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ABSTRACT Distributed Camera Calibration

We introduce UCSB's Visual Sensor Network (VISNET) and  The problem of camera calibration [1, 2, 3] is a well-
discuss current research being conducted with the systerpiudied problem in the vision literature. Indeed calilmai
VISNET is a ten-node experimental camera network at UCSES used in any application that studies objects in 3D space
used for various vision-related research. The mission gV| through 2D images. For instance, work on gesture recogni-
NET is to provide an easy-to-use multi-node camera networkon [4] and virtual reality [5] all use calibration technigs

to the vision research community at UCSB. This paper briefl?@5€d on the camera projection model. However, surprising|
discusses design and setup considerations before disgusslittle attention has been paid to the automatic calibradbn
current research. Current research includes operatiomlvis 2 distributed large camera network, especially under the co

ization, camera network calibration, tracked object mioggl straint of bandwidth and computation. We propose a simple,
and multiple object / multiple camera tracking. distributed calibration method that uses a moving planar pa

tern and automatically calibrates the network in a way that i
~ IndexTerms— Camera Networks, Smart Cameras, Trackich less complicated than classical nonlinear estiméijon
ing, Sensor Networks with comparable results.

Simple Multiview Human Model

With the calibrated cameras, one task we approach is to
3 eate a human model for data association across cameras and

1. INTRODUCTION

Rapid advances in technology have changed the goal of visu o X . o
surveillance from building systems using only a few power-' entlflcat|oq dur!ng tracking. Much of .the work in this area

ful cameras to building systems deploying many cheap cmi—as zeen W'ﬂ:j sllnglehcamergs, and eﬂhe; 2D modells or in-
eras. Given a large camera network (e.g. hundreds of ca grred 3D models. Zhou and Hoang [7], for example, uses

era nodes), a typical architecture with one central sergkr c position, velocity, color histograms, and the number obfix

lecting the video streams and performing all of the analy-to represent tracked people. Work in multicamera networks

sis would fail due to communication and computation con—_has expanded upon the single camera models. Wu and Agha-

straints. However, as the capabilities of a camera’s omeboa /&N [8] fit colored ellipses to body segm_ents_to build a 3D ar-
processing advance, distributed solutions have beconse featiculated human model. Our approach is to instead to eschew

ble. The question is how to make such a distributed systerﬁ1e more complicated models and build a simple, r_nult|V|ew
scalable without compromising its performance. human model that can be updated at a central location.

In this paper, we introduce our distributed vision testbedVultiple Person Tracker
— Visual Sensor Network (VISNET). Our setup creates flex-  Adding a human model to camera calibration allows us to
ibility, since the processors we use allow us to consider aladdress tracking, a popular topic in computer vision. Chal-
gorithms first, and processing constraints later, whilevihe |enges to good tracking include tracking multiple peopte, e
sualization system allows us to see our results quickly. Ipecially in a crowd, and tracking in the presence of occlu-
this system, we take advantage of the overlapping views afions. With a single camera, Rasmussen and Hager [9] uses a
multiple cameras to contribute three algorithms for défer  joint probability data association filter (JPDAF) to re-aciate
areas of computer vision: (1) a distributed camera calitmat objects after occlusion. With multiple cameras, Cai and Ag-
algorithm, (2) a simple human appearance model, and (3) garwal [10] and Khan et al.[11] use the camera with the best
multiple human tracking scheme. view and hand off the tracking to neighboring cameras when
the target leaves the field of view. Ercan et al.[12] also use
multiple cameras and a particle filter to handle static and-mo
ing occluders. In this paper, we present a method that avoids
complicated filters like JPDAF and particle filters. Instead
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only a Kalman filter and transmission of predicted 3D posi-
tion to the nodes to deal with multiple objects and occlusion

To minimize data communication in VISNET, all process-
ing related to images are done locally. This is similar to
the system presented by Xu et al. [13] for tracking people
in sports applications. They use a dedicated feature sayver : A
process video from each camera and a multi-tracker module (a) Mounted Camera (b) Node 1 View
that only needs to merge information from individual track- ,__
ers using a nearest neighbor method. Communication amr‘
synchronization is achieved through a “request-respaoae” E |
tern, invoked by the multi-tracker. In this paper, we usefa di /f
ferent mechanism where all camera nodes and central nodes g
simply broadcast their tracking results and synchrorozas '
achieved through timestamps. This removes the necessity fo [
a central node to coordinate all the message passing and al®

lows the system to scale easily. (c) Node 5 View (d) Node 8 View
Section 2 details the hardware and setup used in VISNET
and Section 3 describes our main interface to the system. In Fig. 1. VISNET Camera and Views

Section 4, we describe our camera calibration scheme. Sec-

tion 5 briefly overviews the simple 3D object model. Finally, o o ) )
Section 6 describes our object tracker with results. of 4 ms which is sufficient for tracking people in the VISNET
system.

2. CAMERA NETWORK DESIGN

3. SYSTEM VISUALIZATION AND CONTROL
The driving force behind the VISNET system is camera sen-

sor network research. We envision a network of Camera-edah"() visualize and control the Operation of VISNET, we have

autonomous nodes which could be easily configured for a vagyilt a GUI front end for the system. The visualization node
riety of applications. As our interests lie in software afd a communicates with the central node using a custom message
gorithms rather than hardware design and configuration, theyrmat. When the front end first establishes its connection to
system consists of off-the-shelf hardware. the tracking server, it requests a description of the tagpotif
Each of the ten VISNET nodes consists of a PC with arthe camera network and the parameters for each camera. The
attached IEEE 1394 camera. This setup provides us with thigont end then draws a 3D representation of each camera in
ﬂEXIblhty to test algorithms. For SImpIICIty, the nodesear the network using OpenGL, as shown in F|g 2.
networked via wired Ethernet. An eleventh node serves as From this view, the user can select an individual node to
a central tracker and is also used for application contrdl angee |ive video from the corresponding camera. Specifically,
visualization. All nodes run the Ubuntu Linux distribution the jnterface periodically requests video frames from tva-c
and applications are developed using open source t00lS.  era node, which encodes the frames using MPEG4 and trans-
The room is 10 meters long by 6 meters wide by 2.8 mepits them to the visualization.
ters high, and the ten cameras are mounted approximately g jnterface also periodically requests the locations of
150 mm from the ceiling pointed slightly downward. Fig. ghiects being tracked by the central server. After recgivin
1 shows a mounted camera along with three typical camefige 3p and 2D locations of each object in the selected cam-

VIEWS. _ , era’s viewpoint, the front end draws markers along with the
In order for cameras to collaborate in tracking and othetqceived frame.

applications, it is important that data correspond to thmesa

time instant. Due to the difficulty of synchronizing the aapt

ing and processing of video, we employ timestamps to ensure 4. CAMERA NETWORK CALIBRATION

data coherence. However, this approach requires the times-

tamps produced at each node are accurate. While exact syfihe goal of camera network calibration is to determine the
chronization is not required and likely not possible, theitig  nodes’ positions and orientations with respect either thea
errors should be small compared to the timescales of thettargother or to some world reference. In our system, the cali-
motion. To this end, we employ the Network Timing Protocolbration is performed in real time using a planar chessboard
(NTP) [14]. NTP synchronizes the camera nodes’ clocks wittcalibration pattern since planar patterns are easy andochea
the central node. Our timing error using NTP are on the ordeto build. During the calibration process, the chessboard is
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Number of Tracking: |1
Selected Camera ID: |1
Camera Rotation Matrix (R):

1 2 3
1{0.497654 0.249501 0830716
2{-0.060199 0965361 0253878
3{0.865284 -0.076335 0.495436
Camera Translation Matrix (T)

1 2 3
1{5118.52 -1186.86 -3269.35

Selected Tracking ID: | NONE

Tracking Position:

Fig. 2. Visualization Front End

moved through the network. Calibration based on planar pat-
terns has been proposed in literature for single camera cali
bration, such as [1, 2]. However, how to use it to calibrate
a large network has not been paid much attention. The main
challenge is how to efficiently process thousands of planar

patterns captured by the cameras over the time so that the 2.

network can be scaled easily. Here we propose a distributed
calibration method, aiming to minimize communication and
computation, without comprise to the performance.

When the chessboard moves in the network, each camera 3.

nodei actively seeks the chessboard pattern. If the chess-
board is detected at time the node performs typical extrin-
sic calibration as detailed in [1], i.e., estimate its owieota-

tion R;(t) and positionT;(t) with respect to the chessboard.
R;(t) andT;(t) are stored at the camera node together with
the timestamps, which are then broadcasted to all the other
nodes including the central control node.

When two nodeg and j detect the chessboard at about
the same time (by comparing timestamps), their relative ex-
trinsic parametergR,;;(¢), T;;(t)} can be easily computed.
When this calibration between two nodes is performed mul-

Fig. 3. VISNET Vision Graph - A connection between nodes
indicates a shared field of view

is done in a distributed fashion, which makes the it fullylsca
able to a large network.

1. Each camera node actively detects the chessboard and

passively computes its relative orientations and posi-
tions to neighboring cameras. The calibration does not
need any control from the central node, which makes it
feasible for a network without central control.

The communication among the nodes is minimized by
broadcastind R;(t), T;(t)} instead of actual images or
2D pixel positions of the detected chessboard pattern.

Image processing (the detection of the chessboard) and
the estimation of R;(¢), T;(t)} are performed at the
individual nodes. In addition, the relative extrinsic pa-
rameters between cameréR;;, T;;} are simply the
average of R;;(t), T;;(t)} over time. Compared with

a method that estimates extrinsic parameters directly
from all the 2D pixel measurements from the chess-
board (e.g. bundle adjustment [6]), our method requires
much less complex computation. This feature could
be crucial when camera nodes have only limited com-
puting power and internal memory (e.g. a small smart
camera).

tiple times, the mean relative parameters are computed. In To evaluate our distributed calibration method, we use the
this way, over time, th&jision Graph [15] is built, showing calibration results to locate a set of sparsely-spacedgin
the successful relative calibration between nodes. A &fpic 3D and compare the localization results with ground truth.
vision graph for VISNET is shown in Fig. 3. The average error is about 2cm in the current setup of 10
Once sulfficient internodal connections are calculated, theameras. We also tried a different calibration method which
chessboard is placed in a world origin position (in our casegollects the 2D pixel positions of the chessboard from all th
the center of the room) and those cameras which sense tbamera nodes over the entire calibration process and ésima
board compute their extrinsic parameters with respect.to ithe extrinsic parameters directly using a global bundlestdj
The remaining nodesibsol ute extrinsic parameters are then ment method [6]. Using results from this global calibration
computed by tracing the path along the vision graph back tmethod, we locate the same set of points in 3D. The same
the world origin. average localization error is observed. Fig. 4 shows the lo-
With the proposed method, the entire calibration processalization error for both methods. We can see that the global



from all sensing camera nodes. While we currently assume

=T e e onativn 1 no occlusions during the training period, the learning algo
aof —*— giobal bundle adietment 1 rithm could be easily adapted to account for such issues. Fig
i 6 shows an example of a typical human GMM appearance
model.
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Fig. 6. GMM Human Appearance Model Example
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Fig. 5. Multiview Human Model 6. MULTIPLE HUMAN TRACKING

VISNET takes advantage of the calibration and the learned
calibration method does not provide much improvement fohuman model to track people within the space. Fig. 7 and 8
the 3D localization compared to our distributed method. show the flow chart for the nodal and central processes, re-
spectively. At each node, a Kalman filter estimates the posi-
5. LEARNED MULTIVIEW HUMAN MODELING tion of each person visible in a camera. The central serger al
has a Kalman filter that tracks the 3D position of every person
Given that the cameras are calibrated, we turn our attentioim the space. To track multiple people across occlusions, we
to tracking people. However, it is desirable when trackimg t assume that any person is visible to at least two cameras, and
assign each a unique signature which can be used to diffethen pass the 3D localization back to the nodes. As we show
entiate people when complex situations such as occlusion experimentally, this creates better results than Kalmaeril
interaction occur. Such a signature is also useful when-a sygg without feedback, yet is not as complicated as JPDAF or
tem is composed of two or more disjoint subsystems as it caparticle filters.
enable the subsystems to share information about people and
events in each area. O_ne common meth(_)d uses color features N ogal Tracking
of the tracked region, i.e. the person’s silhouette. The-VIS
NET system utilizes a multiple-view color-based appeagancin a camera network, the nodes initiate the process of track-
model for tracking. The model is composed of eight views asng people through detection. The camera node in our case
shown in Fig. 5. handles most of issues with occlusions and multiple objects
Each 2D view of a person is segmented into head, torsayith the help of the 3D positions of the existing people. The
and legs sections and each section is represented by celor iifowchart in Fig. 7 shows the major blocks in the nodal pro-
formation in the CIE*Luv color space. Each region is mod-cess.
eled as a Gaussian mixture model (GMM) using the Expecta- To detect people, VISNET extracts silhouettes, or masks,
tion Maximization (EM) algorithm. In addition to being used using background subtraction in the CIE*Luv colorspaceasTh
for nodal tracking, the resulting mixture model is trandedt colorspace reduces the effect of shadows and other illumina
to the central tracker for inclusion into the global appeaea tion abnormalities with minimal computation. To extract a
model for each tracked person. As a person is tracked ovérounding box, we avoid the typical, noisy connected compo-
time, the corresponding global model is updated using sputnents analysis. Instead, in a method inspired by Ercan [12],
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Fig. 8. Flowchart for tracking at central node.
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the mask is, first, projected vertically in order to identifyr-
izontal head position. Then, an edge detector runs vdistical

from the head location to find the head and feet, and horizoq,—vherep is the projection matrix for that camera afig is the

tally to find the sides. _ o _ 3D point for the person, ang, is the head location observed
After detection, the node tries to identify the objects andOy the camera.

check for occlusion. With a local Kalman filter, multiview
model, and global predicted points, it identifies matches th
R — {

P - Z, ifobjectis occluded
VA =
k Zh if object is not occluded

2Ry, if objectis occluded

observed person to existing objects in the system through ne oo
R, if objectis not occluded

est neighbor analysis and model comparison. Simultangousl

the gIoBfaI pred|ct|ons detect occlusions that cause tW‘kmaSwhereRh is measurement noise of the person, which is cho-
to combine into one. _sen heuristically.

Now, the.KaImz_;\n filter is ready for “_pda‘e-_Wg use a typi- Finally, the data is sent to the central tracker for further
cal Kalman filterwithastatey, =[ « ¢ y gy |*, where

(4)

. : rocessing.
(z,y) represent the image coordinates dridy) represent P g
the velocity, and a measurementof= [ z y |T. Thus,
our Kalman filter is: 6.2. Centralized Tracking

The centralized tracking process receives inputs froneati-c

1100 era nodes within the network, combines and computes the 3D
01 0O location for the Kalman filter, and sends the filter preditsio
Xe=10 0 1 1 |¥1tVie ierNO0Qe) (@) e nodes, as shown in Fig. 8.
0 0 01 The central tracker must first re-sort incoming data ac-
0 cording to the identifies found by the nodes. Existing olgject

1 0 0
Zx = [ 00 1 0 } xk + Wk Wi ~N(0,Rk) (2)  aretrivially sorted. New objects, however, requires thetres
server to correspond points through other means and create a
We varyz, and Ry, based on the occlusion. new multiview model, Sec. 5.



i T X 2D tracking with
i LN { background subtraction
2D tracking with . | 1 when there is no occlusion
results from central tracker= | : i s sy N
~ when there is occlusion

4

20 tracking with

i
-‘\‘ 2 . } | results from central track:
| ‘ ' , when there is occlusion |

2D tracking with . 4 i 2D trackiﬁg with
background subtraction y " e e background subtraction
. i when there is no occlusion

View from Gamera 1 View from camera 5

(a) 2D Track with feedback (a) 2D Track with feedback

Person 2

2000
0y

world

5000 < -2000

2000

(b) 3D Track from all cameras

R Y
5000 -2000 world

Fig. 9. Tracking results for looping paths. (b) 3D Track from all cameras

Then, the tracking process localizes the 3D with the nodal Fig. 10. Tracking results for crossing paths.

observations. Localization is computed by a least square es

timate using only unoccluded observations. Occluded ebser |, the first scenario, one person enters first and begins to

vations are based on the prediction and thus not necessary,ji ik around the room. A second person then enters, and also

our case. o walks around the room in a different path. The two people of-
Next, the tracker adds the 3D localization to the person'sen occlude each other for short periods when they pass each

Kalman filter. The Kalman filter is very similar to the Kalman qiher. A 3D estimation of the path created by VISNET can be

filter in Eq. 2, except that there are three coordinad®g:=  geen in Fig. 9(b).

[X X YV VY Z. Z ]1,1’ andZ, = [ X YV Z|* The tracking results with feedback from camera 1 are shown

where(X, Y, Z) and(X, Y, Z) represent the 3D position and in Fig. 9(a), and the localization result is shown in Fig.)9(b

velocity respectively. In camera 1, the two targets are occluded once. During the

The tracking prediction is now sent to the nodes to startirst occlusion, no other cameras can see person 2; therefore

the next cycle. their position is updated by a Kalman filter prediction. Af-
ter the occlusion is resolved, the result converges on thee tr
track.

6.3. Experimental Results . ) .
In the second scenario, we're mainly concerned with the

To test our tracking system, we ran tests on several scanarigiew from camera 5, shown in Fig. 10(a). From this camera,
collected within the data. We present here two representawo people start at the bottom on opposite corners, walk away
tive scenarios of multiple object tracking with occlusitimat  from the camera and towards the middle, until they are walk-
VISNET collected and processed. ing in a single file line away from the camera. After a short



~ 2D Kalman prediction i In the future, we will be expanding on all of these areas.

) In tracking, for example, we will be researching sendingmea
surements from a block of time to reduce overall bandwidth,
and, also, selection of the best set of cameras for tracking o
dynamically setting the measurement and process covasanc
depending on the observation.

View from Camera 5

Fig. 11 Kalman filter track without feedback.

time, they separate to the same side of the camera view from
which they originated. This path can be seen in Fig. 10(b).

The results with feedback in the main camera is shown in
Fig. 10(a), and the 3D localization from all cameras is shown
in Fig. 10(b). Within the node, the track remains fairly @ps
except for a slight deviation at the start of occlusion.

In a track created by a Kalman filter without feedback
from the other nodes cameras, the predicted diverge at the
start of occlusion, as shown in Fig. 11. These measurements
are obviously incorrect and cannot be used in localization.
Even if they are ignored during occlusion, after the occlu-
sion, the Kalman filter will require time to converge to the
new track. The tracker can either wait for convergence to
send data or send bad data. The track collected with feedback
is ready for use by the first non-occluded point.

Another possible solution for this scenario without feed-
back is to stop the 2D Kalman filter when a prolonged occlu-
sion is detected, and then start a new one when measurements
are again available. In this case, the data associationdwoul
fail if a nearest neighbors condition were applied, and thus
an appearance model or more complicated data association
method would be required.

7. CONCLUSION AND FUTURE RESEARCH

This paper overviews UCSB’s Visual Sensor Network (VIS-
NET) which is a 10-node testbed for a smart camera network.
On this system, we've developed novel algorithms in three
areas: (1) a simple, pairwise calibration method that is les
complex than bundle adjustment, but similar in performance
(2) a low-bandwidth multiview model using GMMs that can
be updated at a central location; and (3) object tracking tha
uses feedback from the central tacker to the node to handle
occlusions and multiple objects.
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