point deter- 296
of C' and each vertex belongs to one path only. The weightmined on the MT. The procedure of tracing the MT body is o907
of a path cover is the sum of weights of edges on the pathdepicted in fig.9. Note that we consider the ending point 098
cover. Given an initial graply, the problem of finding the  on the MT to be fixed along the MT track for the remaining 599
best MT tracks corresponds to finding tmaximum weight  frames. For subsequent frames, the problem of extracting 600
path coverof G with the weights defined by the similarity the MT body is thus transformed into deforming the body 6oL
in (3). Formally, a maximum weight path covél(G) is a between the fixed ending point and the tip detected using ooz
path cover which satisfies: the spatiotemporal matching. The deformation of the MT 603
body is carried out using an active contour method based on 604
C(GQ) = argmax W(C;) 4) line features, as explained below. 282
C;

whereW (C;) = -, .o, Sim(ew) andu, v are two ver- 28;

tices inG for which the similarity is computed as iB)

We proceed to compute the maximum weight path cover 609
as suggested in [22]. Let us define a split grafby;;. cor- 610
responding td= as a bipartite graph with partite vertix sets oLl
Vi andV_. V, andV_ are copies of the verticdls. An o1z
edgee,,, between two verticesa andv in G has the same 613
weight as the edge, . ,_ in G,15:. The edges of maximum 614
matching of the bipartite split grapf¥s,;;: correspond to o1
the edges of maximum path cover@f zij
6. MT body formation based on geodesics 212

After computing th_e maximum weight match for the Figure 9. MT boé(;/) formation in the fir(g'g frame of a track (a) A 620
constructed graph of tips, we can use the MT tracks fom_]edwindow around the considered tip in the track with tip overlaid 621
by the matched tips to compute dynamic parameters of im-55 4 plack square on the window, (b) The filtering result of the 622
portance of MTs such as growth and shortening rates. HOW-window used as an input to the geodesic distance transform, (c) 623
ever, the MT length estimation based on tip location only The distance transform from the tip with darker values denoting 624
is inaccurate when the body of the MT is not linear or in smaller distances, (d) points satisfying a distance threshold less 625
case of lateral motion. A better alternative would be to ex- than 1, (e) The extracted MT body. 626
tract the MT body and use it in the computation of the MT 627
length. Furthermore, we can study the effect of different ex- 628
perimental subjects on the curvature of the MT, which was 6.1. Active contour for MT deformation 629
not pos§ible befo_re. Consider for example an extracted MT “Snakes” are deformable contours that are initialized on "
track with a starting fr_am@”k " We proceed as follows to the image plane and allowed to evolve under the influence of o3l
corggﬁgetiahge t'\rfeT Itc))%(;)t/i(l)r;]trlcﬂeTﬂ{ispt fg?%e?; St?'; ;trjj('th e a set of internal anq external forces. Let the contour be rep- zig
goal isto find a poit on the MT toform the bocy. For  F2CRR FERINEIER ¥ LR T 0L S o
this purpose, let us define first the gebf points satisfying: " 635

636
y ; 1 637
Pt [ o <) ®) B(C() = [(BuC) + EcaCo)ds () 558
totart ) 639
. . . 640
WhereI{;,_(.) ;\S as de;‘medr:n]g. rl1n othe(rjwqrdj, the Sethf where Ein (C(s)) is the internal snake force composed of 641
Fhoemttiz]; Is t ig ggl% WO:hV;I tlr(:re;h(ce)lgeccj)etees;lriinles’(;a;])((:Serri?m a balanced weight of tension and rigidity of the contour. 642
mentall;m&tsing the saP, we definet..., which maximizes Since we are mtere;ted in tracking MTs thc’?lt appear as 643
the foIIO\;ving' ’ en curw_lmear structures in an imagdézx, y), we useridge (ac- 644
' cordinglyvalleys features as the external forég,; (C(s)). 645
9 Ridge features can be detected using a second order deriva- 646

tend = argmax ||tstart - tcand” (6)

cande P tive of a Gaussiai, (z,y). Consider the following exter-

647
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MT \/ideo # MTS /’LS’I‘T’O’I‘ JET‘TOT‘ 702
1 10 225 | 2.64 \ ;gj
2 16 2.85 4.36 \%_/f‘ e
Table 1. MT tip tracking performance. The duration of the MT P 706
video tracks is 25 frames. 707
— 708
nal force: () 709
. 710
N " 711
VEes = wi (—VL)+wy Lsign((—VL,N))N (8) B SRR 712
where the first term: N \~ s
714
1 715
VHE ) = NG ) * T )P @ e
is a gradient vector field created from the line detector “\\ 718
responsd G’ (x,y) * I(x,y)|. The purpose of this vec- b 719
tor field is to pull the active contour towards the de- b il 720
sired curvilineeE> sty)cture of the MT. The second term e O 721
L.sign((~VL,N)).N is a balloon-based term used to 722
speed convergence of the contour and to help moving the 723
contour in smooth areas (with the sign term inspired by the ® 724
work of [16]). \ 725
6.2. Tracking Results and Quantitative Perfor- o /20
. i o 727
mance Evaluation : ,\ 708
We have applied our automated tracking algorithm on e e 729
250 MT videos, generating on average 20-25 MT tracks per 730
video. In our implementation of the spatiotemporal graph © " 731
matching, we allowed up to three missing frames betweengigyre 10. Exan?ple frames (5,12,18, and 27) from automatically 732
tips of the same MT track. For the computation of the computed MT tracks. 733
geodesics, we used the Fast Marching algorithm [21]. The 734
complete tracking of MTs within a video of 30 frames takes 735
approximately 30 minutes using a Matlab implementation spatio-temporal contour tracking approach that can handle 736
on a 3 GHz P-IV machine with 1G RAM. figl0and1l  missing features and resolve tracking conflicts. For the first 737
show example results on some of the frames. Note that ther@jme in the published literature, we presented quantitative 738
are three generated MT tracks one for each of the MTs inevaluation of the tracking performance for a set of manu- 739
fig. 10. More results are supplemented as videos with the glly tracked MTs. By generating a large number of full- 740
paper submission. To evaluate the tracking performance ofhody MT tracks, very useful and previously non-acquirable 741
MTs, we manually tracked MT tips in two video sequences. data can be harvested. Example applications include: 1) 742
The tip tracking performance is shown in tableThe aver-  Quantifying the effect of different experimental conditions 743
age MT track duration in these videos is 25 frames. on MT shape since we have full body tracking, and 2) Mod- 744
The computed errors appear very reasonable and accepljing the full time series of the MT tracks using statistical 745
able for further manual/computer analysis. As we Men- oo 1o petter understand the underlying cell mechanisms 746
tioned before, there are no currently publicly available regulating MT behavior. 747
methods and datasets where such a performance has been 248
documented. We plan to provide on the Internet both the 249
datasets (with known MT trajectories) as well as our soft- References 750
ware implementation for use by other researchers. [1] V. Caselles and B. Coll. Snakes in movemesiAM Journal 751
. on Numerical Analysis33(6):2445-2456, 1996. 752

7. Conclusions o
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We have presented in this paper a novel, fully automated, jects using active contours. Rroceedings. Workshop on 754
tracking technique for MTs. The technique is based on a Motion and Video Computingrages 90-95, Dec. 2002. 755
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