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A Nonconservative Flow Field for Robust Variational
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Abstract—We introduce a robust image segmentation method
based on a variational formulation using edge flow vectors. We
demonstrate the nonconservative nature of this flow field, a fea-
ture that helps in a better segmentation of objects with concavi-
ties. A multiscale version of this method is developed and is shown
to improve the localization of the object boundaries. We compare
and contrast the proposed method with well known state-of-the-art
methods. Detailed experimental results are provided on both syn-
thetic and natural images that demonstrate that the proposed ap-
proach is quite competitive.

Index Terms—Active contours models, edge flow fields, image
segmentation, nonconservative vector fields.

I. INTRODUCTION

I MAGE segmentation is one of the widely studied problems
in image processing and has found its application directly

or indirectly in tasks such as object detection [11], [18], object
tracking and recognition [1], [5], content-based image retrieval,
and medical image analysis [22].

The Active Contours approach is one particular image seg-
mentation technique that was originally introduced by Kass et
al. [9], and further developed by the work of Caselles [2] and
Malladi [15]. Concurrently, Kichenassamy et al. [10] proposed
an Active Contours model based on the geometry of the image.
The basic idea in this Active Contours method lies in deforming
a contour according to some cost function, which upon min-
imization guides it towards the boundary of the object of in-
terest. The cost function usually consists of two terms: one that
maintains the smoothness of the curve, commonly known as the
internal force; and another that pushes the curve towards the
boundaries, known as the external force. The goodness of the
segmentation result depends on how the two forces are derived
from the image data.

In recent years, much progress has been made to improve
the original Active Contours framework in achieving robustness
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to contour initialization [6], [12], [27], and dealing with con-
cavities in object boundaries [27], [30], [31]. For example, in
the Gradient Vector Flow (GVF) method [31] robustness to ini-
tialization is obtained by diffusion of the edge field. However,
the performance of edge field-based methods in the presence of
nearby boundaries is not well understood.

In recent years, there has been considerable work on region-
based segmentation [3], [4], [19]. Paragios et al. [19] proposed
supervised texture segmentation by combining both region and
edge-based terms. Zhu et al. [32] designed a multiband image
segmentation algorithm by minimizing a generalized Bayesian
criterion. Recently, other approaches [13], [26] have been de-
veloped incorporating the shape and appearance information.
A comprehensive discussion of the edge-based versus region-
based methods is beyond the scope of this paper. Whether re-
gion-based methods are better than edge-based ones is a debat-
able and often a philosophical issue. However, it is generally
acknowledged that the edge-based methods often provide better
boundary localization, see [19], [29] for some recent work.

In this paper we present a robust image segmentation method
and demonstrate its application to both synthetic and natural im-
ages. We begin by considering an edge field that was originally
developed by Ma et al. [14] and we refer to this as the EdgeFlow
Vector (EFV) field in the following discussion. The motivation
for considering the EFV comes from its nonconservative1 nature
derived entirely from the image data. This is in contrast with the
GVF where the nonconservative property is due to the addition
of a smoothing term to a purely image-based component, which
may affect edge localization.

The key contributions of this paper are summarized below.
• We develop an effective segmentation technique based on

an edge field computed directly from the images. The flow
field can be computed from various image features in-
cluding color, texture and intensity edges.

• We show analytically that this edge flow field is noncon-
servative in nature. This is further validated by using a
numerical technique called Helmholtz-Hodge Decompo-
sition (HHD). A new edge function, more precise than the
commonly used inverse of the gradient magnitude for lo-
calizing edges, is also proposed based on the scalar poten-
tial of the edge flow field.

• We further study and compare the flow field vectors de-
rived from EFV with those of the GVF, Generalized GVF
(GGVF) [30] and Magnetostatic Active Contour (MAC)
[29]. This study reveals that for the segmentation of images

1Nonconservative refers to having both non zero irrotational (curl-free) and
solenoidal (divergence-free) components.
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with multicontrast edges, the edge flow method is more ef-
fective than these state-of-the-art approaches.

The rest of the paper is organized as follows. Section II re-
views the prior work on edge flow fields. In Section III, we
formulate the segmentation problem using this edge flow field
within a curve evolution framework. The Helmholtz Hodge de-
composition is used to study the characteristics of this vector
edge flow field. We also provide an extensive analysis of the
nonconservative property of EFV. A detailed comparison with
GVF and GGVF is presented in Section IV. Section V provides
experimental results, and we conclude in Section VI.

II. REVIEW OF PRIOR WORK ON EDGE FLOW FIELDS

Since the development of Active Contours for image segmen-
tation, there has been considerable work on generating “edge
flow” vectors that drive the detected edges towards the true ob-
ject boundaries in the image. Cohen and Cohen [6] proposed
a flow field, the Distance Vector Flow, based on the Chamfer
distance transform of binary edge images. Caselles et al. [2]
derived a flow field by taking the gradient of a scalar func-
tion ( , where is a Gaussian convolved
image) which is small on the edges and large away from the
edges. In [8], Gil and Radeva designed a new distance trans-
form based on the curvature information of the curve to be mod-
eled. The gradient map of this distance transform, known as
CVF (Curvature Vector Flow), is then used as the flow field
for segmentation. Xie et al. [29] developed a flow field based
on magnetostatic interactions between the Active Contours and
the object boundaries. The algorithm was shown to be robust
in terms of initialization on a variety of images having com-
plex structures. Xu and Prince proposed GVF [31], one of the
more widely used edge flow fields. Further variants of the basic
GVF framework can be found in [20], [30]. The basic GVF field

is obtained by minimizing the
following functional:

(1)

where and . Also,
note that is high near the edges and nearly zero in homo-
geneous regions and is the regularization parameter. In [31],

is chosen to be , i.e., the image itself. Using cal-
culus of variation, the minimization of (1) reduces to solving the
following system of Euler equations:

(2)

where and . This field is
controlled by near the edges. In the homogenous regions
of the images, is slowly varying and points towards the
edges due to the smoothing term [the first term in (1)]. The com-
bination of the smoothing and gradient terms makes this GVF
field nonconservative (see Section IV). GGVF [30] extends the
basic GVF by introducing two spatially varying terms instead
of and in (1). The introduction of such terms reduces

undesired smoothing effect near strong edges. The Euler equa-
tion corresponding to GGVF is

(3)

where is the GGVF field, and
and are the two spatially varying terms that replace and

respectively in (1). In [30], the authors used

and

where controls the smoothing effect in the extracted field.

A. EdgeFlow Vector Field (EFV)

In a similar spirit, Ma and Manjunath [14] introduced the EFV
vectors. The magnitude and direction of the EFV vectors are es-
timated using the intensity gradient magnitude and the
prediction errors . For an image , the and

at a particular location along the orientation
are computed as

(4)

(5)
where is the Gaussian smoothed image; (offset param-
eter) is the distance of the prediction2 and is usually set to .

calculates the strength of intensity change along
the orientation at a location . In contrast, com-
putes the error in predicting the neighbor along the orientation

using the image information at . Thus, is small if the
neighbor belongs to the same object. Note that finding the gra-
dient magnitude and the prediction error is equivalent to con-
volving the image with the first derivative of Gaussian (DG) and
the difference of offset Gaussian (DOOG) filters. Examples of
the DG and the DOOG kernels are presented in the Fig. 1. The
difference between DOOG and DG is that the former is asym-
metric whereas the latter one is a symmetric operator. This prop-
erty of DOOG, unlike DG, makes it sensitive to the directions
and , as shown in the contour plots in Fig. 1(c) and (d).

Now we define the edge likelihood function at a particular
direction using the relative prediction errors and

as follows:

(6)

The above needs to be smoothed before searching for
the most probable orientation for the flow direction. We do this
by integrating over the interval . Define

as

(7)

Then the probable flow direction at is estimated as

(8)

2A comprehensive overview of its effect on image segmentation is presented
in Fig. 10(b).
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Fig. 1. This figure demonstrates the difference between the Difference of offset
Gaussian (DOOG) and the first derivative of Gaussian (DG). The surface plots
of (a) DOOG, (b) DG. The corresponding contour plots are shown in (c) and
(d), respectively. The offset �� � ��� of DOOG is shown by a black arrow
in the contour plot (bottom left). It is to be noted that DOOG is an asymmetric
operator unlike DG which is symmetric.

Finally, the EFV field is calculated as the vector sum

(9)

where . The obtained (for a given scale ) in (9)
is a complex number whose magnitude and angle represent the
resulting edge energy and the flow direction at a particular lo-
cation . The EFV can be extended to multiscale analysis as
well as shown in Appendix A. EFV at multiple scales helps in
preserving edge localization, while extending the field to larger
homogeneous regions as shown in Fig. 2. The main properties
of the EFV field can be summarized as follows:

1) the vectors point normally towards the nearest edge;
2) the magnitude of the vectors is small away from the edges

and increases near the edges;
3) the flow vectors from opposite directions cancel each other

on the edges.

III. EDGE FLOW DRIVEN CURVE EVOLUTION FRAMEWORK

A general curve evolution framework [25] is governed by the
following equation:

(10)

where is a parameterized planar curve;
( is the unit normal to the curve ) is

an expansion/shrinking force; is a curvature
based force and is a force based on an under-
lying edge flow vector field , whose direction and strength are
usually independent of the evolving curve. The function
is expected to be small on the edges and large away from the
edges. The curve is evolved in the normal direction by a
combination of these forces. We would like to note that is

Fig. 2. This result demonstrate the effectiveness of the multiscale technique
over the single scale one. (a) Image of an aeroplane. Plots of the EFV field �
for (b) � � ���, (c) � � �, and (d) multiscale (from � � ��� to � � � in steps
of 0.5). Two different areas corresponding to an edge region (in black rectangle)
and a smooth region (in red rectangle) of each of the flow fields are enlarged
for the sake of clarity; (e), (f), (g) magnify the black rectangles and (h), (i), (j)
magnify the red rectangles for � � ���� � � �, and multiscale, respectively.
Note that the proposed multiscale framework is able to extract meaningful [see,
e.g., similarity between (e) and (i) with (g) and (j), respectively] information
from each of them.

the only term which provides stability to the level-set-based so-
lution and thus is necessary for this formulation. However,
may have adverse effect in some cases, e.g., expansion of the
curve near concavity, which can be tackled by proper design of
other terms.

In the literature [7], a common choice for (known as
the edge stopping function) is the inverse of the gradient mag-
nitude function, which is small on the edges and large away
from the edges. For example, has been
used in [21], where the choice for was the GVF field . In
contrast, in Geodesic Active Contour (GAC) the corresponding
edge flow field was derived as the gradient of the edge stop-
ping function , i.e., [2]. Alternatively, one can
compute the edge flow field from the image features (intensity
edges, texture, color) and derive analytically the corresponding
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edge stopping function in a principled way from the flow field.
Note that any function that satisfies meets
the requirement of an edge stopping function . We now
present an approach for computing given using the
Helmholtz-Hodge Decomposition [23].

A. Helmholtz-Hodge Decomposition

Given a smooth , rapidly decaying vector field (e.g.,
EFV, GVF, or GAC) the Helmholtz theorem states that it can
be resolved into conservative (curl-free) and solenoidal (diver-
gence-free) components. Recently, it has been shown in [23]
that the Helmholtz theorem can be further generalized by the
Helmholtz-Hodge decompostion as follows:

(11)

where is the conservative (curl-free) component
which satisfies is solenoidal
(divergence-free) component which satisfies
is the harmonic component which satisfies both
and . Note that and stand for scalar and vector
potential of . Next, we present the two functionals whose min-
imization lead to the solution of scalar and vector potential [16]
of the flow field.

1) Solution for Scalar Potential : The scalar potential
can be obtained by projecting onto the curl-free component

and solving the following variational problem:

(12)

where is image domain under consideration. Using calculus
of variation (Appendix B) it can be shown that which min-
imizes the above functional can be found by solving the fol-
lowing Poisson problem:

(13)

where is the unit outward normal to the boundary .
2) Solution for Vector Potential : Similarly the vector po-

tential can be obtained by solving the following least squares
formulation:

(14)

Again one can show that the optimum solution is obtained by
solving the following PDE formulation:

(15)

where is the unit outward normal to the boundary . In (14),
note that “curl” is a 3-D vector operator. Thus, for an
arbitrary choice of we need to extend the 2-D field (lying
in the image plane) to a 3-D form by setting its third component
to zero. However, here we are solving a special case where the
vector potential is , where is the unit vector

Fig. 3. (a) Example image of a circle. The plot of (b) � � �, where � is the
edge flow field EFV and (c) ���� �� of the example image. Note that the scalar
potential function � is a smooth version of � � �.

Fig. 4. (a) Example image of a square. The plot of (b) ���� �� obtained from
EFV and (c) � � ���� � ��� � of the example image. The scale parameter
� is chosen to be 1 for both cases. In the plots the white region corresponds to
high values �� �� whereas the black region corresponds to low values �� ��.

along direction. Thus, and equating only the
components from the two sides, we obtain

(16)

where the subscript stands for the component of the corre-
sponding vector. Appendix C gives the full derivation.

The PDE in the (13) gives a better insight into why , derived
this way, satisfies the properties of an edge stopping function.
For a vector field, the divergence operator determines whether
a point is a source or a sink. In the case of , the edges be-
have like a sink where the flow vectors meet each other. Thus,
the divergence of is negative at the edges. To be specific,
the profile of [Fig. 3(b)] is generally rough with dis-
tinct local minima at the edges. Using this PDE to solve for ,
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Fig. 5. This figure demonstrates the characteristics of the component flow fields for different cases. (a) A rectangular region of interest. The plot of (b) EFV field
� and (c) the conservative component of �. The solenoidal components of (d) � and (e) the GAC field. The maximum magnitudes of the field vectors are shown
below each plot. (a) Max ��������	 
 ���. (b) Max ��������	 
 
��. (c) Max ��������	 
 ���. (d) Max ��������	 
 
� .

we obtain a smooth map [Fig. 3(c)] of the divergence of the
flow field without losing its salient features (e.g., the position of
local minima corresponding to edge locations). Consequently,
the scalar potential , after being scaled between 0 and 1, has
small values (near zero) on the edges and close to one in the
smooth regions. Fig. 4 makes a comparison between the tra-
ditional choice and computed by
solving the Poisson problem in (13) (with the edge flow field

taken as EFV). Notice that localizes the edges better
than the adhoc choice (for both cases the image is smoothed
with the same choice of scale parameter).

In summary, the curve evolution framework in (10) can be
rewritten as

(17)

where is the unit inward normal to the curve; is curvature
term; and and are the constants. Equation (17) can be im-
plemented through level set methods [17], [25].

Consider the binary image in Fig. 5(a) with a “U-shaped” ob-
ject. We resolve different edge flow fields computed from this
image using the Helmholtz-Hodge Decomposition. The field
vectors computed from EFV inside the rectangular region of in-
terest in Fig. 5(a) are shown in Fig. 5(b), and Fig. 5(d) shows the
solenoidal component as per HHD (see Section III-A2). We can

observe that the solenoidal component of EFV points towards
the concavities in the object. Note that the solenoidal compo-
nent of GAC is close to zero (of the order of ), since it
is purely conservative in nature. For ease of understanding, true
edges are overlaid on the top of the flow fields in red dots.

Fig. 6 compares GAC and EFV-based segmentation starting
with the circle as the initial condition for curve evolution [Fig.
6(a)]. Notice that purely conservative fields do not result in a
good segmentation [Fig. 6(b) for GAC and Fig. 6(c) for the con-
servative component of EFV], and the nonconservative EFV re-
sults in almost perfect segmentation. One can expect similar re-
sult for the nonconservative GVF (see [31] for detailed expla-
nations) as well. We now analytically show that EFV is noncon-
servative.

B. EFV Is NonConservative

Consider

(18)

where provides the flow direction [see (8)]
at each point, and is a unit vector along that direction.
This is essentially the term inside the integral in (9) without
the Gaussian smoothing of the image. We will now show that
this is a nonconservative field. The dropping of the Gaussian
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Fig. 6. (a) Initialization of the curve. The segmentation result with (b) GAC (c) the conservative component of EFV field (d)�. The scale parameter � is set to 1
for the calculation of flow fields for all these cases. Note that the GAC and the conservative component of � are unable to produce desired segmentation results.

smoothing is for analytical simplification and does not affect
the final conclusion. The integral, in some very special cases,
may lead to an overall conservative field but would make the
following analysis infeasible (recall that the integration is for
smoothing purposes). Expanding (18), we obtain

(19)

where and are the partial derivatives in the and direc-
tions, respectively.

To prove that is nonconservative,
we need to show

and (20)

(21)

As the variables involved are independent of , these further
simplify to

and (22)

(23)

where

and

In obtaining these expressions for and , we assumed that
in (19) is positive.3 Since both

and terms are present in both and , it is easy to see
that (22) and (23) will always be satisfied. Thus, is noncon-
servative. As we discussed earlier it is reasonable to expect that

3It is straightforward to see that (22) and (23) remain unaltered with the sign
inversion of the amplitude part as � and � both change their sign simultane-
ously in that case.

the smoothing operations involving the Gaussian filtering and
the integration will not, in general, make the field conservative.

IV. COMPARISON OF EFV WITH GVF AND GGVF

Reasoning along the lines of the previous section, where we
demonstrated that the EFV field is nonconservative, we can
show that the nonconservative nature of the GVF field stems
from the combination of the two terms: the edge enhancing

and the smoothing term in (1). It
is important to note that either of the two terms alone would not
result in a nonconservative field. For example, if we set
in (1), the resulting field is clearly conservative.
On the other hand, replacing with a constant coefficient
would yield a conservative field as well. The smoothing in
(1) is needed to extend the range of the vector field but has a
detrimental effect on edge localization. This is illustrated in
Fig. 7 for different cases of additive noise (from left to right
the signal-to-noise ratios are 25, 20, 15, 10, and 5 dB) using
the parameters suggested by [31] and fixing the scale at .
Notice that the localization of edges using EFV is not affected
by noise even at signal-to-noise ratio (SNR) 5 dB, and this is
due to the strong coupling of the edge stopping function which
is derived from the image-based flow field vectors.

The poor edge localization of GVF is partially addressed in
GGVF [see (3)] by the introduction of two spatially varying
terms, e.g., and (see Section II). is small
near edges and high away from the edges. follows the oppo-
site trend. Therefore, GGVF smooths intelligently unlike GVF
which smooths equally everywhere. However, note that GGVF
formulation is not directly obtained from an energy minimiza-
tion like GVF. Consider the minimization of a new variational
formulation

(24)

where is a second-order tensor. Note that the variational
formulation in (1) is a special case of this (24) new variational
formulation. The corresponding Euler equation is

(25)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 31,2010 at 00:47:24 EDT from IEEE Xplore.  Restrictions apply. 



484 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2010

Fig. 7. This experiment demonstrates the edge localization property of EFV (first row), generalized GVF (second row), and GVF (third row) in presence of noise.
The initialization is done as shown in Fig. 6(a), i.e., a circle surrounding the object of interest. The scale parameter � is set to 1 for all methods. From left to right
(in all the rows) the signal-to-noise ratios of these images are 25, 20, 15, 10, 5 dB. Note that the GVF and the Generalized GVF (GGVF) segmentation results are
obtained using the parameter settings described by the authors in [31] and [30], respectively.

Equation (25) reduces to (3) if we assume which
is generally not true near edges (may be satisfied in the ho-
mogenous regions). Also, retaining this term (i.e., )
can generate negative diffusion which leads to an ill posed PDE
problem. The performance of GGVF on “U” images is shown in
the second row of Fig. 7. EFV clearly outperforms both GGVF
and GVF in terms of localizing the edges.

Inaddition, thesmoothing terminGVFalsocontributes topoor
localization in the presence of multicontrast edges, see Fig. 8(a),
where a weaker (low contrast) edge is in close proximity of a
stronger (higher contrast) edge. This was originally observed by
Xie et al. [28], where the authors proposed to use a region-based
flow in addition to the traditional edge-based flow used in GVF.
Fig. 8(a) consists of nested squares with varying intensity values.
The gray values are chosen in such a way that a couple of weak
edges are kept deliberately in the vicinity of a strong edge. Fig.
8(d) and (e) show the GVF and EFV vectors, respectively, for the
top right quarter of the image in Fig. 8(a). The opposing vectors
areshownindifferentcolorsandthetrueedgesareshowningreen.
GVFmissesall theedgesother thantheinnermostonebetweenthe

two innermost squarescorresponding to thegray levels0and255.
These results confirm the earlier observation that high contrast
edges do affect the detection of low contrast edges in the GVF
formulation.Notethat theEFVfieldisnotaffectedbythepresence
of such multicontrast edges.

The issue of close proximity low contrast edges arises fre-
quently in natural images, for example, see Fig. 9(a) which
shows a small caterpillar lying on the stem of a shrub. The ob-
jective is to segment the caterpillar from the rest of the image.
The EFV and the GVF fields are shown in Fig. 9(b) and (c) re-
spectively. Again GVF (Fig. 9(e)) fails to detect the true edges
whereas EFV effectively segments the caterpillar as shown in
Fig. 9(d). For these experiments, the scale parameter is set to
0.5 for both methods. Moreover, we examine the GVF field for
different values of (e.g., 1, 1.5, 2) and observed the same be-
havior as the plotted one [see Fig. 9(c)].

V. EXPERIMENTAL RESULTS

Inthissection,wefirstprovideadetailedcomparisonofthepro-
posed EFV with three other state-of-the art approaches, namely,
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Fig. 8. This figure demonstrates the effect of the smoothing component in the GVF field formulation. (a) An example image. The gray values corresponding to
each region are also shown. A close up view of the top right quarter of (b) GVF field, and (c) EFV field of the image. The true edges are plotted in green dots.
Detected edges corresponding to (d) GVF field and (e) EFV field are shown in magenta dots. Note that the large capture range of the strongest edge suppressed all
other weak edges for the case of GVF.

GAC, GVF, and GGVF. We also provide some qualitative results
for MAC. MAC code can be downloaded from the authors’ web-
site.4 Wecouldnot evaluate itsperformanceonour largesynthetic
database of more than 1000 images since the user interface for
the software only allows manually uploading and processing one
image at a time and can not be used in batch mode.

Recall the general curve evolution equation:

(26)

where and are tuning parameters, is the curvature and
is the normal to the curve. The scalar function and the
vector field differs for the four methods as follows:

• EFV: and , the scalar potential of (i.e.,
);

• GGVF: and , where ;

4http://www.cs.swan.ac.uk/~csjason/snakes/mac/.

• GVF: and .
• GAC: and .

Note that GGVF or GVF do not consider the inflationary term
[see (26)] explicitly in their formulations. The reason is that the
GGVF or GVF field have wider capture range. In principle the
presence of this inflationary term, however, should not disturb
the edge localization, since the edge stopping function
reduces to zero near edges. This fact is true with the smoothing
term (does not have any effect near edges) as well. Thus, only
the edge flow term in (26) drives the contour near edges. More-
over, from our experience considering the inflationary term in
the formulation provides faster convergence particularly in the
presence of excessive noise.

We choose the SIID, Shape Image Database from Brown uni-
versity [24], to demonstrate the effectiveness of the proposed
framework in dealing with sharp junctions and corners. The
collection is composed of 18 different shape categories. Each
category has 12 different variations of the same shape for a
total of 216 (18 12) images. For our experiments, we cor-
rupted the images with additive white Gaussian noise; the SNRs
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Fig. 9. Performance of EFV and GVF on closely located low contrast edges. A negligible amount of constant expansion force is applied for both methods to
prevent the initialized contour from collapsing. (a) An image of a caterpillar where the red contour shows the initialization for both methods. The edge flow field
corresponding to (b) EFV and (c) GVF. The back of the caterpillar [image courtesy of Dries Knapen (http://www.focusonnature.be)] is shown by connected red
dots. The segmentation results using (d) EFV and (e) GVF field. Note that, in case of EFV, the vectors from opposite directions meet each other around the connected
red dots whereas this is not true for GVF.

Fig. 10. (a) Comparison of edge localization using EFV �� � ���, GGVF, GVF, GAC. (b) The performance of EFV with different settings of the offset parameter
�.

are 10, 15, 20, 25, 30, 35, 40 dB, and then we compared dif-
ferent segmentation techniques. The scale parameter is set to
1 for all the methods. The detection accuracy is measured as:

, where is the ground truth mask
and is the binary mask of the segmentation result. The max-
imum value is attained when the segmentation result exactly
matches with the target. The parameters and in (26) are
tuned using a subset of the entire dataset, for each of the three
segmentation methods separately. The computed parameters are
kept fixed for the testing phase. The performance of different

methods is presented in Fig. 10(a). The results show that the
EFV performs better than the other three techniques almost in
all noise levels. Fig. 10(b) demonstrates the performance of EFV
for different values of (the offset parameter in the difference of
offset Gaussian filter). As can be seen, provides a good
trade-off between the edge localization and avoiding the noise
interference. In Fig. 13, we present some qualitative results on
a set of natural images. To capture the complex edges for these
images, we decided to compute the multiscale version of EFV
presented in Appendix A.
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Fig. 11. Performance of magnetostatic active contour on noise corrupted U images.

Fig. 12. Segmentation result (in white contour) using MAC for different setting of gradient threshold parameter � . Note that the caterpillar is missed in all the
cases. (a) � � ��� (default), (b) � � ����, (c) � � �����, (d) � � ������.

The authors in [29] investigated the initialization issue for the
level set function elaborately. In contrast, we examine its edge
localization and detection capability in presence of various chal-
lenges. The noise corrupted “U” images (Fig. 7) and the cater-
pillar image [Fig. 9(a)] are used to demonstrate the performance
of MAC. The noise contents for the “U” images are kept the
same as before (see Fig. 7). The initialization is done as shown
in Fig. 6(a). The outputs (Fig. 11) are obtained directly from the
software developed by the authors [29]. The software returns
two level-set functions, one for localizing the object and another
for localizing the background. We only show the contour which
localizes the object. The results demonstrate that MAC is un-
able to localize the edges precisely (see the EFV results in the
first row of Fig. 7 for comparison). We use the default param-
eter setting for these experiments. The default parameter setting
in MAC assigns full weight to the smoothing term and it com-
pletely ignores the data term (see (26)), resulting in a poor edge
localization. Assigning more weight to the data term seems to
improve edge localization but results in more false positives.
Fig. 12 demonstrates the performance of MAC on the caterpillar
image. The same initialization is used as shown in Fig. 9(a).
These results are obtained by varying the gradient threshold pa-
rameter, . is a parameter which removes noisy edges (see
[29] for detailed explanations) after initial edge computation.
The default setting (provided by the authors) is used for rest of
the parameters. In all the cases, the contours wrongly latch onto
the dominant object, i.e., the stem.

VI. CONCLUSION

We explored the properties of a nonconservative edge flow
field, EFV, for robust image segmentation. The nonconserva-
tive nature of EFV is demonstrated both analytically and nu-
merically. We showed that the nonconservative nature of the
edge flow field is critical in detecting boundaries of objects with
concavities. In incorporating the EFV into the curve evolution
framework, we derived a new edge stopping function analyti-
cally from the EFV in a principled way. We showed that this
edge stopping function is better than the traditionally used in-
verse of the gradient magnitude function in terms of edge local-
ization. We compared the EFV with well known state-of-the-art
approaches, providing detailed experimental results that demon-
strated the advantage of EFV over other methods. In this paper
our work addresses the single object segmentation problem. Fu-
ture work include extensions to multiple object segmentation
and a principled approach to the multiscale framework.

APPENDIX A
MULTISCALE EFV FIELD

We adopt a fine to coarse strategy to compute the multiscale
EFV where the flow field is first derived at the finest scale (say
at ) and then the flow vectors are selectively modified using
the ones from the coarser scales. The procedure is presented in
Algorithm 1.
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Fig. 13. This figure presents the effectiveness of EFV on complex natural images.

Algorithm 1 Algorithm for computing multiscale
intensity-based EdgeFlow. In the experiments we choose

and

Consider be an image. Let and be the threshold
values for the edge magnitude and the angle respectively.
Let and be the finest and coarsest scale considered
with a step size of .

.

Set .

while do

Set

.

for all pixels in do

if then

else if then

else

is kept the same.

end if

end for

end while

APPENDIX B
SOLUTION FOR THE SCALAR POTENTIAL

Consider be a closed domain in with boundary . Let
be a smoothly varying vector field defined in . Find the

optimum solution for the following functional:

(27)

Proof: Using calculus of variation this problem can be
solved as follows:

Now applying integration by parts, we obtain

Assuming proper boundary condition and the fact that this rela-
tion should hold for any variation of , the problem reduces to
solving the following PDE:

with

where is the unit outward normal to .

APPENDIX C
SOLUTION FOR THE VECTOR POTENTIAL

Find which minimizes the following functional in a given
region

(28)
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Proof: The optimal solution can be obtained using calculus
of variation as follows:

Now applying the identity from Lemma D.1 the above equality
reduces to

combining similar terms corresponding to the domain and the
boundary , we obtain

after rearranging the terms this reduces to

where is the unit outward normal to . Now letting the
boundary condition be

we obtain

(29)

As this relation must hold for any arbitrary we obtain the
following PDE formulation to solve for

APPENDIX D
PROOF OF A VECTOR CALCULUS IDENTITY

Lemma D.1: Consider be a closed region in with
boundary . The following identity is valid for any arbitrary
smooth vector fields and defined in

(30)

Proof: Applying Gauss divergence theorem on the left
hand side of (30), we obtain

(31)

This completes the proof. Note that the last step follows from
the following vector calculus identity:

ACKNOWLEDGMENT

The authors would like to thank all the anonymous reviewers
for their valuable comments and thoughtful suggestions which
improved the quality of the presented work.

REFERENCES

[1] M. S. Allili and D. Ziou, A Robust Video Object Tracking by Using
Active Contours, 2006.

[2] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,”
Int. J. Comput. Vis., vol. 22, no. 1, pp. 61–80, Feb. 1997.

[3] T. Chan, B. Y. Sandberg, and L. Vese, “Active contours without edges
for vector-valued images,” J. Vis. Commun. Image Represent., vol. 11,
pp. 130–141, 2000.

[4] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Trans. Image Process., vol. 10, no. 2, pp. 266–77, Feb. 2001.

[5] Q. Chena, Q. Suna, P. Hengb, and D. Xiaa, “Parametric active contours
for object tracking based on matching degree image of object contour
points,” Pattern Recognit. Lett., pp. 126–141, Jan. 2008.

[6] L. D. Cohen and I. Cohen, “Finite-element methods for active con-
tour models and balloons for 2-d and 3-d images,” IEEE Trans. Pattern
Anal. Mach. Intell., pp. 1131–1147, Nov. 1993.

[7] A. Dufour, V. Shinin, S. Tajbakhsh, N. Guillen-Aghion, J.-C. Olivo-
Marin, and C. Zimmer, “Segmenting and tracking fluorescent cells in
dynamic 3-d microscopy with coupled active surfaces,” IEEE Trans.
Image Process., vol. 14, no. 9, pp. 1396–1410, Sep. 2005.

[8] D. Gil and P. Radeva, “Curvature vector flow to assure convergent de-
formable models for shape modelling,” in Proc. EMMCVPR, 2003, pp.
357–372.

[9] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., pp. 321–331, 1988.

[10] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi,
“Gradient flows and geometric active contour models,” in Proc. Int.
Conf. Computer Vision, Jun. 1995, pp. 810–815.

[11] F. Lempelius and J. Pauli, “Active contour based object detection,” in
Proc. Int. Conf. Pattern Recognition and Information Processing, 1997,
pp. 171–175.

[12] B. Leroy, I. Herlin, and L. D. Cohen, “Multiresolution algorithms for
active contour models,” in Proc. 12th Int. Conf. Analysis and Optimiza-
tion of Systems, 1996, pp. 58–65.

[13] M. Leventon, W. Grimson, and O. Faugeraus, “Statistical shape influ-
ence in geodesic active contours,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2000, pp. 316–323.

[14] W.-Y. Ma and B. S. Manjunath, “Edgeflow: A technique for boundary
detection and image segmentation,” IEEE Trans. Image Process., pp.
1375–1388, Aug. 2000.

[15] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Evolutionary fronts for
topology-independent shape modeling and recovery,” in Proc. Eur.
Conf. Computer Vision, 1994, pp. 3–13.

[16] J. Marsden and A. Tromba, Vector Calculus, 3rd ed. New York: W.H.
Freeman, 1996.

[17] S. Osher and J. A. Sethian, “Fronts propagating with curvature-depen-
dent speed: Algorithms based on Hamilton–Jacobi formulations,” J.
Comput. Phys., vol. 79, pp. 12–49, 1988.

[18] N. Paragios and R. Deriche, “Geodesic active contours and level sets
for the detection and tracking of moving objects,” IEEE Trans. Pattern
Anal. Mach. Intell., pp. 266–280, Mar. 2000.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 31,2010 at 00:47:24 EDT from IEEE Xplore.  Restrictions apply. 



490 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2010

[19] N. Paragios and R. Deriche, “Geodesic active regions and level set
methods for supervised texture segmentation,” Int. J. Comput. Vis., pp.
223–247, Feb. 2002.

[20] N. Paragios, O. Mellina-Gottardo, and V. Ramesh, “Gradient vector
flow fast geometric active contours,” IEEE Trans. Pattern Anal. Mach.
Intell., pp. 402–407, Mar. 2004.

[21] N. Paragios, O. Mellina-Gottardo, and V. Ramesh, “Gradient vector
flow fast geometric active contours,” IEEE Trans. Pattern Anal. Mach.
Intell., pp. 402–407, Mar. 2004.

[22] C. Pluempitiwiriyawej, J. Moura, Y. Wu, and C. Ho, “Stacs: New active
contour scheme for cardiac mr image segmentation,” IEEE Trans. Med.
Imag.

[23] K. Polthier and E. Preub, “Variational approach to vector field decom-
position, scientific visualization,” presented at the Eurographics Work-
shop on Scientific Visulization, 2000.

[24] T. B. Sebastian, P. N. Klein, and B. B. Kimia, “Recognition of shapes
by editing shock graphs,” in Proc. ICCV, 2001, pp. 755–762.

[25] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials Science. Cambridge, MA: Cambridge Univ.
Press, 1999.

[26] A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W.
Grimson, and A. Willsky, “A shape based approach to the segmenta-
tion of medical imagery using level sets,” IEEE Trans. Med. Imag.,
vol. 22, no. 2, pp. 137–154, 2003.

[27] Y. Xiang, A. C. S. Chung, and J. Ye, “An active contour model for
image segmentation based on elastic interaction,” J. Comput. Phys.,
vol. 219, pp. 455–476, Nov. 2006.

[28] X. Xie and M. Mirmehdi, “Rags: Region-aided geometric snake,” IEEE
Trans. Image Process., pp. 640–652, May 2004.

[29] X. Xie and M. Mirmehdi, “Mac: Magnetostatic active contour model,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4, pp. 632–646,
2008.

[30] C. Xu and J. Prince, “Generalized gradient vector flow external forces
for active contours,” Signal Process., pp. 131–139, Dec. 1998.

[31] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,”
IEEE Trans. Image Process., pp. 359–369, Mar. 1998.

[32] S. C. Zhu and A. Yuille, “Region competition: Unifying snakes, re-
gion growing, and bayes/mdl for multiband image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., pp. 884–900, Sep. 1996.

Pratim Ghosh (S’08) was born in West Bengal,
India, in 1981. He received the B.E. degree in
electrical engineering from Jadavpur University,
Kolkata, India, in 2004, and the M.E. degree in
system science and automation (with distinction)
from the Indian Institute of Science, Bangalore, in
2006. He is currently pursuing the Ph.D. degree in
the Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara.

He interned at Janelia Farm, Howard Hughes Med-
ical Institute, in the summer of 2009. His research in-

terests span the areas of computer vision and pattern recognition with particular
emphasis on variational methods for image segmentation.

Luca Bertelli (S’04) received the D.Ing. degree
(summa cum laude) in electronic engineering from
the University of Modena, Italy, in 2003, and the
M.S. and Ph.D. degrees in electrical and computer
engineering from the University of California, Santa
Barbara, in 2005 and 2009, respectively.

During the summer of 2008, he was an intern at
Google Research in Mountain View, CA, working on
salient object detection. He is currently a Research
Staff Member at Mayachitra, Inc., Santa Barbara.
His research interests include variational methods

for image segmentation, level set methods, shape-based segmentation, and
other aspects of computer vision and machine learning.

Baris Sumengen received the B.S. degree from
Bogazici University, Turkey, in both electrical
engineering and mathematics in 1998 and the M.S.
degree in 2000 and the Ph.D. degree in 2004 in
electrical and computer engineering from University
of California, Santa Barbara (UCSB).

From 2004 to 2005, he was a postdoctorate at the
UCSB Center for bio-image informatics. Since 2006,
he has been with Like.com (formerly Riya) as a re-
search architect leading the design of scalable content
based image similarity engines. His primary research

interests include image segmentation, content-based image retrieval, and data
mining in large multimedia databases.

B. S. Manjunath (F’05) received the B.E. degree
in electronics (with distinction) from the Bangalore
University, India, in 1985, the M.E. degree (with
distinction) in systems science and automation from
the Indian Institute of Science in 1987, and the Ph.D.
degree in electrical engineering from the University
of Southern California, Los Angeles, in 1991.

He is now a Professor of electrical computer en-
gineering and Director of the Center for Bio-Image
Informatics at the University of California, Santa
Barbara. His current research interests include image

processing, data hiding, multimedia databases, and bio-image informatics. He
is a coeditor of the book Introduction to MPEG-7 (Wiley, 2002).

Dr. Manjunath was a recipient of the national merit scholarship (1978–1985)
and was awarded the university gold medal for the best graduating student in
electronics engineering in 1985 from the Bangalore University. He was an asso-
ciate editor of the IEEE Transactions Image Processing and is currently an Asso-
ciate Editor of the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE and the IEEE TRANSACTIONS ON MULTIMEDIA.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 31,2010 at 00:47:24 EDT from IEEE Xplore.  Restrictions apply. 


