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Abstract

Toward Persistent Tracking and Identification in Camera
Sensor Networks

Michael James Quinn

In recent years, research in the area of camera sensor networks has accelerated

dramatically with the increased availability of cheap sensing, processing, and commu-

nications hardware. Design, implementation, and most importantly the operation of

camera networks provide numerous challenges for vision researchers.

The first challenge encountered is usually the implementation of a test system in

which research can be performed. We provide a detailed overview of our work on the

VISNET system. The VISNET system is a ten-node vision testbed located in UCSB’s

Harold Frank Hall. The system is composed of standard off the shelf hardware, uti-

lizing PCs and IEEE 1394 cameras. The software is developed using freely available

resources, including OpenCV and ffmpeg. We present two applications in the VISNET

system: distributed network calibration and multicamera tracking.

We then approach the problem of sensor selection in a camera network. We first

present a scoring system for selecting camera nodes for localization and tracking. We

then extend this system to minimize the number of node activations and handoffs during

the tracking process. Second, we present a view scoring system for multiview appear-

ance model learning in camera networks. The system collects the best views from

x



several poses of a tracked person and uses them to assemble a model which captures

appearance variation as a function of view angle.

In summary, we present work which advances the current state of camera networks

research by providing guidance on both test system construction and system operation.
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Chapter 1

Introduction

Visual surveillance is becoming more and more common as increasingly complex

systems become commercially available and their use more socially acceptable. Re-

cently, the notion of distributed sensing with a network of tiny sensors has driven both

hardware and systems research not only for visual surveillance applications, but for any

application which would benefit from a distributed architecture. Such other applica-

tions include seismic sensing, acoustic sensing, wildlife monitoring, and environmental

health and safety.

The shift toward distributed sensing using small, low-power sensors has shifted the

applications and systems research direction away from the traditional idea of processing

everything at once. Rather, a new approach is required in order to both harness the

1



Chapter 1. Introduction

benefits of the distributed nature and to take into account the limitations of the small

sensors.

1.1 Introduction to Sensor Networks

Since the late 1990s, there has been increased attention given to distributed sens-

ing applications, especially those employing small devices with wireless connectiv-

ity. Networks of such devices, more easily deployed due to their wireless nature, have

made possible numerous applications which before were difficult or impossible, such

as minefield or battlefield surveillance. Such a network is popularly referred to as a

“sensor network.”

1.1.1 Sensor Networks Definition

A sensor network is defined as a network of small, wireless, smart sensors which

work together to perform a desired task. By smart, we mean nodes capable of local pro-

cessing and decision making. These networks can contain hundreds or even thousands

of nodes and can span tens, hundreds, thousands, or even millions of square meters.

Recent advances in hardware, manufacturing, power, and communications technology

have made the production of such nodes a reality. While the definition of a sensor net-

work is not rigid, there are several attributes which are commonly used in the definition:

2



Chapter 1. Introduction

Size: The nodes of a sensor network are typically envisioned as very small sensor-

equipped devices. This size requirement leads to the vision of deploying a network of

hundreds or thousands of nodes. Large nodes would be cumbersome and more difficult

to deploy in a real setting.

Power: The nodes of a sensor network have self-contained power sources. This is

typically a battery but could be an alternative source such as a solar cell. The use of

battery power immediately gives rise to the problem of conserving power.

Communications: The communications between the nodes of a sensor network is

wireless. Additionally, in keeping with the power conservation issues already dis-

cussed, a sensor network minimizes internode communication as much as possible.

Operation: A sensor network ideally operates autonomously with minimal human

interaction. In addition, operation is distributed rather than centralized. This allows

the network to be more fault-tolerant in that nearby nodes can quickly fill in for failed

nodes if required.

1.1.2 A Brief Survey of Sensor Networks Research

The modern notion of a sensor network is often credited to the Distributed Sensor

Networks (DSN) program at DARPA in the early 1980s [25]. The goal of the program

was to develop networks of sensing nodes which operated autonomously. As with so

much research, the hardware state of the art lagged far behind the research goals. It
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wasn’t until the late 1990s when processing, communication, and power technology

finally began to catch up, sensor networks research exploded into what we see today.

One of the more notable sensor networks projects is the Smart Dust project at UC

Berkeley. Spanning from the late 1990s until 2001, the Smart Dust project’s end-goal

was “a cubic millimeter device with a sensor, power supply, analog circuitry, bidirec-

tional optical communication, and a programmable microprocessor” [65], [36]. The

Smart Dust project spawned such entities as the TinyOS operating system and the com-

pany Dust Networks which produces wireless sensor network products.

Research at the Center for Embedded Network Sensing (CENS) at the University of

California - Los Angeles focuses on “developing wireless sensing systems and applying

this revolutionary technology to critical scientific and societal pursuits.” [12] The group

has several active projects which include animal and plant observation systems, systems

and software research, sensor design, and seismic and structural monitoring.

In fact, many research groups list wireless sensor networks as their overall focus,

but the specific foci of the work are as varied as the people performing it. The Wireless

Sensor Networks Laboratory (WSNL) at Stanford University focuses on distributed vi-

sion applications and has spawned work in pose and gaze estimation, multicamera ges-

ture recognition systems, and the MeshEye smart camera platform [10]. The Robotics,

Vision, and Sensor Networks Group (RVSN) at the Massachusetts Institute of Technol-

ogy has worked with distributed localization and tracking, hardware such as the Cricket
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location system, and assistive wheelchair systems [5]. Of course, for every application

one can dream up, new challenges present themselves which must be addressed in order

to realize such a system.

1.1.3 Challenges in Sensor Networks

The first question which comes to mind when a new field such as sensor networks

arises is “what is it good for?” or, more specifically, “what can we do with it?” Imme-

diately after comes the question of “how do we accomplish X or Y?” Thus two general

challenges of sensor networks are defined.

To answer the first, one needs only to answer the question “what needs to be sensed

or measured or detected?” One common target application is building monitoring. If

we can embed millions of tiny sensors throughout a building we can keep a constant

measure of some aspect of the building’s environment such as temperature, light levels,

or perhaps concentrations of some chemical. If a sensor exists and can be manufactured

in a small footprint, it is likely that a sensor network can be built from it using standard

off-the-shelf hardware platforms.

The answer to the second question posed above is quite a bit more complex than

that of the first. In fact, both the question and corresponding answer can be broken into

parts such as:

• How do we manufacture the sensors needed to accomplish this task?
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• How do we build and install the infrastructure needed for this network to work?

• How do we program the system to achieve our desired task?

• How do we optimally extract the desired data from the system in a timely and

useful manner?

In fact, the list could go on and on as the tasks and requirements are broken down

into finer and finer detail. In the end, we are faced with many problems which need to

be addressed in order to have a successful deployment.

For this thesis, we answer the first question with “We would like to monitor peo-

ple’s movement and activities.” In other words, we aim our sights on utilizing sensor

networks in the realm of visual surveillance.

1.2 Camera Sensor Networks

One distributed sensing application which is quickly rising in ubiquity is the visual

surveillance network. Such a network traditionally consists of several cameras posi-

tioned around a site such as a building or parking lot streaming video feeds to a cen-

tral bank of televisions where a human operator monitors the activity. Such networks

present many challenges to which sensor networks can be applied.

The logical progression of the visual surveillance network takes the form of a cam-

era sensor network. A camera sensor network is just what its name implies: a sensor
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network composed of camera-equipped nodes. It is here that our challenges become

more apparent. The reduced communications resources in a camera sensor network

greatly constrain our options for operation.

1.2.1 A Brief Survey of Visual Surveillance Research

Ever since technology enabled the manufacture of video cameras of a manageable

size, they have been increasingly used for visual surveillance. One of the first doc-

umented uses of closed circuit television (CCTV) surveillance was in the 1960s in

England [24]. Since then, they have seen increasing use for human surveillance, in

both public and private areas. The surveillance camera is nearly a staple in convenience

stores and banks. Casinos have for years utilized sizable visual surveillance systems

which allow substantial coverage of all areas of the premises.

One of the larger surveillance research projects in recent history is the Video Surveil-

lance and Monitoring (VSAM) system developed by Carnegie-Mellon University and

the Sarnoff Corporation between 1997 and 2001 [26]. The VSAM system aimed at

providing a human operator the most useful information available from a variety of

sensors. The system included ground-based, vehicle-based, and air-based video sen-

sors. It performed automatic detection and tracking of both pedestrians and vehicles

and used a geospatial site model to provide real-time 3D position information.

7



Chapter 1. Introduction

The W 4 System focused on the surveillance capabilities of single-camera systems.

It focused on such areas as object detection, shape recognition, pose recognition, group

detection, and carried object recognition [41]. The EasyLiving project at Microsoft Re-

search was aimed at the development of intelligent environments equipped with unob-

trusive computing systems. It focused mainly on using computer vision to understand

a person’s behavior and preferences in order to provide him or her with a comfortable

experience in the space.

The KNIGHTM system was a multicamera surveillance system which allowed

object detection, tracking, and activity recognition in cameras with overlapping views

as well as those with disjoint fields of view without requiring system calibration. Each

camera node reported to a processing server which handled the inter-node processing

[48].

The Distributed Interactive Video Arrays (DIVA) at the University of California

- San Diego has focused on real-time tracking and activity analysis for security and

anti-terrorism applications as well as intelligent environments and smart cars [2]. The

technology was installed in downtown San Diego and provided extra security during

the 2003 Super Bowl [30].

More recently, the Robot Vision Lab at Purdue University has addressed several

different aspects of visual surveillance. Their 18-node wired camera network is used

for multiple person tracking research as well as markerless tracking research. One ap-
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plication of note in this network is human monitoring in assisted living situations. The

group has also developed wireless camera nodes utilizing the Cyclops camera paired

with the Mica-Z mote. These nodes perform color-based tracking in both a uniform

manner where all nodes report to a base station as well as a dynamic manner, where an

elected cluster head only reports to the base station. In addition to camera network and

application development, the group has also developed a lookup table based approach

to best-node selection. Their method learns the viewing frustrum of each camera in a

network and can quickly ascertain which node is the best for viewing a given point in

the space.

The University of Maryland has developed a constrained motion wireless camera

node known as the ZipCam. The ZipCam consists of a processing unit fitted with

a firewire camera and communications board. The ZipCam is able to move along a

horizontal cable, allowing it to reposition itself to better view events. Additionally,

the group has active projects addressing camera selection, human activity detection,

appearance modeling, tracking, and activity recognition.

The Wireless Sensor Networks Laboratory (WSNL) at Stanford University has re-

cently developed the MeshEye wireless camera mote. The MeshEye features a low-

resolution stereo imaging system paired with a high resolution color camera along with

a processing unit and wireless communications capabilities. In addition, the group has

addressed camera network calibration, utilizing a moving beacon calibration object.
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They also have current work on multiple object tracking across overlapping fields of

view in multicamera networks. Their work here utilizes object features for ID mainte-

nance. In addition to generic surveillance, the WSNL has branched into applications in

both assisted living, virtual reality, and human computer interfaces.

The Visualization and Intelligent Systems Laboratory (VISLab) at the University

of California - Riverside has recently begun development on an 80 node network of

pan-tilt-zoom smart cameras. The network is intended to facilitate large-scale cam-

era network research and incorporates acoustic, seismic, and vibration sensors for vi-

sual sensor triggering. The network will also eventually employ infrared sensing to

complement the visual sensing operations. Projects utilizing the system have included

calibration, activity classification, facial modeling, and tracking.

1.2.2 Challenges in Visual Surveillance

The most obvious challenge of visual surveillance systems is the reduction or the

elimination of the need for a human operator. Unless operators and video feeds are

paired one-to-one, the possibility exists of missing an important event. Even then,

physical and mental fatigue can reduce an operator’s effectiveness in just a short time.

By automating even general tasks such as motion detection, the role of a human op-

erator can be shifted to decision making rather than general monitoring. Thus visual

surveillance research is constantly pushing toward fully-automated visual surveillance.
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Another challenge in visual surveillance is the amount of data produced by constant

video feeds. For example, a 640 by 480 pixel color video camera capturing at 15 frames

per second produces (3)(640)(480)(15) = 13824000 bytes per second or 829440000

bytes per minute or 1.19× 10−12 bytes per day (that’s 1.2 Terabytes). Multiply this by

the 10, 20, 50, or more cameras used in many surveillance operations and even with

the video compression technology available, we see that the transmission or storage of

such data is impossible.

The approach to this problem is twofold. First, we desire to extract, in real time,

only the interesting portions of the surveillance video. Hours and hours of an empty

hallway are not interesting from a surveillance point of view and so there is no need

to store such video. The second half of the solution to the data size problem is to

efficiently store those frames, objects, or events deemed important by the first part. If a

person walks through a scene and is captured on 10, 000 frames, do we need to save all

of these frames? Is there a better way to represent both the person’s appearance as well

as motion or activity?

Using the commonly-accepted rule of thumb that communication is significantly

more expensive (between 1000:1 and 10000:1 according to [87]) than processing, we

desire to contain as much processing as possible at the node and communicate only

small, vital information between nodes. In addition to local processing of data, the

selection of only the most vital nodes in a network functions to reduce the number of
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nodes working on any problem at once. At the broadest level, we would only assign

those sensors which actually sense an event but further analysis might allow us to assign

only a handful of the best-suited sensing nodes to a particular process.

Another challenge in surveillance networks is maintaining persistent identification

of a tracked person as he or she moves through the system. In a multicamera system,

the nodes must be able to determine if they are seeing the same person. Additionally, in

the case of nodes with disjoint views, they must be able to determine if the person who

just entered one region is the same person who recently left another. Thus some model

of each person’s appearance should be built in order to have a global reference for the

system. Like memory in humans, this global reference allows a system to compare

tracked people with already-known appearances and make a decision about identity.

1.3 Objectives

The objective of this dissertation is to address the problem of persistent tracking

and identification in a visual sensor network. Specifically, we approach three problems

which are detailed below.

Camera Network Testbed Design (Chapter 2)

We address the practical issues of designing and implementing a real-time camera net-
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work in a small-scale setting. The objective is to provide a practical reference for those

wishing to develop a similar system for vision research.

Sensor Selection for Localization in Camera Networks (Chapter 3)

We address the issue of sensor tasking for localization and tracking applications in

camera networks. The objective is to minimize the error of a specific application while

at the same time minimizing node activity within the network.

Multiview Human Modeling in Camera Networks (Chapter 4)

For human tracking and identification applications, we propose a multiview appear-

ance model for tracked humans in a camera network. The objective is to provide a

lightweight model for transmission between nodes of such a network. Additionally, the

model should be updateable at a central level in order to allow the fusion of multiple

inputs.

1.4 Summary of Contributions

The main contributions of this dissertation are as follows:

• Camera Sensor Network Testbed Design: (Chapter 2) We discuss the design

and development of a multinode camera network testbed which emulates a node

cluster in a larger-scale network. Our network uses off the shelf components and

freely-available standard software tools which make development move quickly.
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We introduce a procedure for the distributed calibration of a such a network. We

then present a simple tracking application which demonstrates the full function-

ality of the testbed network.

• Sensor Tasking for Localization in Camera Sensor Networks: (Chapter 3) We

address the problem of assigning tasks to the nodes in a camera sensor network.

We explore the factors affecting localization and tracking in a camera network

and develop scoring criteria for choosing the best nodes for this task. The criteria

are based upon the topology of the network and the position and movement of

the tracked person.

• Parametric Human Modeling in Camera Sensor Networks: (Chapter 4) We

address the issue of multiview appearance modeling of tracked people in camera

networks. We first develop a view scoring system for multiview image collection.

We then offer a lightweight appearance model for storage and transmission of the

multiview appearance data.

1.5 Thesis Organization

The rest of this dissertation is organized as follows:

In Chapter 2, we discuss the design, development, and operation of the VISNET

system. We discuss calibration and tracking applications developed for the VISNET
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system and show results. In Chapter 3, we present a multiview parametric appearance

model for use in camera sensor networks. We discuss its utility and demonstrate its

effectiveness for differentiating tracked people. In Chapter 4, we present a method for

predicitive sensor selection for tracking in camera sensor networks. We demonstrate via

simulation the advantage of this method over simply using the current tracked object

state for sensor assignment. Finally, in Chapter 5, we provide conclusions and future

directions.
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Camera Sensor Network Testbed

Design

2.1 Introduction

Like any other field, research focusing on sensor networks and visual surveillance

relies on simulation for algorithm development and demonstration. However, at some

point the transition must be made from simulation to real-world implementation in

order to both demonstrate feasibility and to address other issues which may not manifest

themselves in simulation. Unfortunately, the design and development of a real-world

system is often not trivial and a considerable amount of time can be spent on this stage

before any algorithm implementation can be performed.
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In this chapter, we discuss the design of small-scale camera networks. Specifically,

we discuss the development of UCSB’s VISNET system. We begin with a general dis-

cussion on large-scale sensor network operation and how its operation can be reduced

to a much smaller scale due to the properties of typical sensors. We then present the

motivation and design considerations for the VISNET system, followed by a discussion

of the final system design.

We then present two projects performed using the VISNET system. First is a camera

network calibration procedure which is demonstrated for 3D point localization. This

is followed by a demonstration of a simple multicamera human tracking application

which utilizes a graphical user interface for system operation monitoring.

2.1.1 Large-Scale Camera Network Operation

The current state of hardware and sensing technology makes possible the construc-

tion and operation of sensor networks on a large scale. Such a network might span

thousands or even millions of square meters. Ideally, the data collection and process-

ing of such a network would be centralized so that all data is taken into account on a

global level. Such a centralized communications architecture is shown in Figure 2.1.

In a network larger than a few tens of nodes, however, this approach is not typically

feasible. The bandwidth necessary for such communication is prohibitive, especially

when dealing with “heavy” data such as video in a camera network.
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Figure 2.1: Centralized Network Architecture

Fortunately, most events in a sensor network are perceived by a small subset of the

total nodes present in the system. This is especially true of camera nodes which have

limited field of view and limited effective sensing range. By recognizing this limitation

of the nodes, a system can adapt to sensed events in order to keep communications and

processing of an event local to the event. We can think of this as a problem of how

to cluster nodes in order to handle local events. One approach is to use fixed clusters,

such as shown in Figure 2.2. This approach effectively partitions the network into local

clusters, but may present a problem when sensing an event on the boundary of two

clusters. In this case, inter-cluster collaboration is vital.
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Figure 2.2: Sensor Network with Fixed Clusters

Another approach which has been used in sensor networks research involves the

formation of dynamic node clusters which adapt with the movement of an object or

event. Figure 2.3 illustrates this concept. Such a cluster of entities is often referred to

as an agency in the realm of artificial intelligence [57] [14]. As an event moves through

the network, nodes which no longer sense the event are removed from the cluster while

newly-sensing nodes are added. The choice of the criteria for the inclusion or exclusion

of a node from such a sensor cluster is itself a growing research problem.

Regardless of the sensing architecture adopted, the fact still remains that for each

event only a small number of nodes (when compared with overall sensor node popu-

lation) are involved in sensing, recording, or analyzing the event. Thus for any local
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Figure 2.3: Dynamic Clustering in a Sensor Network. The nodes self-organize into
clusters to provide covereage of the pentagonal object during its motion through the
space.

sensing or vision tasks, we work solely with those sensors which are currently seeing

or detecting the local events. We can model this subset or cluster as a small centralized

network, as shown in Figure 2.4. It should be noted here that the central, or “sink,”

node in this network is not necessarily a dedicated processing node. It can be a pro-

cess which runs alongside the sensing process in a sensor node. However, for ease of

discussion we treat this process as a separate entity.
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Figure 2.4: Centralized Sensor Cluster Architecture

2.1.2 Experimental Camera Networks

A very important stage of vision research is the demonstration of algorithms or

processes with real-world data and, in some cases such as with visual surveillance, in

real-time. This has prompted numerous research groups to design and build experimen-

tal networks for development and demonstration of vision algorithms.

One well-known project, VSAM (Video Surveillance and Monitoring) [26], incor-

porated multiple types of sensors including Pan-Tilt-Zoom (PTZ) cameras, infrared

cameras, omnidirectional cameras, airborne cameras, and relocatable vehicle-mounted

cameras. While the VSAM project yielded an impressive amount of research, a project

of such scale is out of reach for most groups. In addition, the local nature of the data

and processing in a camera network allow researchers to emulate a small subset of a

larger system using a more manageable number of nodes.

21



Chapter 2. Camera Sensor Network Testbed Design

More common is the smaller-scale network such as is found in a university research

setting and contained within one or two small areas. An example of such a network

is used in [32]. This network consisted of 8 PCs each with 2 cameras attached. The

nodes reported to a ninth PC known as the cluster head. The KNIGHTM system [48]

[47] [50] consisted of camera nodes consisting of a PC with attached camera and used

cameras with both overlapping fields of view and cameras with non-overlapping fields

of view for tracking and recognition work.

the EasyLiving system [51] used two PCs, each equipped with a stereo camera

module. The cameras reported to a third PC which handled the tracking process. In

[15] a single overhead wide-angle camera is used along with four semi-mobile PTZ

cameras which are used for active vision applications.

One trait common to many experimental networks is the use of off-the-shelf hard-

ware. In the interest of time, vision researchers typically prefer not to venture into the

realm of hardware development instead opting for commercially-available products. In

addition the use of PCs with attached cameras is more popular than the use of embed-

ded systems. The use of more standard hardware allows the use of standard software

and operating systems, speeding up the learning and development processes.

22



Chapter 2. Camera Sensor Network Testbed Design

2.2 The VISNET System

In 2005, design began on UCSB’s Visual Sensor Network (VISNET). VISNET is a

ten-node experimental camera sensor network testbed located in Harold Frank Hall on

the UCSB campus. VISNET was installed in early 2006 and has proven itself useful to

the vision community at UCSB.

The motivation behind the VISNET system was the need for a multiple-node camera

network for vision and surveillance research. The goal was an easy-to-use network

with a minimal learning curve for users. The major constraint on the project was the

available space for installation. The space is a room approximately 6 meters wide by

10 meters long by 2.8 meters tall. The size does not allow for expansive operation, but

does provide enough space for local processing of tracked people or objects.

2.2.1 Hardware Construction

VISNET is comprised of ten networked sensor nodes and a single processing node.

Each sensor node consists of a small-profile PC with an attached Point Grey Firefly2

IEEE 1394 webcam. The central processing node is also a standard PC. Figure 2.5

shows one of the VISNET nodes. The full VISNET system layout is illustrated in

Figure 2.6. For ease of deployment and operation, the VISNET system uses a wired

network for communications purposes.
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(a) PC Nodes (b) Mounted Camera

Figure 2.5: VISNET Hardware Detail. Each node is a small form factor PC with
attached webcam.

The physical VISNET network layout is shown in Figure 2.7. Figure 2.7(a) shows

an overhead view of the installation and Figure 2.7(b) shows a 3D orthographic re-

construction of the system. The cameras are distributed fairly uniformly about the

perimeter of the room and are mounted approximately 2.65 meters from the floor. Each

camera has a slight downward rotation about its x-axis (defined in Appendix A).

Each camera is equipped with a wide angle lens and provides a good view of the

space. Figure 2.8 shows the views from all ten VISNET nodes. We see that the cam-

eras’ fields of view overlap considerably, which fits well with our idea of a dense sen-

sor network. A short wall is installed in one end, visible in nodes 4, 5, and 6 (Figures

2.8(d),2.8(e),and 2.8(f)). This is used to obscure operators and observers during opera-

tion and demonstration.
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Figure 2.6: VISNET Block Diagram. The system consists of 10 sensor nodes, a pro-
cessing node, and a system visualization node.

2.2.2 Software Design

The software design in VISNET is based upon that of Spheres of Influence [81], an

installation in UCSB’s Davidson Library. The nodes of VISNET run the Ubuntu linux

operating system [11]. The use of linux allows easy administration of the machines.

Additionally, it allows easy remote access, remote management, and remote execution

of software.

All VISNET software is written in C using various free or open source resources.

The general software architecture of each node is shown in Figure 2.9. The basic com-

ponents are the capture module, the processing module, and the communications mod-

ule.
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(a) Overhead View (b) 3D View

Figure 2.7: VISNET Physical Layout

Video Frame Capture

The first step in any vision process is the acquisition of video. Camera control and

capture in VISNET is performed using the libdc1394 libraries available from [4]. These

libraries allow direct control over camera parameters such as brightness, color balance,

capture speed and capture format. Libraries for easy camera initialization and capture

were designed in order to accelerate the development of applications in VISNET.

Video Processing

Once captured, the imagery from a camera node must be processed and analyzed. In

VISNET, this processing is performed using the OpenCV open source computer vision

libraries, originally developed by Intel. The libraries, available from [7], contain com-

mon functions for image and video processing as well as for image and video reading
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(a) Node 1 View (b) Node 2 View (c) Node 3 View

(d) Node 4 View (e) Node 5 View (f) Node 6 View

(g) Node 7 View (h) Node 8 View (i) Node 9 View

(j) Node 10 View

Figure 2.8: VISNET Node Views
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Figure 2.9: VISNET Node Software Architecture

and writing. OpenCV accelerates the development of real-time image and video pro-

cessing applications by providing commonly-used lower-level functions such as edge

detection, camera calibration, tracking, and optical flow.

Internode Communications

Internode communications in VISNET is accomplished using the Open Sound Con-

trol (OSC) protocol. Originally, intended for communication between musical instru-

ments, OSC provides a compact, easy to use framework for communicating between

networked computers. Using OSC, we have constructed a simple communications pro-

tocol for the operation of visnet. Each message in OSC begins with a prefix indicating

the type of message. Table 2.1 lists the different message types developed for VIS-
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NET. Table 2.2 fully describes a message describing a tracked object in a camera node.

Descriptions of all messages use in the VISNET system can be found in Appendix C.

Message Description Node Node Tracker Tracker
Prefix Send Receive Send Receive
/extrinsics Extrinsic Parameters Y Y N N
/relextr Relative Extrinsic Parameters Y N N Y
/obj Tracked Object Data Y N N Y
/ctrl Node Control (Start / Stop) N Y Y N

Table 2.1: VISNET Message Types

Message Component Description
/obj Indicator of object data to follow
Node ID ID of originating node
time sec Timestamp of data (seconds since epoch)
time usec Timestamp of data (microseconds)
u Local u coordinate of tracked object
v Local v coordinate of tracked object

Table 2.2: VISNET Object Tracking Message Detail

Outgoing OSC communication at each node is handled by a node client and in-

coming communication is handled by a node server running in parallel to the main

application. A similar setup runs on the tracking node.
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Time Synchronization

In most applications involving the fusion of data from multiple nodes, correlation

of data in time is a vital step in any application. Ideally, we would like to have direct

control over the collection of data, ensuring exact synchronization of data. Unfortu-

nately, the synchronization of data capture in all nodes in a large network is impossible.

Instead, we choose to simply synchronize the system clocks of the nodes with each

other. By doing so, we can attach a timestamp to data collected in each node, allowing

the fusion process to determine which data were taken at similar times. Node clock

synchronization is accomplished using the Simple Network Timing Protocol (SNTP)

[6].

Used in systems such as that presented in [21], SNTP works by synchronizing the

clocks of the network nodes with a server node. In our case, the nodes of VISNET are

synchronized with the tracker node, which in turn is synchronized to the NTP server at

ntp.ubuntulinux.org. By utilizing SNTP, we can achieve time synchronization for our

applications. Figure 2.10 shows the clock offset of a VISNET node from several days of

operation. We see that the maximum offset is ±10ms, with the variance 2.4ms which,

even with 30 frames per second capture rate, is sufficient, given the typical moving

speed of humans, our primary subject.
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Figure 2.10: Node Clock Offset Using NTP

Network Operation User Interface

In order to provide user interaction for both development and demonstration pur-

poses, a user interface was built which allows both control and monitoring of network

operation. This was built using the QT toolbox [9] along with OpenGL [8] for the

3D portion. The visualization node communicates with the tracking node using a cus-

tom message protocol. Upon initialization, the visualization node requests the network

calibration information, allowing it to visualize the layout of the system.

The user is able to see points tracked in the system displayed in real time. In addi-

tion, the user is able to select individual nodes in order to receive the current view from

that node. These frames are encoded using MPEG-4 and transmitted to the visualization

node for viewing. The user interface is shown in Figure 2.11. As discussed previously,
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during normal operation a camera network should not transmit video frames but for the

visualization, we violate this rule with the understanding that it is for demonstration

purposes only.

Figure 2.11: VISNET Visualization Interface

2.3 VISNET Calibration

In order to achieve multicamera operation, we require a calibrated network. The

calibration of camera networks is a well-researched problem which has yielded various

proposed solutions. However, many are centralized [76] [79] or require camera model
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simplification [77]. We present a simple, effective calibration procedure which lends

itself well to distributed operation.

2.3.1 Relative Camera Calibration

The goal of our calibration procedure is to establish pairwise relationships between

nodes in the network. Such a relationship is represented by the transformation between

the two cameras’ coordinate systems. The camera coordinate system is detailed in

Appendix A. This transformation takes the form of a 3D rotation and a 3D translation,

represented by R and T , respectively.

Our calibration approach builds upon the widely-used procedure from [86], which is

summarized in Appendix A. We utilize a chessboard calibration pattern to define world

points in our system. When cameras Ci and Cj both see the pattern, they are are able

to calibrate themselves with the world coordinate system defined by the pattern. This

process is illustrated in Figure 2.12 . The calibration yields the extrinsic parameters

(RWi, TWi) and (RWj, TWj) for cameras i and j, respectively.
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Figure 2.12: Pairwise Calibration Process

However, we are not interested in the cameras’ positions with respect to the chess-

board. We are instead interested in their relative relationships. Given the tranformation

of a point in the world coordinate system P (W ) into the cameras’ coordinate systems:

P (i) = RWiP
(W ) + TWi (2.1a)

P (j) = RWjP
(W ) + TWj (2.1b)
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we can calculate transformations between the points in the cameras’ coordinate sys-

tems:

P (i) = RWi(R
−1
Wj(P

(j) − TWj)) + TWi (2.2a)

P (j) = RWj(R
−1
Wi(P

(i) − TWi)) + TWj (2.2b)

or, simplifying:

P (i) = RjiP
(j) + Tji (2.3a)

P (j) = RijP
(i) + Tij (2.3b)

where

Rji = RWiR
−1
Wj (2.4a)

Rij = RWjR
−1
Wi (2.4b)
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and

Tji = −RWiR
−1
WjTWj − TWi (2.5a)

Tij = −RWjR
−1
WiTWi − TWj (2.5b)

With this correspondence established, we are able to transform points viewed by

cameras Ci and Cj into a common coordinate system for localization. This coordinate

system may be either of the cameras’ individual coordinate systems or a third system

for which the transformation from at least one of the cameras is known.

2.3.2 Network Relative Calibration

It is not typically the case that all cameras in a network can see the same feature

points and thus the use of a single set of stationary calibration points is not an op-

tion. Our approach utilizes a moving set of points - in our case the chessboard. By

moving the chessboard through the network, pairwise geometric relationships can be

established by cameras whose fields of view overlap.

Our calibration procedure is outlined in Algorithms 1 and 2. The procedure involves

the movement of the chessboard pattern through the space (Figure 2.13) during the

calibration period. If the chessboard pattern is detected by camera node i, the node
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performs its own calibration with respect to the chessboard’s current position and saves

the resulting extrinsic parameters along with the current time. This calibration yields

the extrinsic parameters RWi(tn) and TWi(tn). This set of parameters is then broadcast

across to the other nodes in the network.

Figure 2.13: Chessboard Movement During Calibration Process

When a node receives a set of extrinsic parameters from another node in the net-

work, it checks the timestamp of the incoming data to its own collection of parameters

to check for a time match. If a match is made, the two sets of parameters are used to

calculate a relative relationship, as in Equation 2.2. Over time, this process results in

many sets of parameters between each pair of cameras with overlapping fields of view.

37



Chapter 2. Camera Sensor Network Testbed Design

Input: Video Frames

Output: Local Extrinsic Parameters

start time = current time

elapsed time = 0

while elapsed time < tmax do
curframe = Capture Frame()

detected = Detect Chessboard()

if detected then
(R, T ) = Compute Extrinsics()

Broadcast Extrinsics()

end

elapsed time = current time - start time

end

Algorithm 1: Camera Network Calibration (Send) Process

Figure 2.14 shows a typical extrinsic parameter distribution result for a single pair of

cameras.

Another option for this process is for each node to collect its entire collection of

parametes during the calibration period and only then send out a single message con-

taining them all. Both methods have yielded identical results in our experiments.
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Input: Remote Extrinsic Parameters

Output: Relative Extrinsic Parameters

start time = current time

elapsed time = 0

while elapsed time < tmax do
Receive Incoming Messages

if timestamp match then
(Rij(t), Tij(t)) = Compute Relative Extrinsics()

Save Relative Extrinsics()

end

elapsed time = current time - start time

end

Compute Mean Extrinsic Parameters

Algorithm 2: Camera Network Calibration (Receive) Process

We take as our estimate for the cameras’ relative parameters the mean of each indi-

vidual parameter taken over the set collected over the calibration period. The accuracy

of this estimate is discussed in the next section.

2.3.3 World Reference

With knowledge of the relative positions of the cameras, we next compute a com-

mon reference for all nodes. As discussed in Appendix A, for analysis and visualization
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Figure 2.14: Pairwise Extrinsic Parameter Distributions. The parameters represent the
rotation with a rotation angle θ and the axis of rotation ~v = [v1 v2 v3]T . The translation
is represented by the vector T = [Tx Ty Tz].

purposes, we typically want this reference to have some meaning in the local environ-

ment. Thus we add an additional step to our calibration process. This step consists of

placing the chessboard in a desired world origin and calibrating the network with it.

What results is what is commonly called a vision graph [31]. The edges of the vision
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graph indicate successful pairwise calibration between the connected nodes. The final

world reference calibration step puts an extra node, the “World” node, into the graph,

yielding a graph similar to that in Figure 2.15. In order to establish a world reference

for each node, we trace each node’s shortest path to the world node, accumulating the

relative transformations along the way. This process yields a set of extrinsic parameters

{RWi, TWi}Ni=1 where N is the total number of nodes in the network.

Figure 2.15: VISNET Vision Graph

2.3.4 Results

To demonstrate the performance of our calibration process, we set up an experiment

to measure localization error of the system. We moved a rigid structure around to 17

different positions (yielding 34 total points) in the space and recorded still images at

each position. The structure, a modified tripod, had two points on it: one placed at
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1500mm above the floor and one placed at 2000mm above the floor. Several frames

of this data are shown in Figure 2.16, with the 3D ground-truth point positions shown

in Figure 2.17. The 340 image points were manually extracted in order to obtain ac-

curate image locations of the test points. Using the localization technique discussed in

Appendix B, we found the 3D estimates of each of the 34 test points. Figure 2.18(a)

compares the point estimates with the groundtruth positions. Figure 2.18(b) shows the

3D localization error for all 34 points.

For comparison, we took our calibration data and output and performed global bun-

dle adjustment on it. Bundle Adjustment is a centralized global optimization process

which takes as its input camera parameter estimates along with 3D point location esti-

mates. It is a simultaneous refinement of both the 3D point estimates and the camera

parameters. More information can be found in [79] and [54].

For our points for the bundle adjustment process, we used the chessboard points

collected during the calibration process. The resulting camera network is reconstructed

in Figure 2.19. Performing the localization experiment on the 34 previously-used data

points, we arrived at the results shown in Figures 2.20(a) and 2.20(b). We see that the

localization error before and after performing bundle adjustment are comparable.

42



Chapter 2. Camera Sensor Network Testbed Design

(a) Node 1 (b) Node 3

(c) Node 5 (d) Node 6

Figure 2.16: 3D Localization Experiment Snapshots

2.4 Human Tracking in VISNET

Conceived as a human surveillance testbed, VISNET’s first application after net-

work calibration was human tracking. The primary goal of this application was to

establish a framework for future tracking applications in VISNET. The secondary goal

was to demonstrate the accuracy of the system calibration procedure.
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(a) Overhead View (b) Overhead View

Figure 2.17: 3D Localization Experiment Groundtruth

(a) Comparison with Groundtruth

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Point

Lo
ca

liz
at

io
n 

E
rr

or
 (

m
m

)

 

 

Individual Point Error
Mean Error
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Figure 2.18: 3D Localization Experiment Results

2.4.1 Nodal Detection

Our approach to human segmentation and location in the camera nodes uses stan-

dard algorithms. For segmentation, we use the well-known process of background

subtraction. Using a single Gaussian background model in the YUV color space, we

44



Chapter 2. Camera Sensor Network Testbed Design

Figure 2.19: Network Visualization - After Bundle Adjustment

(a) Comparison with Groundtruth

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Point

Lo
ca

liz
at

io
n 

E
rr

or
 (

m
m

)

 

 

Individual Point Error
Mean Error

(b) Localization Error

Figure 2.20: 3D Localization Experiment Results - After Bundle Adjustment

are able to produce an accurate silhouette of a moving person. Examples of the output

are shown in Figure 2.21.
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(a) Example 1 (b) Example 2

Figure 2.21: Background Subtraction Examples

The head location of the silhouette is then found by first taking the vertical projec-

tion of the silhouette to find the horizontal position. Then, along that position, The top

edge of the silhouette is found using a simple edge detection filter. The results over

time for a walking person are shown in Figure 2.22. It is this head point location which

is then used at the central tracker for 3D localization and tracking.

2.4.2 Multicamera Tracking

Because data from multiple cameras is necessary for accurate 3D localization, we

model tracking in VISNET as a centralized process. Each node segments the person

and locates the head in the resulting foreground mask. This location is then reported to
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Figure 2.22: Head Location Over Time

the tracker via an OSC message, structured as shown in Table 2.2. The nodal operation

is summarized in Algorithm 3.

At the tracker, incoming data from the reporting nodes is processed and assem-

bled into the current 3D position estimate. The communications server, running in a

background process, parses the incoming messages and places them into a current data

queue for the localization process. The localization process first examines the times-

tamp of each node’s data and discards old data. We currently use half the frame duration

for this threshold. Timely data is then used to localize the point in the world’s 3D co-

ordinate system, as detailed in Appendix B. The tracking server process is detailed in

Algorithm 4.
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Input: Video Frames

Output: Local 2D Position

while tracking == true do
Capture Frame()

detected = Find Head()

if detected then
Send Position()

end

end

Algorithm 3: Nodal Tracking Process

Input: 2D Position Data

Output: 3D Position Estimate

while tracking == true do
Get Data Queue()

Sort Queue()

if NumSensingCams ≥ 2 then
X3D = Localize 3D()

end

Wait()

end

Algorithm 4: Central Tracking Process

48



Chapter 2. Camera Sensor Network Testbed Design

Figure 2.23 shows an example of raw output from the 3D localization process. In

this experiment, the subject walked in a rectangle which spanned±3660 mm (±12 feet)

in the x direction and ±1830 mm (±6 feet) with height of 1760mm (5 feet 9 inches) as

well as across the x-axis. These values are marked in the figure. Along the path, the

subject paused briefly at all 4 corners of the rectangle as well as the halfway points of

the sides. Figure 2.24 shows the view of nodes 1 and 5 from this experiment. In times

of non-detection, no data is reported.
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Figure 2.23: 3D Localization Raw Output

Figure 2.25 shows the path after smoothing by a Kalman filter. We see that the path

is cleaned up considerably and gives a very accurate reconstruction of the path. The

path is shown in 3D in Figure 2.26, with the groundtruth path indicated on the floor.
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(a) Node 1 View (b) Node 5 View

Figure 2.24: Individual Node Views
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Figure 2.25: 3D Localization Smoothed Output

2.5 Summary

In this chapter we have discussed design considerations for small-scale vision net-

work testbeds. We have presented UCSB’s VISNET system as an example of a low-cost

50



Chapter 2. Camera Sensor Network Testbed Design

Figure 2.26: Smoothed 3D Location Output

easy to use testbed for vision research. We detailed the different software modules and

their development using freely available open source tools.

We then presented two applications implemented in the VISNET system. First, we

presented a simple procedure for calibrating distributed camera networks. The results

showed that the localization error resulting from this method is comparable to the error

resulting from running global bundle adjustment on the system.

We then detailed a simple single person tracking application implemented in the

VISNET system. The person is segmented using standard background subtraction and

the head located in the resulting foreground mask. The nodes’ location estimates are

then communicated via the network to the tracking node which filters them by their
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timestamps. The “good” data is then used for the current 3D location estimate. A sam-

ple tracking experiment was performed to demonstrate the functionality of the system.

While small in scale and simple in complexity, it is our hope that this description

of the VISNET system may serve as a guide to others in the position of designing and

developing a similar system, saving development time.
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Sensor Selection for Localization in

Camera Sensor Networks

3.1 Introduction

With large-scale sensor networks, it is typically the case that a single event or object

is sensed by only a subset of the entire network. In a dense network, however, even this

sensing subset of the network may provide redundant information about the event or

object. In the interest of power, bandwidth, or other concerns, we may decide to task

only a few of the sensing nodes with a certain application, thus reducing the number

of active nodes within a node cluster. This process is commonly referred to as Sensor

Tasking or Sensor Selection.
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Our motivation for minimizing the number of active nodes is twofold. First, we aim

to minimize the use of resources. Having all nodes actively sensing and communicating

at all times is much more expensive in terms of power than having only a subset active

at any one time. This has the additional effect of reducing the amount of (likely useless)

data being transmitted through the network. Second, we will reduce redundancy. While

the very nature of a sensor network provides redundant data, it is not always necessary

or even useful. We prefer to exert more control over which data is collected.

3.1.1 Objective

Out objective is a sensor selection process for localization and tracking in a camera

network. This process will assign a score to each node based on its utility for tracking

a given point. The score will be derived from geometric properties of the network and

the tracked point.

3.1.2 Assumptions

Our first assumption is that we are dealing with stationary camera sensor nodes.

This constrains the problem as we are unable to reposition the node (as with mobile

sensors) or the camera (as with Pan/Tilt/Zoom cameras).
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Second, we assume that we are working with a calibrated system. With a calibrated

system, we are able to localize and track people and objects within the system in three

dimensions.

Third, we assume that the tracking problem has been addressed and provides ob-

ject/person state information as well as reliable state prediction information. Thus we

have available tracked object features, current state information, and state prediction

information.

3.2 Related Work

The problem of sensor selection in a sensor network can be thought of as the com-

panion problem to the optimal sensor placement problem. In order to present a com-

plete background, we discuss work in both of these areas.

3.2.1 Optimal Sensor Placement

When deploying a sensor network, we try to anticipate the activity in the covered

area and position the sensors such that some measure of coverage is maximized. This

measure is often application-driven and thus takes many forms.

The classic problem is that of simple visual coverage. This problem is epitomized

in the Art Gallery Problem [63]. The goal of the Art Gallery Problem is to find the
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optimal coverage of a polygonal art gallery using a minimal number of guards. These

guards are assumed to have omnidirectional vision with infinite viewing range.

While a good starting point for visual surveillance systems, the Art Gallery prob-

lem unfortunately suffers from its general nature. Real-world implementations typi-

cally involve directional sensors with finite sensing range. the method described in [45]

projects the problem into 2D in the ground plane and uses linear programming to de-

termine optimal coverage of a given space using a set number of sensors. A genetic

algorithm approach is taken in [13] for the sensor selection problem in the realm of

traffic monitoring.

A a simple coverage rate measure is presented in [71] for the purpose of finding the

optimal coverage of a given polygon. This method also takes into account node direc-

tion, aiming to achieve coverage of the area from multiple directions. The algorithm

works iteratively, optimizing the coverage rate at each step.

3.2.2 Optimal Sensor Selection

The companion to the sensor placement problem is the sensor selection problem.

Here, the goal is to select some number of already-deployed sensors to perform a de-

sired task, typically tracking.

[84] presents an algorithm which selects a fixed number of camera nodes for track-

ing objects in a plane. It accomplishes this by minimizing the visual hull of objects in
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the cameras’ fields of view. The algorithm is incremental in that it can be set to change

only a small number (in their case, one) of node assignments per given time period.

[32] presents a similar approach, but models the situation as a single moving object

surrounded by both static and dynamic occlusions. Their method minimizes the mean

square error of the estimate of the object position based on predictions of occlusion of

the object by the occluders. [64] presents a look-up table approach to sensor selection

in a camera network. Each node’s field of view is quantized into smaller volumes. The

fields of view are distributed to the other networks nodes and their overlap computed.

Using this information, each node then assembles a look-up table which is utilized for

quick selection of the most favorable camera for a specified point.

[71] presents a quality-of-view metric for sensor selection in a camera network.

This metric is calculated using the camera’s distance from a tracked person as well as

the camera’s azimuth and zenith with respect to the person’s position and pose. [43]

scores cameras’ views of tracked people based on head orientation with respect to the

camera and the head size, which is a measure of distance to the camera. The goal of

this work is to collect frontal face images for identification.

[37] presents a process for best node selection within node clusters. The network is

divided into fixed node clusters which elect a cluster manager which is in charge of both

tracking a detected person as well as the next assignment of the manager position. The

selection is calculated using tracked blob geometry, tracked blob movement direction
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(away from or toward camera center), and face detection results. The selection process

is performed at a rate slower than the framerate of the nodes in order to produce more

coherent video information to the user.

[60] uses a quality of service measurement which is simply the estimated size of the

object at the current time step. This translates to assigning the nearest sensing camera

to track each object. [62] uses pre-collected head models to choose the best view in

a close-range multicamera network. Using 3 models of the face, side of the head, and

back of the head, they compare color histogram information and choose the view which

yields the best match for the face.

3.2.3 Mobile Sensors

The use of mobile sensors blurs the line between the two aforementioned problems.

As such a network is more adaptable, its use alleviates the shortcomings of both by

allowing gradual system reconfiguration in reaction to perceived activity.

[58] uses camera-equipped mobile sensors to monitor other mobile objects. The

sensors use a score based on object distance as well as viewing angle to determine

the best sensor position. [29] determines the optimal movement and placement of a

network of mobile sensors based upon known event distributions.
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3.3 Sensor Selection Factors

Many of the factors affecting a node’s view of a point are dependent solely on the

node’s position relative to the point in question. As mentioned previously, we assume

that we are working with a calibrated system and a tracker which provides reliable

object state information. Here, we present a discussion of the most important factors

affecting the localization and tracking of a point in a camera network.

3.3.1 Point Range

As with human vision, computer vision is typically improved when higher reso-

lution images are available. With a fixed-lens, stationary camera, the only degree of

freedom affecting image resolution is the distance from the camera to the object be-

ing imaged. It is obvious that we will normally prefer the subject to be larger in the

frame, and thus nearer the camera. We will use 3D position information available to us

and rank the resolution of an object via its distance from the camera. This distance is

illustrated in Figure 3.1 and calculated by:

Di
j = ‖Ci − Pj‖ (3.1)
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where Ci is the center point of camera i and Pj is the location of object j. This calcu-

lation can be performed in either the world coordinate system or the camera-centric 3D

coordinate system.

Figure 3.1: Point Range Definition

3.3.2 Point Visibility

The next factor we consider in the node selection process is simply whether or

not a point is within the sensing range of a node. We wish to answer the question

“Given otherwise ideal conditions, can this node sense that point?” With known camera

parameters, it is easy to project a point into the image plane of each camera to determine

this. In addition to determining whether a point lies within the camera’s field of view,

we can define a maximum range, dmax, beyond which we assume that a point is not

visible or at least not useful to the node. This is illustrated in Figure 3.2.
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Figure 3.2: Point Visibility Definition

Based upon the potential visibility of a point in a specific camera, we define our

visibility of a point Pj in camera i as:

V i
j =


1 (0 ≤ uj < widthi)

⋂
(0 ≤ vj < heighti)

⋂
(Rangeij < dmax)

0 otherwise

(3.2)

where [uj vj]
T indicates the projection of the point into camera and widthi and heighti

indicate the image width and height of camera i.

3.3.3 Occlusion

Along the lines of a point being within a sensor’s field of view is whether or not

the sensor can actually see the point. A point located within the sensor’s field of view

may still be occluded by either another tracked person or a stationary object such as a
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sign or a partial wall. With prior knowledge about a scene culled from normal system

operation up to the current time, it is fairly straightforward to predict occlusion for the

current frame. Figure 3.3 illustrates an example of point occlusion. We define our

occlusion measure of a point Pj in camera i as:

Oi
j =


0 point j is occluded in camera i

1 otherwise

(3.3)

Figure 3.3: Point Occlusion Example

3.3.4 Frame Position

Because of distortion introduced by the camera lens, points near the edge of an

image can experience significant change in their position with respect to their ideal

position. The typical lens distortion model [86], [46], [16], [42], introduces both radial
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and tangential distortion. This distortion is detailed in Appendix A. Figure 3.4 shows

lens distortion for a typical off-the-shelf web camera.
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Figure 3.4: Lens Distortion Detail

By examining the distortion model in Appendix A, we see that it is dependent on a

point’s position with respect to the camera center. Thus we use the radius as an indicator

of potential distortion:

Ri
j = ((uj − cx)2 + (vj − cy)2)

1
2 (3.4)

where [uj vj]
T is the location of point Pj in the camera’s image plane and [cx cy]

T

represents the camera principal point, as defined in Appendix A.
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3.3.5 Relative View Angle

When two (or more) nodes are required for an application, their relative positions

with respect to the point or object of interest may affect their utility for the applica-

tion. Besides the previously defined factors, we look at the nodes’ relative view angle.

Assuming that both nodes i and k can see the point (otherwise we wouldn’t be consid-

ering them for any application involving the point), we define their relative view angle

θikj with respect to a point Pj as:

θikj = cos−1

(
(Ci − Pj) · (Ck − Pj)
‖Ci − Pj‖‖Ck − Pj‖

)
(3.5)

where Ci is the center of camera i and Ck is the center of camera k. This angle is

illustrated in Figure 3.5.

Figure 3.5: Relative View Angle Definition
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3.4 Sensor Selection Scoring for Point Localization

As discussed previously, different applications have different criteria for what con-

stitutes a ”best” view of a person, point, or object. It is unlikely that any single factor

discussed here will serve any application perfectly. Rather, customized scores can be

assembled after exploring how each factor might affect an application.

Here, we present a sensor selection score for the application of point localization

in a sensor network. The process of point localization is discussed in Appendix B.

Our score takes into account how the previously discussed selection factors affect the

localization output.

3.4.1 Number of Sensing Nodes

It is natural to try and apply the more is better rule when working with sensing and

especially cameras. However, as discussed earlier we have the conflicting requirement

of minimizing the number of sensing nodes assigned to each tracking task. Thus we

seek to maximize the accuracy of our process while still minimizing the number of

nodes involved.

To illustrate the effect of the number of sensing nodes on localization error, we set

up a simulation in Matlab. The simulation consists of 100 cameras placed uniformly

around a circular space of radius 10 meters and shown in Figure 3.6. The intrinsic
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parameters are based on actual parameters of the cameras in VISNET, with a 640 by

480 image resolution and a centered principal point. The focal lengths are set to 800

and the distortion parameters are taken from one of the VISNET nodes.

The center point of the circle was projected into each camera with additive zero-

mean Gaussian noise with variance 5 pixels. For each N ∈ [1, 20] a random grouping

of N cameras was chosen and the point [0 0 0]T was localized and its error calculated.

This grouping and localization was performed 1000 times for each N .
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(a) Overhead View (b) Orthographic View

Figure 3.6: Matlab Camera Network Simulation Layout

Figure 3.7 shows the results of the simulation. We see a definite descrease in the

the mean error as more nodes are used for localization. Figure 3.8 shows the error

distribution for N = 2, N = 3, N = 4, and N = 5. For the two camera case, we
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see that while the majority of the error is centered around 100mm, the upper tail of

the distribution extends to the maximum of nearly 20 meters, drastically increasing the

mean.
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Figure 3.7: 3D Localization Error vs. Number of Cameras

This experiment was repeated using the VISNET system with the results shown in

Figure 3.9. We note that the minimum error is influenced by the fact that asN increases,

we have available fewer and fewer groupings of N cameras until N = 10 where we

have just one grouping. Still, we see a similar trend for both the error versus the number

of cameras and the error distribution for values of N .

Based upon the resulting error histograms, we see that even with two nodes we can

achieve minimal localization error by careful choice of the nodes. Thus we focus on

efforts on answering the question “which two nodes are the best for localizing a given

point?”
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Figure 3.8: 3D Localization Error Distributions

3.4.2 Visibility and Occlusion Scores

The visibility of a point in a sensor is an obvious requirement for any application

involving both. We define our visibility scores of a point Pj in camera i as:

Ψi,V
j = V i

j (3.6)
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Figure 3.9: VISNET 3D Localization Error vs. Number of Cameras

and

Ψi,O
j = Oi

j (3.7)

3.4.3 Point Range Score

Because 3D localization involves projecting a line from each camera’s center through

its local image projection of the 3D point, the process is susceptible to image noise.

This image noise is “projected” outward into space, as illustrated by Figure 3.10. Thus

we see that even with constant image noise, a point further away from the camera is

more likely to experience localization error.

To demonstrate the effect of point range on localization error, a camera network

simulation was built where camera location with respect to a point was varied. The
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Figure 3.10: Projection of Image Plane Uncertainty

point was projected noisily into two cameras and then localized using the image posi-

tions. Figure 3.11 shows the localization error plotted versus point range.
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Figure 3.11: 3D Localization Error vs. Point Range

We see that localization error increases linearly with range from the sensing nodes.

Based upon this relationship, we define our point range score as:
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Ψi,D
j = 1−

Di
j

4 · dmax
(3.8)

where dmax is the maximum desired range, which is usually equal to the maximum

effective range of the camera. The range score is shown in Figure 3.12.
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Figure 3.12: Point Range Score

3.4.4 Frame Position Score

It is easy to see that the use of points near the camera edge could introduce signifi-

cant distortion into the localization process. However, by undisorting 2D object points

prior to the localization process (as detailed in Appendix B), we can significantly reduce

the localization error. Figure 3.13 shows the localization error for a pair of cameras as

the point location is varied from the center (experiencing minimal lens distortion) to

the edge (experiencing maximum lens distortion). Figure 3.13(a) shows the error with-
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out point undistortion and Figure 3.13(b) shows the error after first undistorting the 2D

points.
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(a) Error Without Distortion Correction
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(b) Error With Distortion Correction

Figure 3.13: 3D Localization Error vs. Radius

We see that with proper correction of the lens distortion, only points on the extreme

edges of the image contribute additional error to the localization process, and even then

the error is minimal. Thus we define a point’s confidence with respect to its position in

the frame as:

Ψi,R
j = 1−

(
Ri
j

2 ·Rmax

)4

(3.9)

The image position (radius) score is shown in Figure 3.14.
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Figure 3.14: Point Radius Score

3.4.5 Relative View Angle Score

As described in Appendix B, the process of point localization with two cameras

involves finding the intersection (or closest point thereto) of two lines in space. These

two lines are constructed using the node-level point position information and thus is

subject to imaging, segmentation, and localization noise. Assuming this noise to be

stationary, we examine the effect of the relative view angle of the sensing cameras on

the localization error.

If we model the image 2D localization error as an isotropic Gaussian random vari-

able, the lines drawn out into space for 3D localization are characterized by a “cone”

of uncertainty. This concept is illustrated in two dimensions in Figure 3.15(a). When

computing the intersection of two similarly-constructed lines, as shown in the figure,

we are presented with an intersection of the lines’ uncertainty. In this scenario, a change
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(due to noise) in the image position will have an effect on the estimate of the point P .

Figure 3.15(b) shows another scenario where the cameras are situated more closely

together and thus even small changes in their image position estimates will result in

larger changes in the estimate for P . This error is often encountered when using short

baseline stereo camera setups.

(a) 2 Cameras With Large Relative View Angle (b) 2 Cameras with Small Relative Angle

Figure 3.15: Camera Localization Uncertainty

In order to examine the error produced by the relative camera positions, we simu-

lated a two-camera network with varying relative view angle between the nodes and the

point to be localized. The relative view angle is defined in Equation 3.5.

Figure 3.16 shows the results of the simulation. The localization error reaches a

minimum at π
2

and maxima near both 0 and π. Figure 3.17 shows the results for a

similar experiment using the VISNET system. While the use of static cameras in the
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system reduces the variation in θikj , we see a similar trend in the localization error,

shown in Figure 3.17.
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(a) Error vs. Relative View Angle
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Figure 3.16: 3D Localization Error vs. Relative View Angle
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Figure 3.17: VISNET Localization Error vs. Relative View Angle
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Based on the error trends observed in both the simulation and the VISNET system,

we define the relative view angle scoring for a specific pair of cameras viewing a point

as:

Ψik,θ
j = 1−

(
2

π
|θikj −

π

2
|
)14

(3.10)

Following the error trend seen in Figure 3.16, the score highly penalizes relative

angles close to π
2
, as seen in Figure 3.18.
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Figure 3.18: Two Camera Relative View Angle Score. Angle indicates deviation from
π
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3.4.6 Combined Sensor Selection Score

We now present the combined selection score for nodes to be used in point localiza-

tion. First, we look at the scoring of single nodes based upon their Visibility, Occlusion,

Range, and Radius scores. We define this combined score as:

76



Chapter 3. Sensor Selection for Localization in Camera Sensor Networks

Ψi,L
j = Ψi,V

j Ψi,O
j

(
wRΨi,R

j + wDΨi,D
j

)
(3.11)

where wR + wD = 1.

As they are binary, Ψi,V
j and Ψi,O

j are multiplied, causing the resulting score to be

zero if either is zero. They are multiplied by a weighted sum of Ψi,R
j and Ψi,D

j . As the

range of a point has more effect on localization error than its radius, we weight Ψi,D
j

higher. Through experimentation, we found that values of wR = 0.4 and wD = 0.6.

For a pair of cameras (i and k), we now have the scores Ψi,L
j and Ψk,L

j , respectively,

as well as their relative view angle score, Ψik,θ
j . In order to arrive at a single score for

the pair as well as to incorporate the relative view angle into our score, we calculate our

pairwise localization score as:

Ψik,Pair
j =

wu
2

(Ψi,L
j + Ψk,L

j ) + wbΨ
ik,θ
j (3.12)

where wu is the unary score weight, wb is the binary score weight, and wu + wb = 1.

Experimentation led us to set wb = 0.6 and wu = 0.4.

In order to test our selection score, we ran simulations in Matlab using 3 different

network configurations. Each simulation consisted of a multicamera network and a

single object moving through the network. The network layouts are shown in Figure

3.19.
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Figure 3.19: Point Localization Simulation Layouts

At each point along the object path, we localized the point using 6 different sensor

selection methods, detailed below:

• All Cameras: All sensing nodes were used for localization

• Random 2: Two sensing nodes chosen at random were used for localization

• Random 3: Three sensing nodes chosen at random were used for localization
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• Distance 2: The two nearest nodes were used for localization

• Distance 3: The three nearest nodes were used for localization

• ΨPair: Two nodes chosen using the selection score defined in Equation 3.12 were

used for localization

Table 3.1 details the results from these experiments. We see that using our localiza-

tion selection score, we obtain improvement over random selection of 2 and 3 random

nodes as well as over choosing the 2 or 3 nearest nodes. In one case, our method

actually performed better, on average, than using all sensing cameras. In addition to

the mean error, we were able to significantly reduce the error variance over random

selection and nearest node selection.

We note here that our selection process outperformed using all sensing cameras in

the circular simulation. Intuition leads us to attribute this to the nature of the circular

layout - where the best relative view angle of a sensing group is typically less than ideal.

One future direction for this work would be to explore the effect of camera layout on

the localization error bounds.

The localization node selection experiment was then duplicated using the VISNET

system, utilizing a set of 90 ground truth points in the room. The points were collected

by moving a tripod with colored points around the room to specified positions, as shown
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Square Circular Rectangular
Method µError σError µError σError µError σError

All Cameras 72 34 238 114 55 27
Random 2 408 485 426 622 492 606
Random 3 256 257 278 168 298 293
Nearest 2 305 252 345 295 344 313
Nearest 3 219 209 193 169 250 163
ΨPair 99 65 135 74 141 139

Table 3.1: Simulated Localization Results

in Figure 2.16. The points were then hand-selected in each video frame at each node in

order to reduce the amount of imaging and 2D localization noise.

Using our selection process, we localized the points in the room using the two

best scoring nodes. As with the simulation, our selection score outperformed the other

localization methods, including using all cameras. However, the error variance was

higher than when utilizing all cameras. The results are shown in Table 3.2.

Method µError σError

All Cameras 174 134
Random 2 224 229
Random 3 184 159
Nearest 2 153 200
Nearest 3 161 153
ΨPair 107 148

Table 3.2: VISNET Selection Experiment Results
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3.5 Sensor Assignment Continuity

The sensor selection approach discussed so far has proven useful in reducing the

number of active nodes at any single point in time. However, its momentary nature

makes it susceptible to assignment fluctuations in cases where nodes’ scores are very

close to each other. For efficient system operation, we plan to minimize the number of

camera transitions, or handoffs and thus introduce the idea of sensor assignment inertia.

3.5.1 Sensor Assignment Inertia

Inertia is defined as a resistance to change in state of motion. Thus our idea of node

assignment inertia describes our desire to retain a node assignment for as long as pos-

sible, while still keeping with our goal of minimizing localization error. To accomplish

this, we introduce an Inertia score for each node pair, defined as:

Ψik,Inertia
j =



1.0 Both node i and node k are currently assigned

0.95 Either node i or node k (but not both) is currently assigned

0.9 otherwise

(3.13)
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which rewards assignments where one or both sensors is already assigned to the local-

ization task. This score is applied to the pairwise localization score, defined in Equation

3.12, resulting in a total selection score of:

Ψik,Total
j = Ψik,Inertia

j Ψik,Pair
j (3.14)

3.5.2 Continuity Demonstration

In order to demonstrate our selection process, we used the rectangular camera net-

work simulation shown in Figure 3.19(c). The point path was tracked and node assign-

ments were made based on path prediction information provided by the tracker. Figure

3.20(a) shows the node assignments over time when all sensing nodes were used for

localization. We see that there is significant activity in the network with this method.

Figure 3.20(b) shows the node activity when the two nearest nodes are used, and Figure

3.20(c) shows the activity when the 3 nearest nodes are used for localization. Again,

we see that a significant number of nodes are activated over the course of the tracking.

Figure 3.20(d) shows the results from our combination selection score defined in

Equation 3.12. Again, we see significant node activity during the tracking process.

Finally, using the inertial node score defined in Equation 3.14, we arrived at the results

shown in Figure 3.20(e). We see a significant reduction in both the number of active
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(a) All Sensing Nodes

(b) 2 Nearest Nodes

(c) 3 Nearest Nodes

(d) Best Score Pair

(e) Best Score Pair With Inertia Score

Figure 3.20: Sensor Assignment Output
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nodes and the number of activity transitions. Examining the error, we see only a small

increase in the localization error as compared to the non-inertial optimal scoring.

Table 3.3 summarizes the results from this experiment. We see that our selection

process significantly reduces the number of nodes utilized as well as the number of node

handoffs performed during the tracking process. Compared to our momentary selection

process, node activity is reduced by 78%. While the localization error increases slightly

with the inertial assignment, it is not significant when compared to the reduction in

sensor activity.

Method Nodes Node
Method Used Transitions µError σError

All Cameras 78 90 55 27
Nearest 2 35 37 344 313
Nearest 3 44 43 250 163
ΨCombined 59 41 141 139
ΨTotal 13 15 165 115

Table 3.3: Inertial Node Assignment Results

3.6 Summary

In this chapter, we discussed the factors affecting node utility for tracking in a cam-

era network. These factors are:

• Point visibility
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• Point range

• Point location in the sensing camera’s image

• Relative view angle of two nodes with respect to the point

We then discussed the use of these factors for constructing a utility score for point

localization. By examining the effect each factor has on point localization, we are able

to construct an overall node scoring system aimed at minimizing 3D localization error.

We then demonstrated our localization score both in simulation and with real data

from the VISNET system. Using our node utility score, we were able to reduce the

mean localization error as well as the error variance as compared to localization using

random groupings of 2 and 3 nodes as well as groupings of the 2 and 3 nearest nodes.

In some cases, we were able to reduce the error below that of when all sensing cameras

were used for localization.

In the interest of continuity of sensor assignment, we introduced an inertial selection

score which factors nodes which are already assigned to a tracking task. When used

with our node utility score, this assignment inertia provides a significant decrease in

node activity.

85



Chapter 4

Active Multiview Appearance

Modeling in Camera Sensor Networks

4.1 Introduction

The detection, identification, location, and tracking of any interesting object or phe-

nomenon is a common application for camera networks. The surveillance of humans,

however, is by far the most popular (and, to many, the most unpopular) application of

such networks. Applications of human surveillance include detection, tracking, identi-

fication, activity recognition, and left object detection.

One challenge in visual surveillance is how to correlate a person viewed in different

cameras. In an ideal situation, one would know a priori the appearance of each person
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in the network, making identification a simple task. Unfortunately, this is not typically

the case and each person’s appearance must be learned. A companion to the appear-

ance modeling problem is the question of how we represent a person’s appearance in a

compact manner.

In this chapter, we discuss the learning of appearance models of tracked humans.

Specifically, we address how to rank collected data from a camera network in order to

obtain the best possible representation of the person. In addition, we address the storage

and transmission issues involved with this process.

4.1.1 Motivation

In order to motivate our work, we begin with the scenario of a large-scale multicam-

era network in a setting such as an office building. Our primary task is to track people

through the network, creating a database of movement and perhaps activity. This task

presents us with with the following problems:

• In a multicamera network, it is often the case that two (or more) cameras see a

person, but from different viewing angles. Depending on the person’s appearance

(mainly, his or her clothing), the different viewing angles may not be correlated

and thus view correspondence is not guaranteed.
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• In a multicamera network where there are disjoint groupings of cameras, such as

on different floors of a building, we need a way to connect a person’s appearance

and activity in multiple clusters. We seek an appearance model which can aid in

correlating tracked people in the different clusters.

• In a real-world scenario, we do not have the luxury of having a priori appearance

information about tracked people. Instead, we must learn an appearance model as

the person moves through the system. Thus we require a method for appearance

data collection and scoring.

4.1.2 Assumptions

In order to focus on the modeling process, we make some assumptions about the

system, which are detailed below.

Calibrated Network

Our first assumption is that we are dealing with a calibrated network of camera

nodes. This calibration provides knowledge about the location and pose of each camera

with respect to some global reference. This knowledge allows us to localize and track

moving objects or people in real-world coordinates.
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Object Tracking

We assume that reliable position and velocity data for each tracked person is avail-

able. Any issues stemming from occlusion or other complex situations are assumed to

be addressed by the tracker. Another option would be to suspend the modeling process

during times of occlusion or other uncertainty. The localization of points in a camera

network is discussed in Appendix B.

Color Calibration

We assume that we have available to us a transformation from each node into a

global color space. In order to combine and/or compare tracked person color features

we must be confident that the comparison is meaningful. With this comes the assump-

tion that illumination variations are also corrected. These issues are addressed in works

such as [50] and [34].

4.2 Related Work

The modeling of tracked people in video varies over a wide spectrum of complexity.

A chosen model is essentially a combination of features and is constrained only by the

hardware on which the process is run. Here, we briefly discuss work in the area of
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appearance modeling. We first discuss modeling in a single camera and then discuss

modeling in multicamera systems.

4.2.1 Single Camera Object Modeling

In order to model a tracked person, we must first concern ourselves with the de-

tection of said person. Some methods detect and combine simple features in order to

detect the human shape [82]. [68] finds the edges in a video frame, detects rectangular

shapes, and combines them to build articulated human models.

Another approach to human modeling is to first use motion detection to segment

areas or objects of interest in video. [72] uses corner features to choose strong points

to track. These points are then tracked using an optical flow approximation. Optical

flow essentially tries to estimate a point’s change in position from one frame to the

next. When this change is greater than some threshold, the point is considered to be of

interest and further analysis can be performed.

Other detection methods such as background subtraction [44], [49], [53], [67], [74],

[78], [55] yield what are known as “blobs” which can be thought of as the silhouettes of

moving objects or people. These blobs can then be described and tracked by any com-

bination of their various features. The simplest is a single point typically representing

either the centroid or the top of the head. Geometric information is often used to sup-

plement the position information. The person’s silhouette bounding box is used by [40]
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as an additional tracking feature. Similarly, [73] uses the height and width aspect ratio

to model a tracked blob. Instead of the bounding box, [52] and [88] model a tracked

person with an ellipse.

In addition to position and geometric features, color information is commonly used

to enhance the object model. This is an obvious extension as humans often use clothing,

hair, and skin color to differentiate people. [52] uses the average color of the person for

tracking purposes. The use of color for identification is extended by [90] which utilizes

full RGB histogram information (quantized to 8 x 8 x 8 bins).

Texture information is also used to represent tracked people and objects. [18] uses

correlograms, an extension of co-occurence matrices for color images, in addition to

HSV histogram information. Edge information from inside the silhouettes is used in

[41] to describe the tracked people . Both the Dominant Color Descriptor and the Edge

Direction Histogram (defined in the MPEG-7 standard [70]) are used in [85] to describe

tracked humans for retrieval purposes.

In lieu of using raw data, it has become popular to fit generative models to visual

data in order to calculate parametric representations of tracked objects. By far the

most popular method uses Gaussian Mixture Models (GMMs) for these representations.

Mixture models are commonly used in image retrieval [20], [39], [38], [69] but have

also made their way into tracking applications. [56] uses 2D mixture models to to track

objects in video. [83] uses models spatial, color, and texture information with mixture
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models for tracking in single camera video. [80] uses mixture models in a mean shift

tracking framework.

4.2.2 Multiple Camera Person Modeling

The use of multicamera networks presents new challenges to human surveillance.

Aside from the obvious problem of calibration and 3D reconstruction, we are presented

with the problem of identifying a person detected in one camera as the person appearing

in another. Surprisingly, there is not a lot of work which directly addresses this issue.

In order to get a more accurate appearance model of a tracked person, [60] simply

takes the mean color about all viewpoints of the person. The person is segmented into

top and bottom regions, preserving some structure, but no care is taken to preserve

view-specific features. Inter-camera color calibration is addressed by [50] but does

not address multiple-view modeling of the tracked people. Their model consists of a

separate histogram for the R, G, and B channels but again does not account for view-

specific variation. [33] models tracked people in a multicamera environment using R,

G, and B color distributions but again, does not address multiple viewpoints.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.1: Multiview Appearance Model Definition. Views (a) through (h) represent
view angles of 0 through 7π

4

4.3 Multiple View Appearance Modeling

We are interested in an appearance model which will capture view-dependent varia-

tion in tracked humans. This is important for camera sensor networks for identification

continuity throughout the network. Figure 4.1 shows an example of a person whose

identification might hinge on the capturing of view-dependent appearance variations.

A single, averaged color model would not provide the discriminatory power available

with a multiview model. We demonstrated this power with our work in [66]. In addi-

tion, a compact model will allow efficient transmission and storage of people’s appear-

ance and activity within the network. While ideally we would have full video frames

transmitted and stored, our bandwidth and power requirements force us to seek more

efficient representations.

We define an 8-view model for our purposes. These views are defined in Figure 4.1.

Ideally, we would have a person stand before a camera and spin so that the data could
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be properly captured. However, in a realistic scenario this is impossible. Rather, we

are interested in the automatic collection of these views of a person as they are tracked.

In addition, we are interested in acquiring the best possible view from each angle of

the person. To this end, we have developed a scoring system by which a view can be

ranked based upon several factors affecting its quality and usefulness for our modeling

purposes.

4.4 View Quality Assessment For Appearance Model-

ing

When collecting visual data such as is found in surveillance networks, it is often

necessary to assign a quality or utility value to the data. Because a lot of data in such

systems is of little or no use, this value is used to “screen” the data so that only the most

useful is retained. In the case of appearance modeling of humans, several factors affect

the quality of the data. Here, we develop a view assessment score for human appearance

modeling. For this process, we make the assumption that we have reliable calibration

data, as discussed in Chapter 2. Additionally, we assume that we have available reliable

state data about the person. Specifically, we require the person’s location P and his or

her velocity V . This information would be provided by a tracking process and could

result from the selection and localization process presented in Chapter 3.
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Figure 4.2: Azimuth Definition

4.4.1 Azimuth

When dealing with human surveillance, we are typically very concerned with which

part of the person we are viewing. Most applications concern themselves only with

frontal views, for obvious reasons. Face detectors are a popular method to assess the

view of the person, as faces are by far the most interesting part of the body in surveil-

lance applications.

We, however, take a more active approach and use tracking information to estimate

the view angle in order to collect the proper data to populate our multiview appearance

model, described above and shown in Figure 4.1. This view angle variation about the

person’s vertical axis is known as the Azimuth, and is illustrated in Figure 4.2.

The Azimuth is calculated from the camera pose and the person’s current state in-

formation as:
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Azimuth = cos−1

(
(Cxy − Pxy) · (Vxy)
‖Cxy − Pxy‖‖Vxy‖

)
(4.1)

with an extra check to obtain the direction of the azimuth from the reference.

As we are interested in several different poses of the modeled person, we define our

azimuth score as dependent on the desired view, θAz,desired:

ΨAz = e
−

(θAz−θAz,desired)2

σ2
Az (4.2)

where σAz is a tuning parameter for adjusting the azimuth tolerance.

4.4.2 Range

As with most applications, we require our data to be of the highest quality available.

With vision and imaging, this translates to image resolution. The higher the resolution

of an image, the more data is contained within it. Because of our assumption that the

camera nodes are stationary and fitted with fixed lenses, we have no control over the

resolution of the video. Thus we must score the images collected by each sensor based

on the resolution of the captured person. Figure 4.3 illustrates two extremes of this

situation taken from the VISNET system.

As discussed previously, resolution varies linearly with the range of the person from

the camera, thus we can use a person’s range as input to our scoring process. We define

the range score as:
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(a) Low Resolution (b) High Resolution

Figure 4.3: Range / Resolution Variation Examples

ΨD = 1− min(D, dmax)

4 · dmax
(4.3)

where D is the distance from the point to the camera center, dmax represents the max-

imum useful distance or, conversely, the minimum useful resolution of an image of a

person. This can be easily calculated using the geometry of the camera and the mini-

mum desired resolution (in pixels) of the person.

4.4.3 Zenith

Another factor affecting the quality of view in camera networks is the zenith. The

zenith describes the elevation angle of the camera with respect to the point or person

it is viewing, and is illustrated in Figure 4.4. Figure 4.5 shows two examples of zenith

variation when viewing people.
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Figure 4.4: Zenith Definition

(a) Zero Zenith (b) Positive Zenith

Figure 4.5: Zenith Variation Examples
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While some experimental setups ([84]) assume side-mounted sensors (giving a con-

stant zenith of zero), a more realistic scenario consists of high-mounted cameras. As

such, we will assign a score which will favor sensors whose zenith is nearer zero. We

define the zenith score as:

ΨZen = e
− (θZen)2

σ2
Zen (4.4)

where θZen is defined as:

θZen = cos−1

(
(C − P ) · (Cxy − Pxy)
‖C − P‖‖Cxy − Pxy‖

)
(4.5)

where Cxy is the projection of the camera center onto the ground plane (here, z = 0),

Pxy is the projection of the point P onto the ground plane, V is the current velocity

of the point, and Vxy is the person’s velocity projection onto the ground plane. σZen

represents a tuning parameter used to adjust the tolerance of the desired zenith value.

4.4.4 Radius

As with the point tracking scenario, the position of the person within the image

affects the quality of the data. Aside from the obvious effect of lens distortion, the pose

is more difficult to assess when the person is near the sides of the image. Figure 4.6

illustrates this with several examples. We see that when the person is nearer the edge of

the image, the pose is more skewed as he is facing the camera center, not perpendicular
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Figure 4.6: Radius Variation

to the image plane. While the difference is not drastic, we still prefer a more centered

pose when possible.

Based on this, we define our radius (image position) score as:

Ψi,R = 1−
(
min(Ri

C , Rmax)

2 ·Rmax

)4

(4.6)

where Ri
C is the distance of the person’s centroid from the image center, given by the

camera’s principle point.

4.4.5 Visibility

Because we are not dealing with a point object, we are concerned with whether or

not the full person is visible in the frame. To ensure this visibility, we require that both

the head and the feet are visible in the camera. We also combine the occlusion measure

100



Chapter 4. Active Multiview Appearance Modeling in Camera Sensor Networks

(a) Head Not Visible (b) Feet Not Visible (c) Occlusion

Figure 4.7: Visibility Scenarios

in this score. If the person is partially or completely occluded by either another person,

a permanent structure, or the edge of the frame, we consider him or her to be occluded

and thus the data unusable. Figure 4.7 illustrates these 3 scenarios.

We define our visibility score as:

Ψi,V =


1 The person’s head and feet are visible in camera i

0 otherwise

(4.7)

4.4.6 Combined View Score

Having defined the different criteria which affect view quality and their correspond-

ing scores, we want a single score which will allow us to easily rank the images col-

lected in surveillance system. We define our overall view score as:

ΨV iew = ΨV ΨAzΨZen(wDΨD + wRΨR) (4.8)
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As it is not dependent on actual image analysis, this measure allows us to assign

scores to video based solely on the location and pose of the tracked person.

4.5 Data Collection

In a surveillance scenario, we would like to collect our appearance information as

soon as possible so that the model is available to other applications. When a person

is discovered, the system should immediately begin tracking him or her, providing po-

sition and velocity information to a central controller. As described in Chapter 2, this

central controller need not be a dedicated node, but only a process which can fuse local

data and perhaps direct local operations.

4.5.1 Tracking Process

Our data collection is driven by the actual tracking process which estimates the state

of the people in the system. We require position and velocity information for our view

scoring. We model our tracking architecture as a group of sensing nodes reporting to the

tracking process, as shown in Figure 4.8. 3D localization is accomplished as described

in Appendix B. Tracking can be performed using standard tools such as a Kalman filter

or particle filter.
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Figure 4.8: System Tracking Architecture

As the person is tracked, the tracker uses the path information to predict the view

score for each camera within viewing range. When a desirable score is predicted, the

sensing node is assigned the task of data collection and will capture and return the

appropriate video frames. Algorithm 5 summarizes the data collection process.

4.6 Model Representation

Rather than transmitting full or even cropped video frames through the camera net-

work, we are interested in a more compact appearance representation which is minimal

in size yet still retains important visual information about the modeled person. We used

standard MPEG-7 descriptors in [66], but are interested in more adaptable and more

compact format. We find these features with Gaussian mixture models.
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while tracking == TRUE do
Receive Data From Nodes()

Localize Point()

Compute State Prediction()

Compute View Score Predictions()

if predicted score > current score then
Send Collection Instructions()

end

end

Algorithm 5: Best View Collection Process

4.6.1 Person Segmentation

As discussed in Chapter 2, we segment people from our video using background

subtraction. As we currently operate indoors in a somewhat controlled environment,

this method has proven sufficient for our tracking and modeling purposes. Figure 4.9

shows that the background subtraction output yields a sufficient foreground mask. Fig-

ure 4.9(a) shows the video frame and Figure 4.9(b) shows the resulting foreground

mask. It is this mask which we use to guide our modeling process, as it indicates the

area of the frame which is the person.
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(a) Current Image (b) Foreground Mask

Figure 4.9: Background Subtraction Example

4.6.2 Gaussian Mixture Modeling

Due to their ease of use and their wide applicability, Gaussian Mixture Models

(GMMs) have been used extensively for the modeling of many types of data, including

imagery [38] and audio data [61]. A GMM models a data distribution as a mixture, or

summation, of several weighted Gaussian models. The general notation for a GMM is:

p(x) =
K∑
i=1

πip(x|i) (4.9)

where
∑

i πi = 1. πi is the weight assigned to mixture component i, which is also

the probability that a point x was generated from mixture component i. Each mixture

component is represented by the probability:
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p(x|i) =
1

(2π)
N
2 |Σi|

1
2

e−
1
2

(x−µi)Σ−1
i (x−µi)T (4.10)

The choice of color space for our model is important, as we prefer that the model

have meaning and, more importantly, the comparison of models be as truly discrimi-

native as possible. We base our choice of color space on prior work in image retrieval

[38] [69]. The use of the CIELAB and CIELUV color spaces (relatives of each other)

offer the best discrimination of colors as compared to the human visual system. [59],

[35], and [1] provide more information on the various color spaces.

Figure 4.10 provides a more detailed view of a person’s appearance data (pixel

color) in the CIELUV color space, with pairwise groupings of color channels showing

the clustering of the data.

4.6.3 Joint Spatial Appearance Model

In order to preserve structural information from the modeled person, we include

in our model spatial information from each pixel. The works in [38], [20], and others

have shown that by incorporating spatial information with the color information, better

differentiation is achieved. Due to the non-rigidity of the human silhouette, pixel lo-

cation in the horizontal direction is variable and thus we use only vertical position of

each pixel. The vertical pixel location is normalized to lie between 0 (the head) and

1 (the feet). This partitioning is akin to segmenting the body into regions and model-
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Figure 4.10: CIELUV Color Space Detail. Each row and column indicates one dimen-
sion of the colorspace. Here, the dimensions are L, U, and V (left to right) and L, U,
and V (top to bottom). Each box shows the distribution of one feature versus another
while the (i, j) boxes where i = j show the histogram of each dimension.
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Figure 4.11: Joint Spatial and Color Pixel Distribution Detail. Each row and column
indicates one dimension of the feature space. Here, the features are L, U, V, and position
(left to right) and L, U, V, and position (top to bottom). Each box shows the distribution
of one feature versus another while the (i, j) boxes where i = j show the histogram of
each dimension.

ing each individually, as in [23] and [66], but better encodes the feature variation, as

in [38]. Figure 4.11 shows an example of the data distribution for all channels when

spatial information is used to describe a tracked person.

4.6.4 Model Generation

With the color space chosen, we now move on to fitting a Gaussian Mixture Model

to our data in order to significantly reduce the storage / transmission requirements.

108



Chapter 4. Active Multiview Appearance Modeling in Camera Sensor Networks

Expectation Maximization (EM) is commonly used for this stage. The EM process

functions to find unknown model parameters in a system. In the case of mixture model

fitting, EM finds the parameters ζ = {µi,Σi, πi}Ki=1 of the mixture components in our

model.

Expectation Maximization is a two-step iterative process which alternates the Ex-

pectation Step (E-Step) with the Maximization Step (M-Step) until a stop condition

is met. The E-Step computes an expectation of the likelihood based on the current

parameter estimate (Equation 4.11). The M-Step of the process utilizes the output of

the E-Step to compute the maximum likelihood estimates of the parameters (Equations

4.12-4.14). The steps are alternated until a stop condition - often a minimal change in

the likelihood - is reached. The result of the Expectation Maximization process is a

model, in the form of the parameters ζ = {µi,Σi, πi}Ki=1, describing the distribution of

data of our detected person.

qji =
pi(xj)πi∑N
k=1 pk(xj)πk

(4.11)

πi =

∑N
j=1 qji

N
(4.12)

µi =

∑N
j=1 qjixj

N
(4.13)
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Σi =

∑N
j=1 qji(xj − µi)(xj − µi)T

N
(4.14)

Silhouette Edge Point Suppression

Because the segmentation output can be noisy, binary image morphology is often

used to fill gaps or holes in a detected silhouette. Because of the noise and subsequent

processing, the exact edges of the tracked person are often themselves noisy. As a

precaution, we suppress the effects of these edge points in order to produce a more

reliable appearance model.

This suppression of edge data is sometimes used in color-based tracking [28], [19],

[90]. In the first two works, a circular kernel, often the Epanechnikov kernel, is applied

to a tracked patch of the image. In the case of a non-square region, the kernel is resized

accordingly. Still, the kernel is defined over the entire rectangular region and does

not take into account the shape or pose of the tracked object or person and thus the

tracked object’s shape is assumed to be elliptical. [90] uses, instead, a Gaussian kernel

to weight the pixels near the edge of the tracked region.

However, when modeling a tracked person, we would like to exclude all non-person

data in order to obtain a strong model of the person. Because the shape and pose of the

tracked person varies as they move, we need a weighting kernel which adapts with

this variation. [22] introduced the use of the normalized chamfer distance transform
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for generating a silhouette-guided weighting kernel for use in a mean-shift tracking

framework. The distance transform provides a measure of a pixel’s distance from the

nearest edge - in this case the edge of the silhouette.

We desire a more even weighting of the interior pixel data, however, and want to

suppress only the extreme edges of the silhouette. To this end, we introduce a piecewise

weighting kernel for our modeling process. This kernel is based upon (and is actually

a function of) the distance transform, but is applied only to the pixels near the edge of

the silhouette. We define our kernel as:

K(xi) =



0 d(xi) ≤ 0

1
2
sin(π(

d− de
2

de
)) + 1

2
0 < d(xi) ≤ de

1 d(xi) > de

(4.15)

where de is the desired width of the edge weighting of the silhouette, defined as a

fraction of the bounding box width. The kernel profile is shown in Figure 4.12. Figure

4.13 shows an example of the data weighting kernel for a typical silhouette.

Weighted Expectation Maximization

As in [28], the use of the weighting kernel on the pixel data requires the modification

of our modeling process. In our case, we must modify the Expectation Maximization

process in order to account for the weights. The derivation of the Weighted EM (WEM)
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Figure 4.12: Silhouette Weighting Kernel Profile
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Figure 4.13: Silhouette-Guided Weighting Kernel. (a) Foreground Mask, (b) Weight-
ing Kernel Overhead View, (c) Weighting Kernel Orthographic View
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is derived by approaching the process from the viewpoint of inserting additional copies

of the higher-weighted data. The resulting E-Step and M-Step equations of the WEM

process are given in Equations 4.16 and 4.17-4.19, respectively. Here, λj represents the

weight assigned to pixel j by our weighting kernel.

qji =
pi(xj)πi∑N
k=1 pk(xj)πk

(4.16)

πi =

∑N
j=1 λjqji∑N
j=1 λj

(4.17)

µi =

∑N
j=1 λjqjixj∑N

j=1 λj
(4.18)

Σi =

∑N
j=1 λjqji(xj − µi)(xj − µi)T∑N

j=1 λj
(4.19)

Figure 4.14 shows a comparison of the resulting pixel distribution of the WEM pro-

cess as compared to regular EM. We see that by reducing the influence of the potentially

errant border pixels, the distribution more closely resembles that calculated using the

ground truth silhouette.
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(a) Segmented Person
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(c) U Channel
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(d) V Channel

Figure 4.14: Weighted Expectation Maximization Example. Color channels are sepa-
rated for easier comparison.
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4.6.5 Model Order Selection

When fitting mixture models to data using the Expectation Maximization process,

we must specify in advance the desired model order. In some applications ([89]) the

model order is determined manually via prior investigation of the object appearance.

In others, mixture component probabilities are ordered and summed from greatest to

lowest with components left after some threshold sum is reached are discarded [83].

We desire a more systematic approach which will optimize the model fit to our data.

We utilize the Minimum Description Length (MDL) criterion, described in [17]. The

MDL criterion is defined as:

MDL(K, ζ) = −log(L(x|K, ζ) +
1

2
L · log(NM) (4.20)

where L(x|K, ζ) is the likelihood given the model orderK and the model parameters ζ .

N is the number of data points, M is the data dimension, and L represents the number

of parameters required to represent the model. L is defined as:

L = K

(
1 +M +

M(M + 1)

2

)
+ 1 (4.21)

The first term of Equation 4.20 signifies the model fit to the data and (naturally)

decreases with increasing K. The second term represents a penalty term, penalizing

higher order models. The MDL criterion has similar form to the Akaike Information
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Criterion (AIC) and the Bayes Information Criterion (BIC), with the penalty term vary-

ing between the different criteria [75]. The use of the MDL criterion ensures that we

have the best model fit for the current data. Our experiments returned typical model

orders between 12 and 15.

4.6.6 Mixture Model Distance Measure

In order to properly differentiate objects represented by a mixture model, we seek

a proper measure of similarity. Histogram-based modeling methods such as [27] and

[22] use binwise comparison such as the Bhattacharyya distance. However, with a

parametric model, we no longer have access to raw data and instead seek a distance

measure which will utilize our appearance model.

We adopt as our distance measure the Earth Mover’s Distance (EMD) [69]. The

EMD represents a measure of how much “work” is required to transform one distribu-

tion into another. The name comes from the analogy of using one distribution, the earth,

to fill in holes represented by the second distribution. The EMD is useful for compar-

ing two objects represented by lists of features, called signatures in most works, which

are not necessarily the same length. In the case of GMMs, the signature is the set of

Gaussian components in the mixture. [69] and [38] demonstrate its use for comparing

mixture model representations of images in a database.
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We adopt as our ground distance the Frèchet distance, used in [38]. The Frèchet

distance between two single Gaussians N1 and N2 is defined as:

dFrechet(N1, N2) =
(
‖µ1 − µ2‖2 + Trace

[
Σ1 + Σ2 − 2 (Σ2Σ1)

1
2

]) 1
2

(4.22)

4.6.7 Multiview Distance Measure

Our distance measure for the multiview appearance model is upon the individual

views’ distances when comparing two models. We define our multiview model distance

measure as:

dMV (M1,M2) = max
θ∈Θ

d(M1(θ),M2(θ)) (4.23)

where Θ is the set of views for which both models have view data. Thus we are only

computing differences when reliable data is available. By taking the maximum dis-

tance, we are looking at the worst view match between the two models.

4.6.8 Results

Using the VISNET system, we collected two video data sets. We refer to them as

the Rectangular set and the Random set, indicating the path of motion of the subject

within the system. The paths walked are shown in Figure 4.15, with the start and finish
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Figure 4.15: View Selection Experiment Paths. Nodes are numbered from the lower
right with Node 1 and proceeding counterclockwise. Green indicates path start and red
indicates path end. The blue mark indicates point 457 in the random sequence.

points indicated in green and red, respectively. As the person is tracked through the

system, we apply our view prediction score from Equation 4.8 in order to rank and

collect the best views of the person.

To demonstrate the functionality of the system, we first present the case for frontal

view only, but will later discuss the results from the other 7 views in our model. Figure

4.16 shows the frontal view score from camera 1 for both data sets. Correlating with

the points in Figure 4.15, we can easily see the evolution of the view score of this node.

Figure 4.17 shows the top 6 frames for the front view from camera 1 with associ-

ated view scores. We see that each provides a clear front view of the tracked person.

Inspection shows that these frames are located near point 457 in the Random sequence,

indicated by a blue dot in Figure 4.15(b).
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(a) Rectangular Path

(b) Random Path

Figure 4.16: Camera 1 Frontal View Scores
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(a) Score: 0.8814 (b) Score: 0.8814 (c) Score: 0.8810

(d) Score: 0.8808 (e) Score: 0.8806 (f) Score: 0.8800

Figure 4.17: Camera 1 Frontal View Scores
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(a) Node: 5 - Score: 0.8900 (b) Node: 5 - Score: 0.8900 (c) Node: 5 - Score: 0.8897

Figure 4.18: Global Best Scores - Rectangular Walk

On the global level, we compare the nodes’ view scores in order to obtain the best

view from any of the nodes. Here, we look at each sequence separately, with the 3

highest scoreing views of each shown in Figures 4.18 and 4.19. We see that the highest-

scoring frame, from camera 5, gives us a large, clear view of the person.

Figure 4.20 summarizes the best views collected for each view angle in our model.

The images shown are cropped but not rescaled, preserving the relative resolution. We

see that they are similar in resolution and most are the maximum possible attainable

given the geometry of the system.

In order to demonstrate the GMM representation and our multiview distance mea-

sure, we performed an experiment with 5 people collected in our system. The front

views are shown in Figure 4.21.

We generated the mixture model for each view using the procedure described in

Section 4.6 . The average mixture model order for the different views was 13. Table

4.1 compares the storage requirements for our model as compared to other options. We
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(a) Node: 8 - Score: 0.8837 (b) Node: 8 - Score: 0.8823 (c) Node: 1 - Score: 0.8814

Figure 4.19: Global Best Scores - Random Walk

Single-View 8-View
Method Size (bytes) Size (bytes)
Raw Pixels 244800 1958400
JPEG Images 27964 223712
RGB 8-Bin 8192 65536
GMM 15 Component 1800 14400

Table 4.1: Model Size Comparison

see that our model is significantly smaller than both sending raw data and the widely-

used mehtod of using RGB histograms.

Figure 4.22 shows the distances of the individual views of the different models as

compared to subject 5. We see that our multiview model successfully captures the

difference between subjects 5 and 4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.20: Global Best Views. Views (a) through (h) represent view angles 0 through
7π
4

, respectively.
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(a) (b) (c) (d) (e)

Figure 4.21: GMM Experiment Test Subjects - Front Views
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Figure 4.22: Multiview Model Distance
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4.7 Summary

In this chapter, we introduced a multiview appearance modeling system for mod-

eling tracked persons in camera networks. Our system is able to predict view quality

based solely on tracking and motion prediction information, eliminating the need for

costly image analysis of each frame. We introduced a view score which is dependent

on:

• View angle (both azimuth and zenith)

• The person’s distance from the camera

• The person’s position within the frame

• The person’s visibility within the frame

We demonstrated our view prediction and collection algorithm on real multicamera

data with both a fixed rectangular path as well as a more random walking path. Our

system returned clear, high-resolution views of the tracked person during operation.

We then introduced a modeling method by which the appearance data is modeled

by a mixture of Gaussians, a common practice in image retrieval. The model allows

efficient transmission and storage of appearance data, an important factor in sensor

networks. As compared to sending cropped images of even RGB histograms, our model

provides a drastic reduction in data size.
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Conclusion

In this dissertation, we discussed issues encountered in camera sensor networks

research. In Chapter 2, we addressed the design and development of camera network

testbeds. In Chapter 3 we introduced a method for sensor selection and assignment

continuity for tracking in camera networks. In Chapter 4 we introduced a data scoring

and collection method for multiview appearance modeling in camera networks.

5.1 Conclusions

The overall objective of this thesis was to address the problem of persistent tracking

and identification in camera sensor networks. By this we mean that we wish to maintain

coverage of an object or event of interest during its lifetime within our network.
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In Chapter 2, we presented the design and operation of the VISNET system, a ten-

node camera network testbed. Our work on this system involved hardware considera-

tions, operating system choice, software development, and communication protocol de-

velopment. In addition, we presented two basic applications developed for the VISNET

system. We presented an easy to use distributed camera network calibration procedure

which utilizes a moving calibration pattern. We then presented a basic multiple cam-

era tracking application which has served as the basis for further tracking development

within VISNET.

In Chapter 3 we addressed the issue of sensor selection for localization and tracking

in a camera network. We presented a sensor scoring system by which the best pair of

sensors for tracking a given position or predicted position can be assigned. This score

is based upon different factors affecting the localization process. We demonstrated

this method both with simulation and with the VISNET system. We then introduced an

inertial assignment method which minimizes sensor activity and the number of handoffs

during the tracking process. We demonstrated this in simulation and reduced the sensor

activity by 78%.

In Chapter 4 we addressed the issue of appearance modeling in camera networks.

Our goal was a human appearance model which captures view-dependent appearance

variation as capture by the cameras in a camera network. We introduced a view quality

prediction score for view data collection in a camera network. This score is calculated
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using position and movement information from the person along with camera position

information. The use of this score allows predictive collection of data without frame by

frame analysis like some other methods use. Implementation within VISNET yielded

clear, high quality snapshots of a tracked person within the network. We then demon-

strated the size reduction of our model by use of Gaussian mixture models, a common

technique for image representation for database retrieval. Use of the GMMs reduced

our model size drastically when compared to both the raw image data and the use of

RGB histograms.

5.2 Future Directions

Because there are never enough hours in the day to implement every idea, we offer

here some suggestions for extending the current work.

5.2.1 Software Library

In Chapter 2 we introduced our custom node communication protocol, based on

the Open Sound Control standard. The development of a standard, expandable, easy

to use communications library would benefit vision researchers working with camera

networks such as VISNET. A lot of time is spent “reinventing the wheel” as the saying
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goes. A freely available open library would save researchers a lot of development time

and allow them to focus on higher level functionality.

5.2.2 Multiple Object Selection

In Chapters 3 and 4, we demonstrated our work in single-object or single-person

scenarios. Obviously, more realistic scenarios may involve several people or objects

and thus require more adaptable sensor selection methods. The expansion of our work

to work in such scenarios would greatly benefit vision applications such as we have

presented.

5.2.3 Single Multiview Model

Another direction we have in mind involves the multiple view appearance model

presented in Chapter 4. Currently, the model consists of eight separate views. We

would like to expand the GMM used for model representation to include the view angle

θ in it. This would provide a more compact model and likely describe the variation of

the appearance better.

5.2.4 Color Calibration

One of the assumptions made in Chapter 4 was that the cameras’s color responses

were calibrated to a single global color reference. A set of identically-branded cameras
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will, in reality, produce as many different color responses. Camera network research

would benefit from a standard systematic method for color calibration among the nodes,

allowing more reliable color comparison between data taken with different nodes.

5.2.5 System Layout

In Chapter 3, we briefly discussed the effect of network layout on the bounds of

localization error. One direction for future work in this area would analyze the network

layout in order to establish these bounds in order to predict the best attainable error

from the different selection methods.

In conclusion, we see that there are many, many research opportunities in the realm

of camera sensor networks. The problems vary from the low-level like color calibration

to higher levels like cluster organization.
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Appendix A

Pinhole Camera Model

The pinhole camera model is the model typically used in computer vision research.

The model is named such as its geometry resembles that of the basic pinhole camera, a

primitive form of photography. The camera model is described by two sets of param-

eters: the intrinsic parameters and the extrinsic parameters. The intrinsic parameters

describe the projection of a point into the image plane. The extrinsic parameters de-

scribe the camera’s location in the world with respect to some world 3D coordinate

system.

In describing the projection of a point into the image plane, three coordinate sys-

tems are defined. These are the world 3D coordinate system, the camera 3D coordinate

system, and the image coordinate system. The following sections detail these coordi-

nate systems and the camera parameters.
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A.1 Coordinate Systems

The world coordinate system is a 3D coordinate system defined with respect to

some world origin. Often, this origin is defined with respect to a feature of the local

environment such as the center of a room, a certain corner of the room, or some other

landmark. This coordinate system normally gives the user a better reference point for

data, as output aligns better with known geometry of the environment. Two possible

definitions of the world coordinate system are illustrated in Figure A.1.

(a) Centered Coordinate System (b) Corner Coordinate System

Figure A.1: World Coordinate System Definition

The camera coordinate system describes a points location with respect to the camera

center. This origin of this 3D coordinate system coincides with the camera’s center

point. The z-axis points straight out the front of the camera, with the x-axis pointing

directly right and the y-axis pointing downward. This coordinate system is shown in

Figure A.2.
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Z

X

Y

Figure A.2: Camera Coordinate System Definition

The image coordinate system describes a point’s location in the image plane itself.

This 2D coordinate system is centered at the upper left corner of the image. The u-axis

points to the right and the v-axis points downward. The image coordinate system is

illustrated in Figure A.3.

A.2 Extrinsic Parameters

A camera’s extrinsic parameters describe its location with respect to the world co-

ordinate system. In other words, they describe the transformation of a point’s location

from the world coordinate system into the camera coordinate system. Because both
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Figure A.3: Image Coordinate System Definition

systems are 3D, the extrinsic parameters take the form of a 3D rotation followed by a

3D translation. These are represented by a rotation matrixRWC and a translation vector

TWC , respectively. The transformation is then given by:

P (C) = RWCP
(W ) + TWC (A.1)

A.3 Intrinsic Parameters

A camera’s intrinsic parameters describe the projection of a point from the camera

coordinate system into the image coordinate system. This projection is illustrated in

Figure A.4. In addition to the projection, the intrinsic parameters describe any distortion
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introduced by the camera lens. The intrinsic parameters are typically grouped into a

projection matrix K and the distortion vector d. These are defined as

Figure A.4: Camera Projection

K =


fx 0 cx

0 fy cy

0 0 1

 (A.2)

and

d =

[
k1 k2 p1 p2

]
(A.3)

The projection of a point P (C) = [X(C)Y (C)Z(C)]T into its image plane represen-

tation p(image) = [uv]T is a multistep process. First, X(C) and Y (C) are normalized by

Z(C):
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x′ =
X(C)

Z(C)
(A.4)

y′ =
Y (C)

Z(C)
(A.5)

Next, the lens distortion is applied:

x′′ = x′(1 + k1r
2 + k2r

4) + 2p1x
′y′ + p2(r2 + 2x′2) (A.6a)

y′′ = y′(1 + k1r
2 + k2r

4) + 2p2x
′y′ + p1(r2 + 2y′2) (A.6b)

where r2 = x′2 + y′2. Finally, u and v are calculated:

u = fxx
′′ + cx (A.7a)

v = fyy
′′ + cy (A.7b)

Sometimes this last stage is represented in matrix form:


u

vi

1

 = K


x′′

y′′

1

 (A.8)
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A.4 Camera Calibration

In order to determine the intrinsic and extrinsic parameters of a camera, a calibra-

tion procedure is performed. Simply put, the procedure calculates the mapping of 3D

world points into their 2D image counterparts. The most widely-used calibration pro-

cedure is detailed in [86]. Given a set of known 3D world points {P (W )
i }Ni=1 and their

corresponding projections {p(image)
i }Ni=1, we define the total reprojection error as:

Ereproj =
N∑
i=1

‖p(image)
i − f(P

(W )
i ‖ (A.9)

where f(P
(W )
i ) denotes the projection of point P (W )

i into the image plane using the

current parameter estimates. The Levenberg-Marquardt algorithm is commonly used

to find the camera parameters which minimize Equation A.9.
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3D Localization in Camera Networks

The process of object localization in a camera network involves the reconstruction

of a 3D point from its 2D projections in 2 or more cameras. Here, we describe the

process of 3D point localization in a camera network.

B.1 Two Camera Case

To illustrate the process of 3D point localization, we first look at the case of two

cameras. We identify the detected 3D point as P (W ) = [X(W ) Y (W ) Z(W )]T and its

location in each camera as p(1) = [u(1) v(1) and p(2) = [u(2) v(2) for cameras 1 and 2,

respectively. This is illustrated in Figure B.1.
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Figure B.1: Projection into Two Cameras

Essentially a bearing sensor, a single camera can only reconstruct a line in 3D space

along which the point P (W ) is located. This is illustrated in Figure B.2(a). In order to

pinpoint the point’s position along that line, we require at least one additional camera.

By computing the intersection of the two cameras’ “bearing lines,” we can extract the

location of P (W ). This is illustrated in Figure B.2(b). Because we require a line in-

tersection, the lines projected by the two cameras must not be parallel, otherwise no

intersection will occur.

In practice, system noise significantly reduces the possibility of an actual intersec-

tion and we are forced to use an estimate of the point (P̂ (W )) as our location estimate.

The least squares localization process for two cameras is formulated as follows. We
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(a) One Camera (b) Two Cameras

Figure B.2: One and Two Camera Point Localization

first undistort the image points. We use an iterative process, detailed in Algorithm 6, to

perform the undistortion [3].

Input: Distorted image point xin = [u v]T

Output: Rectified image point xout = [u′ v′]T

xnew = xin;

while ∆error > ε do
xold = xnew;

xdist = distort(xold;

xnew = xin - (xdist - xtemp);

∆error = |xnew − xold|;

end

xout = xin;

Algorithm 6: Image Point Distortion Correction
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Using the rectified image coordinates, we now reverse the projection process (sans

the distortion step) which is detailed in Appendix A. We write the equations for u′(i)

and v′(i) as:

u′(i) = c(i)
x +

f
(i)
x r

(i)
00X

(W ) + f
(i)
x r

(i)
01Y

(W ) + f
(i)
x r

(i)
02Z

(W ) + T
(i)
x

r
(i)
20X

(W ) + r
(i)
21Y

(W ) + r
(i)
22Z

(W ) + T
(W )
z

(B.1a)

v′(i) = c(i)
y +

f
(i)
y r

(i)
10X

(W ) + f
(i)
y r

(i)
11Y

(W ) + f
(i)
y r

(i)
12Z

(W ) + T
(i)
y

r
(i)
20X

(W ) + r
(i)
21Y

(W ) + r
(i)
22Z

(W ) + T
(i)
z

(B.1b)

where

RWi =


r

(i)
00 r

(i)
01 r

(i)
02

r
(i)
10 r

(i)
11 r

(i)
12

r
(i)
20 r

(i)
21 r

(i)
22

 (B.2)

and

TWi =


T

(i)
x

T
(i)
y

T
(i)
z

 (B.3)

are the extrinsic parameters of camera i. Using simple algebra, we can reformulate this

problem as a function of X(W ), Y (W ), and Z(W ):
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A


X(W )

Y (W )

Z(W )

 = z (B.4)

with

A =



f
(1)
x [r

(1)
00 r

(1)
01 r

(1)
02 ]− (u′(1) − c(1)

x )[r
(1)
20 r

(1)
21 r

(1)
22 ]

f
(1)
y [r

(1)
10 r

(1)
11 r

(1)
12 ]− (v′(1) − c(1)

y )[r
(1)
20 r

(1)
21 r

(1)
22 ]

f
(2)
x [r

(2)
00 r

(2)
01 r

(2)
02 ]− (u′(2) − c(2)

x )[r
(2)
20 r

(2)
21 r

(2)
22 ]

f
(2)
y [r

(2)
10 r

(2)
11 r

(2)
12 ]− (v′(2) − c(2)

y )[r
(2)
20 r

(2)
21 r

(2)
22 ]


(B.5)

and

z =



T
(1)
z (u′(1) − c(1)

x )− T (1)
x

T
(1)
z (v′(1) − c(1)

y )− T (1)
y

T
(2)
z (u′(2) − c(2)

x )− T (2)
x

T
(2)
z (v′(2) − c(2)

y )− T (2)
y


(B.6)

which can then be solved using the linear least squares method:

P̂ (W ) = (ATA)−1AT z (B.7)
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B.2 3+ Cameras

The use of 3 or more cameras for point localization is straightforward as Equation

B.4 scales easily. Figure B.3 illustrates a situation where 4 cameras are used to local-

ize a point in 3D. Depending on the geometry of the situation and the system noise,

additional cameras may or may not improve localization results.

Figure B.3: 3D Point Localization with 4 Cameras
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VISNET Message Formats

Message Component Description
/extrinsics Indicator of extrinsic parameters to follow
Node ID ID of originating node
time sec Timestamp of data (seconds since epoch)
time usec Timestamp of data (microseconds)
r0 r1 r1 Rotation vector
tx ty tz Translation vector

Table C.1: VISNET Extrinsic Parameters Message Detail
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Message Component Description
/relextr Indicator of relative extrinsic parameters data to follow
From Node ID ID of originating node
To Node ID ID of node to which the relative parameters refer
r0 r1 r1 Relative rotation vector
tx ty tz Relative translation vector

Table C.2: VISNET Relative Extrinsic Parameters Message Detail

Message Component Description
/obj Indicator of object data to follow
Node ID ID of originating node
time sec Timestamp of data (seconds since epoch)
time usec Timestamp of data (microseconds)
u Local u coordinate of tracked object
v Local v coordinate of tracked object

Table C.3: VISNET Object Tracking Message Detail

Message Component Description
/ctrl Indicator of control data to follow
Control Code Control Command (0 = Stop, 1 = Start)

Table C.4: VISNET Node Control Message Detail
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