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ABSTRACT

Motivation: Microscopy advances have enabled the acquisition of

large-scale biological images that capture whole tissues in situ. This

in turn has fostered the study of spatial relationships between cells and

various biological structures, which has proved enormously beneficial

toward understanding organ and organism function. However, the

unique nature of biological images and tissues precludes the applica-

tion of many existing spatial mining and quantification methods neces-

sary to make inferences about the data. Especially difficult is attempting

to quantify the spatial correlation between heterogeneous structures

and point objects, which often occurs in many biological tissues.

Results: We develop a method to quantify the spatial correlation be-

tween a continuous structure and point data in large (17 500�17 500

pixel) biological images. We use this method to study the spatial re-

lationship between the vasculature and a type of cell in the retina

called astrocytes. We use a geodesic feature space based on vascular

structures and embed astrocytes into the space by spatial sampling.

We then propose a quantification method in this feature space that

enables us to empirically demonstrate that the spatial distribution of

astrocytes is often correlated with vascular structure. Additionally,

these patterns are conserved in the retina after injury. These results

prove the long-assumed patterns of astrocyte spatial distribution and

provide a novel methodology for conducting other spatial studies of

similar tissue and structures.

Availability: The Matlab code for the method described in this article

can be found at http://www.cs.ucsb.edu/�dbl/software.php.

Contact: bruttenberg@cra.com or ambuj@cs.ucsb.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The advent of high-throughput large-scale microscopy has been

a boon to the biological community; technological advances have

enabled the capture of whole tissue at micrometer resolution,

providing opportunities of study that have previously been un-

available. These improvements have especially had a profound

impact on examination of the spatial distribution and correlation

of biological entities, as the locations of large amounts of cells

and other structures can be imaged in situ. Studying the spatial

arrangement and relationships inherent in tissues can improve

our understanding of the various development or pathological

processes that underlie proper organ or organism function

(Whitney et al., 2008).
Despite the abundance of image data, mining or quantifying

spatial properties in tissue can be a challenging task. Although

automated microscopy has significantly improved acquisition

rates, capturing the spatial layout of whole cell populations or

structures at high resolution can require thousands of images

that take many days to acquire. Under limited time constraints,

oftentimes small samples of tissue are imaged and analyzed to

infer spatial properties of a whole tissue. However, many tissues

are spatially heterogeneous; application of mining or quantifica-

tion methods on small images may not provide a representative

sample necessary to draw conclusions about the whole tissue. As

such, development of spatial mining and quantification methods

that can be effectively applied to extremely large images with

diverse structures are highly desirable.

Yet many spatial mining methods are not suitable to handle

the complex and non-traditional spatial relationships found in

these large biological images. For example, neuronal or vascular

structures are pervasive in many tissues, and oftentimes are spa-

tially correlated with other cells (Armstrong, 2003; Suematsu

et al., 1994). Traditional spatial quantification methods such as

co-location (Shekhar and Huang, 2001), K-function or nearest

neighbor methods (Cressie, 1992) cannot be applied to model the

relationship between these structures and cells because they in-

herently operate on discrete points in Euclidean space. Methods

that can model the complex relationship between biological

structure and cellular spatial distribution are needed to take

full advantage of these rich images. In addition, comparative

analysis of spatial relationships between normal and pathological

tissues is highly beneficial for understanding underlying biolo-

gical processes. These existing spatial methods are difficult to

apply to different specimens or conditions because the

Euclidean orientation and scaling between a set of images may

not be the same (Hagmann et al., 2008; Kaiser, 2011).
One tissue that exhibits many of the aforementioned spatial

characteristics is the mammalian retina. The nerve fiber layer

(NFL) of the retina is blanketed by a cell known as the astrocyte,

which performs a multitude of physiological functions

(Kimelberg, 2010). Astrocyte processes physically contact the

vascular structure (Yu et al., 2010), and they also play a key*To whom correspondence should be addressed.
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functional role in the development of the retinal vasculature

(Metea and Newman, 2006). An apparent spatial correlation

between astrocytes and the blood vessels has been noted (Stone

and Dreher, 1987), but only observational evidence of such a

relationship has been provided. Strong evidence of astrocyte

spatial correlation with various vascular properties would lend

further support to additional hypotheses of astrocyte function,

such as the suspected role of astrocytes in vasodilation and

constriction (Kimelberg, 2010).
Attempts to quantify the correlation between vascular struc-

ture and the spatial placement of astrocytes will suffer from the

problems previously discussed. The vasculature is a large hetero-

geneous structure with specific arterial and venous delineations

(Dorrell and Friedlander, 2006; Gariano and Gardner, 2005)

that requires us to image the entire retina. In addition, while

astrocytes can be represented as points in Euclidean space, the

vasculature is a continuous structure and cannot be represented

as such. Hence, a quantification method is needed that can map

these disparate and large data sources into a common space.

In this article, we describe a method to quantify the spatial

correlation between features of heterogeneous biological struc-

tures and Euclidean points in tissue, and apply it to the retina.

The proposed method is capable of capturing differences be-

tween the features of heterogeneous structures and spatial distri-

bution of points. The method implements a geodesic coordinate

system that is based on the vascular structure. The vasculature

and astrocytes are converted to this geodesic feature space such

that the position of astrocytes relative to the vasculature is pre-

served. Astrocyte distribution in the geodesic feature space is

then empirically compared with the vascular distribution. We

show that the distribution of astrocytes often spatially correlates

with changes in the vascular structure. Finally, we apply our

methodology to a set of injured retinas and demonstrate that

long-term detached retina do not deviate from the spatial

patterns observed on normal retinas.
Our methodology uses a geodesic feature space that is inde-

pendent of Euclidean space: the scale of the images and rotation

of the retina about the optic nerve have no impact on the results.

The scale and rotation invariance facilitates comparison between

retinas and different cell types. For example, retinal neurons,

pericytes or Müller cells can be converted into this same feature

space for comparative analysis. In addition, this methodology

can be used on spatial studies between other structures and

cells, such as the relationship between neuronal networks and

supporting cells. Our results demonstrate that we can successfully

quantify the spatial correlation between these disparate biolo-

gical entities, and provide a foundation for future research

aimed at studying the spatial distribution of various biological

components in large tissue images.

2 MATERIALS AND METHODS

The goal of our method is to determine if astrocyte distribution in the

retina correlates with changes in vascular structure. For instance, as some

feature of the vascular structure becomes more frequent, we want to

determine if astrocyte distribution increases in close proximity to the

feature. To accomplish this, we extract astrocyte and blood vessel data

from large image mosaics of the retinal NFL. We then convert this retinal

data into a geodesic feature space that is based on the structure of the

vasculature, preserving the relative spatial relationship between astrocytes

and the vasculature. Histograms are then created for vascular and astro-

cyte data in the geodesic space. Finally, a distance is computed between

the vascular and astrocyte histograms, and bootstrapping is performed to

determine the correlation between the vascular structure and astrocyte

spatial distribution. We now detail each part of our spatial quantification

method.

2.1 Images and data

2.1.1 Image acquisition Our method is designed to quantify the spa-

tial relationship between large biological structures and point data such as

cellular locations. Hence, we acquired images of the entire retinal NFL,

which allows us to capture the complete retinal vasculature and all astro-

cytes present in the retina.

Images of mouse retinal NFL were viewed and collected on a laser

scanning confocal microscope using an automated stage to capture

optical sections at 0.5�m intervals in the z-axis and pixel resolution of

1024� 1024 in the x–y direction, with 20% overlap in the x–y plane.

Approximately 350–400 3D images were acquired per retina, which

were then used to create maximum-intensity projections. The resulting

projections were then stitched together to create a single mosaic on the

order of �17 500 pixels by �17 500 pixels (\sim54002�m2).

A total of nine mosaics were created for this study, four normal and

five detached. The normal retinas are denoted as N1, N2, N3 and N4.

Three 1 month detached retinas, a 2 month detached retina and a

4 month detached retina are denoted as D1, D1A, D1B, D2 and D4,

respectively. All retinas were stained with anti-GFAP and anti-collagen

IV. Astrocytes express glial fibrillary acidic protein (GFAP), outlining the

cytoskeleton of each astrocyte in the retina. The retinal vasculature was

captured by examining the anti-collagen IV labeling.

An example mosaic is shown in Figure 1A. The retinal vasculature is

clearly visible as the tree-like structures in the images. Individual astro-

cytes are visible as small star-shaped cells and can be seen in detail in

Figure 1B. Color images of astrocytes in Figure 1B can be found in the

Supplementary Material, in addition to further details on the tissue prep-

aration and the image-acquisition process.

2.1.2 Data extraction Each retina contains five or six arteries and

veins arranged in an alternating pattern around the optic nerve head. The

veins are easily identified on the images by their ‘conveying’ type

branching (Ganesan et al., 2010). As explained in the Supplementary

Material, the images are slightly modified so that there exists only one

path from any point on the vasculature to the optic nerve head, thus

enforcing a tree structure on each artery and vein. The vascular network

in each retina is traced using Neuronstudio (Rodriguez et al., 2008), an

automated tracing tool for network structures. The trace is discretized

into 2 �m segments of vasculature, and the tree structure of each of the

veins and arteries is recorded. That is, the parent and ancestor of each

2 �m segment are recorded.

Anti-GFAP staining of the retinal tissue labels the cytoskeleton of all

astrocytes in the retina. As the nucleus of the cell often contained the

highest concentration of GFAP, the presumed center of each cell is manu-

ally selected from the image, and the x–y coordinates recorded. There are

�3500–4000 astrocytes in each image.

2.2 Geodesic feature space

The core of our method is the transformation of all retinal data to a 2D

geodesic feature space that is based on the structure of the vasculature. The

first dimension measures the distance from a location in the retina to the

optic nerve head through the vasculature (i.e. geodesic distance on a blood

vessel). The second dimension represents physical blood vessel width.

This vascular centric feature space is central to our quantification

methodology because it allows us to express the physical area and
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extent of the vasculature in structural terms. For example, vessels tend to

become thinner as they branch outward from the optic nerve, and

increased branching also leads to increased geodesic distances. Using

the geodesic distance to the optic nerve head allows us to orient the

data to a single point, while still maintaining the spatial relationships in

the original retina. In addition, this space is not specific to any one retina;

all retinas possess an optic nerve head, thus enabling direct comparison of

the vasculature from different retinas.

Finally, each retina has been dissected to enable proper image acqui-

sition of the naturally curved tissue. These incisions (easily seen in

Fig. 1A) frequently disconnect portions of the vascular plexus, and distort

Euclidean distances in the retina. When such a disconnection occurs, the

vascular network is manually reconnected across the incision, and the

geodesic distance across the incision is set to zero, which easily accounts

for these Euclidean distortions.

2.2.1 Retinal data conversion The vasculature and astrocytes in a

retina must be converted to data in the geodesic feature space to quantify

their spatial relationship. Converting the vasculature is a simple process,

as any point on the vasculature can be directly converted to a point in the

geodesic feature space. Converting the astrocytes is a more complicated

endeavor, as astrocytes are cells that are not natively associated with

vascular distance or width.

The discrete vascular segments for each of the veins and arteries

are converted to a feature vector Vi
!

(Ai
!

), where each Vi½k� is a tuple

ðd,w, x, yÞ that represents the geodesic distance and width for each

2 �m segment of vessel, as well as the Euclidean coordinates for the

segment. The Euclidean coordinates are only used to aid in astrocyte

conversion. The closest segment in each artery or vein to the

optic nerve head is considered the root of the vessel tree, and the geodesic

distance to the optic nerve head from the root is set as zero. The geo-

desic distance for all other 2�m segments is simply computed as the

distance from a segment’s parent (the previously connected segment on

the vasculature) to the optic nerve head, plus two microns. Figure 2A

shows an example visual representation of Vi½k�:d and Vi½k�:w for a sin-

gle artery. As can be seen, conversion of a blood vessel tree into the

feature space produces a distinct pattern that describes the structure

of the tree. For testing, the distance and width values are normalized

by the mean and standard deviation of the vector to put the data on

the same scale.

Each astrocyte is embedded into the feature space by spatially sampling

the vasculature in close proximity. That is, an astrocyte is converted into

a series of points in the geodesic feature space based on the structure of

the vasculature in some local region near the astrocyte. This allows us to

preserve astrocyte spatial distribution relative to the vasculature while

putting both entities in the same feature space.

Let ci denote an astrocyte in the retina, and ci:x and ci:y denote the

Euclidean coordinates of the astrocyte. A feature vector for ci is denoted

as ci
!, where ci½k� is a tuple ðd,w, n, pÞ, representing the geodesic distance,

width, primary vessel (the nth vein or artery) and a weight. For each

astrocyte in the retina, we sample Sbv vascular segments in the retina

(i.e. the length of ci
! is Sbv). The Euclidean distance from astrocyte

ci to all 2 �m segments of vasculature in the retina is computed,

Fig. 1. (A) An example retinal mosaic used in the study. The blood ves-

sels are easily seen alternating around the optic nerve head in the center of

the retina. The arrows indicate two large veins that are present in each

retina, discussed in Section 3. (B) Magnified view of a retinal mosaic, with

the arrows indicating the center of the astrocytes

Fig. 2. (A) Scatter plot of an artery in geodesic space. Each circle repre-

sents a 2�m section of the vasculature. (B) Contour plot of the normal-

ized histogram of the same artery in geodesic space
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i.e. all of Vj
!

and Aj
!

. Let D be the Euclidean distance between ci and the

Sth
bv nearest 2�m segment to ci. The vector ci

! is then

ci
!
¼ ðVj½k�:d, Vj½k�:w, j, G�ð~eÞÞ

8 j, k : jjVj½k� � ci jj2 � D
ð1Þ

where ~e ¼ ðci:x� Vj½k�:x, ci:y� Vj½k�:yÞ, the difference in Euclidean co-

ordinates of astrocyte ci and vessel segment Vj½k�. Note that ci
! may be

composed of a combination of vein and artery segments; only the vein

notation was used in Equation (1) for explanation purposes. Essentially,

an astrocyte is converted into the geodesic feature space by assigning it a

vector of the geodesic distance and width of the Sbv nearest vascular

segments to the cell. Note we also record the origin of the sampled

artery/vein segments.

G�ð�Þ is a zero mean 2D Gaussian function with a diagonal covariance

matrix �, applying a weight proportional to the distance between

the sample and the astrocyte. Vascular segments in close proximity to

astrocytes are given more importance over distant blood vessel segments.

After a feature vector is constructed for an astrocyte, the weights

the spatial samples in ci
! are normalized to sum to one. That is,

ci½k�:p ¼ ci½k�:p=ð
PSbv

j¼1 ci½j�:pÞ.

2.3 Quantifying spatial relationships

2.3.1 Histograms We compose the vascular and astrocyte feature

vectors into histograms so that we can compare the spatial distribution

of astrocytes relative with the vasculature. One major advantage of our

method is the ability to explore astrocyte distribution at different vascular

scales. Three different levels of histograms are implemented: retinal, ar-

terial/venous and individual blood vessels. We compose astrocyte histo-

grams at the same resolution as the vasculature histograms so that we can

test astrocyte spatial distribution at different granularities.

Construction of a histogram for a vein Vi and its accompanying astro-

cyte histogram is the same for any other individual artery/vein histogram.

A vein histogram is denoted as Vi, and the accompanying astrocyte

histogram as AVi, where Vi ¼ ðB,NÞ and AVi ¼ ðB,MÞ. B is a

common set of bins in the geodesic space, and N and M are the counts

for the respective histogram bins.

The construction of Vi is simple. The count Nj for some bin Bj is

computed as

Nj ¼
XjVi j

k¼1

IvðVi½k�,BjÞ

where

IvðVi½k�,BjÞ ¼
1, if ðVi½k�:d, Vi½k�:wÞ 2 Bj

0, otherwise

�

The process for constructing AVi is similar, and the count Mj is

Mj ¼
XjCj
z¼1

Xjcz!j
k¼1

Icðcz½k�,Bj, iÞ � cz½k�:p

where C is the set of all astrocytes, and

Icðcz½k�,Bj, iÞ ¼
1, if ðcz½k�:d, cz½k�:wÞ 2 Bj ^ cz½k�:n ¼ i
0, otherwise

�

In other words, the astrocyte histogram AVi is the weighted count of all

astrocytes that contain a spatial sample from vein Vi.

To construct higher level histograms, histograms from the lower levels

are combined. For example, the venous histogram V ¼
Sk

i¼1 Vi, where k

is the number of veins, and the top-level vascular histogram is simply

V [A (similarly for astrocyte histograms).

The bin set B is set so that each Bj covers a 0:1� 0:1 region (recall

that the distance and width are normalized by the mean and variance).

The histogram counts are also normalized to sum to one to enable direct

comparison of histograms between retinas.

2.3.2 Histogram distance We quantify the spatial relationship

between astrocytes and the vasculature by computing the probability

that an astrocyte histogram is a random sample from the corresponding

vascular histogram. Because the astrocyte histograms are constructed

by spatially sampling the vasculature, we hypothesize that the two histo-

grams should be similar if astrocyte distribution is highly correlated with

the structure of the vasculature.

A statistical test of probability distribution similarity is used, using the

Mallows distance (Munk and Czado, 1998). For two distributions X and

Y, the test statistic is

FðX,YÞ ¼
ffiffiffi
n
p
fMðXn,YÞ �MðX,YÞg

whereXn is an empirical sample of size n fromX. Note that our histograms

are normalized to sum to one, equivalent to a probability distribution.

Mð�Þ is the Mallows distance between probability distributions. The

Mallows distance has several desirable statistical properties (Bickel and

Freedman, 1981; Mallows, 1972). It is convergent up to the lth moment,

as well as convergent in distribution. These properties ensure that differ-

ences in distribution between astrocyte and vascular histograms are

accurately captured. Additional details on the Mallows distance can be

found in the Supplementary Material.

Bootstrapping is performed to compute a prior distribution of the test

statistic F for a given vascular histogram (Shao and Tu, 1995). A vascular

histogram is re-sampled multiple times, and the prior distribution of the

test statistic is computed using the re-sampled data. The hypothesis that

astrocyte distribution is correlated with a vascular histogram is unlikely

to be correct if the test statistic between an astrocyte and vascular histo-

gram is low compared with the re-sampled histograms.

Distance and width values are uniformly sampled from the blood

vessel histogram under test (e.g. Vi), and a sample histogram is con-

structed. The number of samples used is equal to the number of astro-

cytes that have a spatial sample from Vi. For some astrocyte cj
! that has a

spatial sample from Vi (i.e. cj½k�:n ¼ i), sample j contributes to the sample

histogram the total weight of cj
! in Vi. That is, for each sample j,P

k cj½k�:p, 8cj½k�:n ¼ i, is added to the sample histogram (into the appro-

priate bin).

Note that the method of significance testing does not depend on

the number of retinal mosaics that are collected. The bootstrapping

procedure provides a statistically sound method to compare two histo-

grams and is only used to determine if an astrocyte histogram is a ran-

dom sample from a vascular histogram. Hence even with a single retina,

the significance testing procedure still provides accurate and statistically

valid hypothesis testing of the astrocyte histograms. Extrapolating the

results to a general population does, of course, require more than a

single retina.

3 RESULTS

The Mallows distance quantification method was performed

on the three histogram scenarios for the nine retinas. In addition,

the method was also tested on synthetic retinal data to demon-

strate its effectiveness at capturing the spatial correlation

between vascular structure and astrocyte distribution. � is ini-
tially set to be 80�m, which is approximately the width of an

average retinal astrocyte. Sbv is varied from 1 to 40. Each boot-

strapping test used 500 random samples from a histogram.

Exploration of the effect of � on the statistical testing can be

found in the Supplementary Material.

3.1 Synthetic retinal data

Synthetic data was generated and tested to determine the meth-

od’s ability to capture spatial correlation. An artificial retina was
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created for this task; the vasculature of the artificial retina was

the vasculature for retina N1. Artificial astrocytes were placed in

the retina in one of three methods. In the random method, a

2�m vascular segment was uniformly selected at random from

the vasculature, and the artificial astrocyte’s image coordinates

were set as the 2�m segment’s image coordinates, added to a 2D

gaussian distribution with standard deviation 10�m. In the

width weighted method, a vascular segment i was randomly

selected with probability PðwiÞ ¼
wz
iP
wz
j

, where the normalization

is the sum of the widths for all segments in the vasculature, for

some z. Finally, in the distance weighted method, a vascular

segment was chosen with probability PðdiÞ, where di is the

geodesic distance of the segment. Pð�Þ is a normal distribution

centered around dmean, the mean geodesic distance of the vascu-

lature, and a standard deviation of dmean

c , for some c. For both the

width and distance methods, the artificial astrocyte coordinates

were determined the same as the random method (with different

random selection methods).

Figure 3A and B show the normalized astrocyte histograms

for the random and width weighted methods. The original nor-

malized vascular histogram is the same one shown in Figure 2B.

Visually, the random placement histogram is similar to the vas-

cular histogram from Figure 2B. However, in contrast to the

random placement method, the width weighted histogram

places much more density in the regions of the space with

larger vascular width. While the differences between these two

methods are subtle, they become immediately apparent using our

method. An example image of a synthetic retina is available in
the Supplementary Material, as well as the normalized histogram

for the distance weighted method.
After creating the artificial retinas, the testing procedure as

previously described was applied. Figure 4 shows the average

P-value of the individual artery/vein histogram tests for the syn-
thetic data. Both z and c are varied so that the width and distance
weighted placements initially are close to the random method,

yet are increased over various tests. The P-value is defined as the
probability that a random test statistic is greater than the one

computed between the astrocyte and blood vessel histograms.
A low P-value indicates the hypothesis that astrocytes are
spatially correlated with the corresponding portion of the vascu-

lature is unlikely to be correct. As can be seen, as both z and c
increase, the average P-values converge toward zero, as astrocyte

distribution becomes increasingly influenced by the width/
distance of the vasculature.
Clearly, there are many other models of randomly distributing

synthetic astrocytes in the retina (spatially uniformly distributed,
for example), and it is unrealistic to assume that our method
could discern differences in spatial distribution for all models.

However, the results do demonstrate that our method can detect
differences in astrocyte distribution when two important struc-

tural properties of the vasculature (width and distance) are
assumed to exert a significant influence on spatial placement.
Testing of additional models of astrocyte distribution is an

attractive target for future research.

3.2 Vascular/arterial/venous histograms

The artery and vein histograms are combined into a single retinal

histogram for testing. Tables of the detailed P-value results are
available in the Supplementary Material. The normal retinas
generally have very low P-values, with a slight increase observed

on retinas N3 and N4 as the number of spatial samples is
increased. The detached retinas show a similar pattern of very

low P-values at the whole retina level. With a single spatial sam-
ple, it is unlikely that the retinal level histograms are a random
sample from the vasculature, be it a normal or detached retina.

This result is expected for the retinal level histograms; the

Fig. 3. (A) Contour plot of the normalized histogram of astrocytes using

random placement. (B) Contour plot of the normalized histogram of

astrocytes using width weighted placement
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P-values reflect all local differences in spatial distribution be-
tween the astrocytes and vasculature anywhere in the retina.
All individual artery and vein histograms are then combined

into separate arterial and venous histograms (tables of P-values
available in Supplementary Material). Most of the venous histo-

grams have very low P-values. In contrast, most of the arteries
have high P-values, or at least higher P-values than their corres-
ponding venous histograms. Two basic patterns appear to be

emerging: arterial astrocytes are spatially distributed as random
samples from the arterial structure, and venous astrocytes spa-

tially deviate from the venous structure.

3.3 Individual vein/artery histograms

The same pattern from the coarser scale histograms is evident on
the individual blood vessel tests. With a few exceptions, most of

the individual arteries have non-significant P-values. Even N1,
where the arteries at coarser scales had low P-values, contains

high P-values. This demonstrates that astrocytes in close prox-
imity to the arteries are spatially distributed similarly to structure

of the arteries. This pattern is evident at the arterial scale and the
individual vessel scale, for both the normal and detached retinas.
The P-values for the individual blood vessel tests can be found in

the Supplementary Material.
VðN1, 1Þ is examined more closely to determine why the

P-values are low. Figure 5A shows the difference between
the astrocyte histogram and vein histogram from VðN1, 1Þ

(AV1 �V1). The lighter contours indicate the regions of feature

space where the astrocyte histogram is more dense than the vein
histogram, and conversely for darker contours. As a comparison,
the histogram difference for AðN2, 4Þ is shown in Figure 5B,

which has a very high P-value. There are large regions where
the densities of the two histograms significantly differ. In
Figure 5A, the astrocyte histogram is more dense on thicker

blood vessels that are closer to the optic nerve head, indicated
by the two light regions in the figure. Note how in Figure 5B, the
regions of difference between the astrocyte and artery histogram

are generally small and local.

4 DISCUSSION

In this work, we developed a method to quantify the spatial
relationship between a heterogeneous structure and discrete

points in Euclidean space. We used a novel geodesic feature
space and studied the relationship between astrocytes and the
vasculature in the retinal NFL. The vasculature and astrocytes

are converted to this feature space, which facilitates comparison
of astrocyte spatial distribution relative to the vasculature.
Empirical quantification using the Mallows distance reveals

that astrocytes are spatially distributed independently from the
vasculature, with the exception of increased astrocyte density on
thick portions of veins.

Our method of quantifying the spatial relationship between
large structures and point objects has many advantages.

The used feature space is based on the geodesic distance to a
common object in all the images, thus enabling direct compari-
son of all data. Furthermore, conversion of the vascular data to

geodesic distance allows different resolutions of spatial relation-
ships to be tested; such varying resolutions could be applied to
other domains as well; for instance, from individual neurons

to larger circuits. Lastly, use of the Mallows distance to compare
histograms provides an accurate reflection of the differences
between vascular structure and astrocyte spatial distribution.

Clustering of point objects around specific regions of large con-
tinuous structures in diverse tissues can be easily identified using
our method.

Our method and subsequent results already have an immediate
impact on our understanding of the underlying biological pro-
cesses occurring in the retina. It is clear from our results that

detachment appears to have no discernible effect on the distri-
bution of astrocytes with respect to the vasculature. This is an
unexpected result, as it has been shown in various animals that

astrocytes react in response to trauma, such as the up-regulation
of GFAP in astrocytes (Luna et al., 2010; Sakai et al., 2003), or

by proliferation (Fisher et al., 1991; Panagis et al., 2005). These
previously observed injury responses by astrocytes appear to
have little to no long-term impact on their spatial distribution

relative to the vasculature, indicating that a specific spatial con-
figuration of astrocytes may be required for healthy function of
the retina. These results lend insight into biological processes that

are occurring in an adult retina.
There are significant broader implications of our proposed

method as well. The geodesic distance in our method is not re-

stricted to radial vascular structures; it only requires a reference
point. Therefore, it can be used on other vascular networks, such
as the brain vascular network, or even complete organisms where

the entire vasculature is observable. In addition, many other

Fig. 5. (A) Differences between the vascular and astrocyte histograms

of the low P-value vein VðN1, 1Þ. (B) Differences in the high P-value

artery AðN2, 4Þ. Light areas indicate regions where the astrocyte histo-

gram was denser. In (A), there are large regions where the two histograms

significantly differ, as seen by the intense light and dark
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biological tissues exhibit similar structure and relationships to
those encountered in the retina. Our feature space and quantifi-
cation methodology can be used to study spatial relationships in
these domains as well.

For instance, connectomes of neurons and glial cells (LoTurco,
2000; Anderson et al., 2011) contain large continuous structures
similar to the vasculature and are often spatially correlated with

other cells or entities (Leergaard et al., 2012; Sporns, 2011). The
geodesic feature space can be adapted for neuronal axons or cir-
cuitry; a common physiological or anatomical reference point can

be used in lieu of the optic nerve (e.g. cell soma), alongwith axonal
width or any other spatially correlated structural feature. The
locations of other nearby cells can then be converted into this

geodesic space (now based on neurons), and the spatial correl-
ation between cells and neuronal structure can be quantified in a
similar manner to astrocytes and the vasculature.
There have also been efforts to quantify the structure of neu-

rons using methods similar to our proposed method. These
methods attempt to characterize the morphology of neuronal
structures using topological features, such as diameter, path

length or branching factors (Brown et al., 2008; Cuntz et al.,
2007; Vonhoff and Duch, 2010). While these approaches are
not specifically designed to measure spatial correlation, they

can be incorporated into our method as an additional histogram
dimension. For instance, Sholl analysis (Sholl, 1953) could be
used in conjunction with soma distance and dendrite width to
measure spatial correlation between neurons and other biological

features using our method.
Finally, our methodology will provide further insight into the

biological processes in the retina. Spatial correlation can be stu-

died using our method in new experimental conditions, such as
development or disease. These additional spatial studies of
retinal conditions, as well as spatial studies on tissues with similar

structure, are promising avenues of future research efforts.
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