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Abstract

Simultaneous registration and segmentation (SRS) pro-
vides a powerful framework for tracking an object of in-
terest in an image sequence. The state-of-the-art SRS-
based tracking methods assume that the illumination is
maintained constant across consecutive frames. However,
this assumption does not hold in many natural image se-
quences due to dynamic light source and shadows. We
propose a generalized model for SRS-based tracking in
this paper to account for non-uniform additive illumination
changes. More specifically, we introduce two new terms in
the SRS energy functional which address the above men-
tioned problem. The first term couples the shape-based cue
and intensity-based cue to establish a correspondence be-
tween them. The second term compensates for the illumi-
nation change which is complementary to the first term. We
demonstrate that the proposed SRS energy functional yields
superior performance over the state-of-the-art SRS-based
methods for various indoor and outdoor image sequences.

1. Introduction
We consider the problem of object segmentation and

tracking in time sequence imagery. For this purpose, a gen-
eralization of the existing simultaneous registration and seg-
mentation technique is derived and an effective variational
optimization framework is introduced. The proposed gen-
eralization makes the tracking robust to varying appearance
(intensity) as well as non-rigid deformations of the object
shape.

Assume that the image sequence I(x, t)|t=1,2,...,T con-
sists of an object of interest undergoing motion and/or other
deformations. We also consider the variation of the object
appearance over time possibly due to additive non-uniform
illumination changes, inter-reflections and scattering which
are frequently encountered in a practical object tracking
scenario. In previous approaches, the possible variations
in the object appearance and shape are statistically mod-

eled based on the training examples, e.g., deformable shape
model [14], active shape model (ASM) [8], active appear-
ance model (AAM) [7], the multi-scale combination [15] of
ASM and AAM to increase the robustness against noise and
clutter. Similarly, Tsai et al. [22] developed a parametric
level-set method for shape based image segmentation. Zhu
et al. [27] proposed a subject specific dynamic model for
medical application based on multi-linear principal compo-
nent analysis (MPCA). MPCA is used to learn the different
modes of variation in the object of interest. However, the
performance of these methods suffers from abrupt changes
in the object appearance which is not covered in the training
set. Recently, Schoenemann and Cremers [20] proposed a
combinatorial solution to track deformable objects. The al-
gorithm is based on finding a minimum cost cyclic path in
the product space spanned by the template shape and the
given image. The cost of a cyclic path is computed from the
image data as well as from the template shape. A variant of
this combinatorial solution was also proposed in [19]. This
method uses edge information and hence is robust to illumi-
nation changes - the flipside being that it is computationally
very expensive. There also exist polynomial time graph al-
gorithms [12] for extracting similar objects from multiple
images (time-sequence) simultaneously which do not con-
sider any shape information.

Another set of approaches [26, 17, 24, 16] have been
developed recently which explicitly take into account the
registration problem between consecutive time instances for
segmenting the object of interest over time. It has been re-
cently demonstrated [1, 23, 18] that the performance can
be improved significantly by simultaneously solving the
segmentation and registration problems. Ehrhardt et al.
[10] proposed such simultaneous registration and segmen-
tation (SRS) in the variational framework. More recently
Ghosh et al. [11] (SRS+DP) demonstrated that the perfor-
mance can be further improved by a dynamical prior (DP)
term. Though the state-of-the-art SRS approaches are in-
deed promising in terms of segmentation and tracking, they
do not explicitly account for frequently occurring illumi-
nation changes across consecutive time frames. Our main



contribution in this paper is to propose a framework that ac-
counts for such illumination variations.

The key components of the proposed approach are:

• A generalized model is introduced for the level-
set based simultaneous registration and segmentation
framework which is robust to non-uniform additive il-
lumination changes over time.

• The model is derived in a principled way by formu-
lating the SRS problem in a maximum a posteriori
(MAP) framework.

• The proposed model tightly couples multiple cues for
establishing correspondence and also compensates for
the illumination changes over consecutive views.

The paper is organized as follows. Section 2 briefly sum-
marizes the main components of a recently proposed simul-
taneous registration and segmentation algorithm (SRS+DP)
[11]. In Section 3 we introduce a maximum a posteriori for-
mulation (MAP) which generalizes the concept of SRS+DP.
A new energy functional is derived from the MAP formula-
tion in Section 4. In Section 5 we present some qualitative
and quantitative evaluation of the proposed approach. We
conclude in Section 6.

2. Review of the Previous approach
Let I(t) : Ω → R and I(t − 1) : Ω → R denote the

images at two consecutive time instances t and t − 1. The
shape of the tracked object of interest at any arbitrary time
t is embedded in the level-set function φo(x, t) : Ω → R1.
We assume that any kind of relation/correspodence between
consecutive (say, t and t − 1) frames can be defined using
a displacement vector field u(x, t − 1, t). In this we also
assume that the initial contour of the object of interest is
known a priori. Below we describe the driving equations
for the segmentation and registration modules in state-of-
the-art SRS framework. Interested readers are referred to
[9, 13, 11, 10] for detailed explanation.

2.1. Segmentation module

The segmentation for the current frame (at time t) can be
computed by maximizing the following a posteriori proba-
bility:

argmax
φo(t)

P(φo(t)|I(t), φ̂−(t)) (1)

where φ̂−(t) is the dynamical prior at time t. In [11] the
authors proposed an probabilistic formulation to compute
φ̂−(t) which was shown to be consistent with the temporal

1For the rest of the discussion we assume that φ(x, t) ≡ φ(t) unless
mentioned otherwise.

statistics of the tracked object. To this end φ̂−(t) is designed
in such a way so as to maximize the a posteriori probabil-
ity given all the past observations φo(1), φo(2)..., φo(t−1)
for the segmentation of the current frame. This problem
of computing φ̂−(t) was solved by formulating a linear
stochastic equation:

φ(x, t) = φ(x, t−1)−uT (x, t−2, t−1)∇φ(x, t−1)+w (2)

and a observation model:

φo(x, t) = φ(x, t) + v (3)

where w (with pdf P(w) ∼ N (0, Q)) and v (with pdf
P(v) ∼ N (0, R)) represent the modeling and the obser-
vation errors, respectively. Using Eq. (2) and (3) the dy-
namical prior can be computed as:

φ̂−(x, t) = φ̂(x, t−1)−uT (x, t−2, t−1)∇φ̂(x, t−1). (4)

Assuming I(t) and φ̂−(t) are conditionally independent
given φ(t) and are also mutually independent we can write:

P(φo(t)|I(t), φ̂−(t)) ∝ P(I(t)|φo(t))P(φ̂−(t)|φo(t))P(φo(t))
(5)

It can be shown that maximizing the expression in Eq. (5)
is equivalent to minimizing the following energy function
under certain simplifying assumptions:

E(φo(t); I(t),φ̂−(t)) =∫
Ω

ln p(I|θ2) +Hε(φo(x, t)) ln
p(I|θ2)
p(I|θ1)

dx

+ β
1
2

∫
Ω

|φo(x, t)− φ̂−(x, t)|2dx

+ ν

∫
Ω

|∇Hε(φo(x, t))|dx (6)

where ν and β are the positive constants, θ1, θ2 parame-
terize the object and the background pdfs, and Hε(z) =
1
2 [1 + 2

π arctan( zε )] is the regularized Heaviside function.
The term associated with ν is similar to the term used in [4]
which penalize the length of the curve represented by the
zero level-set of φo(t).

2.2. Registration module

The displacement vector field u is used to establish the
correspondence between two consecutive frames using mul-
tiple cues, for example, image intensity and shape based
cues.

Intensity based registration: The displacement vector
field u(t − 1, t) relating intensity cue for establishing the
correspondence can be computed by maximizing the a pos-
teriori probability P(u|I(t), I(t− 1)). Applying the Bayes
rule we can write:

P(u|I(t), I(t− 1)) ∝ P(I(t), I(t− 1)|u)P(u) (7)



With certain simplifying assumptions the maximization
problem in Eq. (7) can be reduced to minimization of the
following energy functional:

E(u; I(t− 1), I(t)) =
1
2

∫
Ω

(I(x, t)− I(T(x), t−1))2dx+

α
1
2

∫
Ω

trace(∇u ∇uT)dx (8)

where (.)T represents the transpose operation, T(x) = x−
u(x), and α controls the smoothness of the derived vector
field.

Shape based registration: Similarly one can write
down the expression u∗ for the vector field u which re-
lates the shape based cue (represented as level-set functions)
from two consecutive frames:

u∗ = argmax
u

P(u|φ̂(t− 1), φo(t)) (9)

where φ̂(t − 1) is the final estimated shape at t − 1. An
equivalent minimization problem to Eq. (9) can be written
[10] as:

E(u; φ̂(t− 1), φo(t)) =
1
2

∫
Ω

Nε(φo(t), φ̂(t−1))(φo(x, t)− φ̂(T(x), t−1))2dx

(10)

where Nε is a binary function which confines the opti-
mization around the ε neighborhood of the shapes (i.e.
φo(x, t), φ̂(x, t−1)) under consideration. This cost func-
tion penalizes the deviation of the target shape (φo(x, t))
from the transformed reference shape (φ̂(x, t−1)). The for-
mula in Eq. (10) also combines the concept of registration
and segmentation into a single objective term.

We would like to note that the displacement vector field
u(x, t − 1, t) independently relates the shape and image
intensity based cues for establishing correspondence. The
intensity based correspondence in the registration mod-
ule is effective only if the corresponding pixels have
equal gray values. Unfortunately, this assumption is com-
monly violated, e.g., when brightness constancy assump-
tion (I(x, t) = I(x + ∆x, t + ∆t)) does not hold, and
when constant/linear illumination change across consecu-
tive views. The authors in [11] proposed a solution with the
use of a dynamical prior term to address the problem of cor-
respondence when brightness constancy assumption is vio-
lated. However, the framework of SRS+DP [11] still lacks a
model which can compensate for the constant/linear illumi-
nation change or other intensity based disturbances. We can
partially address the correspondence problem in presence il-
lumination change across consecutive views by a functional

as used in [3, 2] :

E(u; I(t− 1), I(t)) =
1
2

∫
Ω

(
|∇I(x, t)+

−∇I(T(x), t−1)|
)2

dx

(11)

where ∇ = (∂x, ∂y)T denotes the spatial gradients. The
functional in Eq. (11) (obtained from gradient constancy
[3] assumption) allows some small variations in the grey
value. Nevertheless, this functional is clearly not sufficient
when the illumination changes non-uniformly across con-
secutive views. To demonstrate this we perform a simple
test. Consider Fig. 1. The background of a circular object
(top left corner) is modified by adding a spatially varying
function as shown in the top right corner. The object inten-
sity is chosen in such a way that it does not saturate across
time. Thus we also allow some variations in the object ap-
pearance across time. The last two rows compares the per-
formance of the proposed approach with the state-of-the-art
technique. We next develop the proposed approach system-
atically from the concept of simultaneous registration and
segmentation which is robust to non-uniform illumination
change.

3. Generalized Simultaneous Registration and
Segmentation

In this section we first introduce a maximum a posteri-
ori (MAP) framework that generalizes the concept of si-
multaneous registration and segmentation. Secondly, we
show that the SRS+DP framework can be obtained from
this MAP formulation with certain simplifying assump-
tions. Thirdly, we point out the limitations of such assump-
tions, especially when there is drastic illumination change
across consecutive views. Finally, a novel approximation is
introduced which is demonstrated to be quite effective for
this purpose.

Consider the following maximum a posteriori problem:

argmax
u,φo(t)

P(u, φo(t)|I(t), I(t− 1), φ̂(t− 1), φ̂−(t)). (12)

Decomposing the above probability expression we obtain:

P(u, φo(t)∣∣I(t), I(t−1), φ̂(t−1), φ̂−(t)
)

=P(u∣∣φo(t), I(t), I(t−1), φ̂(t−1), φ̂−(t)
)

P(φo(t)∣∣I(t), I(t−1), φ(t−1), φ̂−(t)
)

=P(u∣∣φo(t), I(t), I(t−1), φ̂(t−1)
)︸ ︷︷ ︸

C1
P(φo(t)∣∣I(t), φ̂−(t)

)︸ ︷︷ ︸
C2

.

(13)
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Figure 1. Example of circular object-of-interest (top-left), and spa-
tially varying background (top-right). The intensity of the object
is 64 and the background is varying linearly from 128 to 0 (from
left to right). A synthetic sequence consists of three images (last
two rows). The second row presents the segmentation/tracking
result (red contour) for the proposed approach and the third row
shows the same for the state-of-the-art technique [11]. The state-
of-the-art work can not segment/track the object reliably due to
non-uniform illumination change across consecutive time frames.
The contour is specified for the first frame (i.e. the first column
in second and third rows) surrounding the circular object for both
the methods. In these images the background is actually used as
shown in the top right corner. However, we focus in the vicinity of
the object for better visualization.

To obtain C1 we assume that u is independent of φ̂−(t)
given φo(t). We also assume that φo(t) is independent of
the previous image I(t− 1) and is independent of φ̂(t− 1)
given the dynamical prior φ̂−(t) to get C2. The dependency
graph between different variables is depicted in Fig. 2 for
better understanding.

Note that, C2 is associated with the energy functional
E(φo(t); I(t), φ̂−(t)) (Eq. (6)). However, maximization
of C1 via a single energy functional is intractable due to
multiple conditional dependencies. Accordingly, based on
certain assumptions, one can approximate C1 with the prod-
uct of probabilities conditioned on fewer variables. If we
assume the intensity based cue i.e., I(t) and I(t − 1) are
conditionally independent of the shape based cue i.e., φo(t)
and φ̂(t − 1), given the flow field u, and are also mutually
independent, then we can approximate the C1 term as:

C1 ≈ P
(
u
∣∣I(t), I(t−1)

)P(u∣∣φo(t), φ̂(t−1)
)

(14)

Note that the above approximation corresponds to the en-
ergy functionals E(u; I(t − 1), I(t)) (from Eq. (8)) and
E(u; φ̂(t−1), φo(t)) (from Eq. (10)) in the SRS+DP frame-
work. In this regard, we would like to mention:

φ̂(t− 1) φ̂−(t) φo(t)

u(x, t− 1, t)

I(t− 1) I(t)

Figure 2. Dependency graph model in a typical SRS framework.
The light green double arrows correspond to the terms which are
considered in SRS+DP. The proposed approach makes use of the
other cross-term which is shown by the light blue double arrow.

• Image intensity based correspondence (i.e.,
P(u|I(t), I(t − 1))) may be highly corrupted
due to non uniform illumination change.

• Although, the second term (i.e., P(u
∣∣φo(t), φ̂(t−1))

is independent of the illumination, it may introduce in-
stability since u is conditioned on another optimization
variable φo(t).

Thus, the approximation adopted in SRS+DP may not be
relevant in certain cases. Alternatively, one can obtain a
new approximation:

C1 ≈ P
(
u
∣∣I(t), φ̂(t−1)

)P(u∣∣φo(t), I(t−1)
)
, (15)

if the pair I(t) and φ̂(t − 1) is assumed to be condition-
ally independent of the pair I(t− 1) and φo(t) given u and
they are also assumed to be mutually independent. The ef-
fectiveness of this cross connection between intensity and
shape based cues for establishing correspondence is elabo-
rated in Section 4.

In a general set up, one can sequentially optimize for u
by alternating the approximations for C1 based on the two
assumptions (Eq. (14) and Eq. (15)). However, for com-
putational reasons, we opt for the batch update which com-
bines the two approximations into a single objective func-
tion. Furthermore, we drop the P(u∣∣φo(t), I(t−1)

)
term

which may introduce instability since u is conditioned on
another optimization variable φo(t). The final approxima-
tion can be summarized as:

C1 ≈
C11︷ ︸︸ ︷

P(u∣∣I(t), I(t−1)
)

P(u∣∣φo(t), φ̂(t−1)
)︸ ︷︷ ︸

C21

P(u∣∣I(t), φ̂(t−1)
)︸ ︷︷ ︸

C31

. (16)

We next explain the formulation and the properties of the
new term C3

1 . An important modification for the term C1
1 is

also proposed which is complementary to C3
1 .

4. New Functional
Consider the following functional (corresponding to the

term C3
1 ) which connects the intensity based cue with the



shape based cue to obtain a robust estimate for u:

E(u; φ̂(t−1), I(t))=
∫

Ω

gI(t)(x)
∣∣∇Hε(φ̂(T(x), t−1))

∣∣dx
(17)

where gI(t)(x) : [0,+∞[→ R+ is a strictly decreasing
function computed from I(t) representing the object of in-
terest in the image. The second term inside the absolute sign
(|.|) projects the previous segmentation map into the current
frame I(t). Thus the functional tries to deform the previous
segmentation in such a way so as to get a better alignment
with the object representation in the current frame. Here we
assume the object is represented using a simple edge indi-
cator function, i.e., gI(t) = 1

1+|∇Iσ(t)| , where Iσ(t) is the
Gaussian smoothed image. Thus g varies inversely with the
edge strength. The other choice for g, possibly better but
computationally intensive, is computing the object repre-
sentation in a discriminative way [5] using conditional ran-
dom field. The advantage of using g is that we do not rely
only on the relative information provided by the image in-
tensities which can be corrupted due to illumination change
or due to other disturbances. In contrast, we can reliably
estimate u using C3

1 as long as the object is visible in the
current frame. The energy is non-convex and can be opti-
mized locally. The Euler-Lagrange of Eq. (17) provides the
update equations for u(x):

∂u
∂τ

= −∇ ·
(
gI(t)(x)

∇φ̂(T(x))

|∇φ̂(T(x))|

)
δε
(
φ̂(T(x))

)∇φ̂(T(x))

(18)

where ∂x and ∂y are the partial derivatives along x and y di-
rections respectively, and δε(z) = 1

π
ε

ε2+z2 is the regularized
dirac delta function. In Eq. (18) we drop the time argument
from φ̂ for notational simplicity.

Apart from the advantage indicated above the term C3
1 is

also effective when there is no illumination change. How-
ever, the presence of intensity-wise correspondence (the
term C1

1 ) can yield false negatives if there is non-uniform il-
lumination change. To cope with this we modify the energy
term corresponding to C1

1 as:

En(u;I(t− 1), I(t)) =
1
2

∫
Ω

(
I(x, t)− I(T(x), t−1) + G(x)

)2

dx

+ α
1
2

∫
Ω

trace(∇u∇uT )dx + γ
1
2

∫
Ω

|∇G|2dx
(19)

where α, γ are the proportionality constants and G compen-
sates for the illumination change, inter-reflection etc. across
consecutive views. We would like to mention that there ex-

Algorithm 1 Algorithm for simultaneous estimation of u
and φo(t).

1: Consider we have φ̂(t− 1), I(t− 1), and I(t).
2: Initialize u and φo(t) and G.
3: while |φo(t, τ)− φo(t, τ − 1)| ≥ ∆ do
4: Optimize over E = En(u; I(t − 1), I(t)) +

E(u; φ̂(t − 1), φo(t)) + E(u; φ̂(t − 1), I(t)) (u re-
lated functionals).

5: Optimize over E = E(φo(t); I(t), φ̂−(t)) +
E(u; φ̂(t− 1), I(t)) (φo(t) related functionals).

6: Optimize over E = En(u; I(t− 1), I(t)) (G related
functionals).

7: Update u and φo(t) and G.
8: end while

ists a considerable body of literature for recovering the re-
flectance properties in a real scene. A commonly used para-
metric form in this regard is bidirectional reflectance distri-
bution function (BRDF) [25]. Instead, we employ a non-
parametric function G to compensate for the illumination
changes which does not assume any particular configura-
tion regarding the moving object w.r.t. the light source. The
overall optimization framework is presented in Algorithm
1. Note that a gradient descent scheme is employed for op-
timizing different variables in the SRS framework. As a
result, the algorithm is prone to find local minima. To avoid
this, we first compute an initial guess for u using a multi-
resolution registration technique. It is then used to initialize
u in Algorithm 1. It is to be noted that the performance
of a gradient descent scheme depends on good initialization
in general. We employ Crank-Nicolson scheme [21] (ac-
curate of order (2,2)) to implement the diffusion equations
as depicted in step 4 and step 6 of Algorithm 1. The step
5 in Alg. 1 can be implemented using standard Chan-Vese
[4] formulation. The proposed algorithm adds a negligible
amount of computational complexity to SRS+DP, which is
linear in terms of the size of the image.

5. Experimental Results
We choose four different time sequences to evaluate the

performance of the proposed approach. All of the sequences
are 100 frames long. We use 20 frames (out of 100 frames)
for tuning the parameters for each method. The remaining
80 frames are used for testing purpose. The first two se-
quences D1 and D2

2 are obtained from a stationary surveil-
lance camera and the objective is to segment and track a
given vehicle over a certain period of time. The sequence
D1 (see Fig. 3) has pronounced non-uniform illumination
change over consecutive time frames since the vehicle is

2Both sequences are downloaded from http://i21www.ira.
uka.de.



(a) Frame 10 (b) Frame 20 (c) Frame 30 (d) Frame 40

(e) Frame 50 (f) Frame 60 (g) Frame 70 (h) Frame 80

Figure 3. This figure demonstrates some example visual results on the dataset D1. The corresponding frame numbers are written below.
The obtained results using GSRS, SRS+DP, and SRS are shown in green, red and black contours respectively.

going through several shadow and bright regions. In D2

(see the first row in Fig. 4) the visibility is poor due to
heavy snowfall and the inter-reflection (between the vehicle
and snow) makes the segmentation and tracking quite chal-
lenging. The third sequence D3

3 is an indoor sequence of a
plastic bottle (see the second row in Fig. 4) with drastic illu-
mination changes where the motion is due to camera move-
ment. In the case of sequence D4 (see the third row in Fig.
4) both the camera and the vehicle (i.e. object-of-interest)
are moving at varying speed. Thus the object motion in D4

is not smooth like the other sequences considered for the
experiment. Moreover, the illumination condition changes
drastically in the later half of the sequence. We compare
with three other state-of-the-art approaches namely, SRS
[10], SRS+DP [11] and a blob based tracker [6] (BT). In
the subsequent discussion we refer the proposed approach
as GSRS.

We use F-measure, an area based error metric, to cap-
ture the performance of different approaches. Consider Ωg
(⊆ R2) and Ωa (⊆ R2) be the two regions describing the
object-of-interest in groundtruth and automatic segmenta-
tion in the same time frame. The F-measure is defined as:

F =
2PR
P +R , whereP =

|Ωg ∩ Ωa|
Ωa

, and R =
|Ωg ∩ Ωa|

Ωg
3The bottle data can be found in http://www-cvpr.iai.

uni-bonn.de/data/bottledata.zip.

where P is the precision and R is the recall; and |.| repre-
sents the cardinality of a given set. Fig. 3 shows the results
on the dataset D1. The proposed approach segments and
tracks the vehicle desirably in all the time frames even in
presence of severe illumination changes. Fig. 4 demon-
strates some visual results on the three other sequences. We
present detailed quantitative results in Table 1 for differ-
ent algorithms and for different datasets. The F-measure
is computed after every 10 frames. As can be seen, the pro-
posed approach outperforms the state-of-the-art techniques
in almost all time instances. We submit a video corre-
sponding to the sequence D4 as supplementary material. It
demonstrates the segmentation/tracking result in red con-
tour for the proposed scheme (GSRS).

6. Conclusion
We introduce a generalized model for the level-set based

simultaneous registration and segmentation framework ap-
plied to time sequence imagery. The proposed model is
derived in a principled way by formulating a MAP prob-
lem. We show that the multiple cues, e.g., shape and in-
tensity, can be strongly coupled for establishing better cor-
respondence. Also we explicitly account for the additive
non-uniform illumination changes across consecutive views
through a spatially varying term. Our method is demon-
strated to be robust against various frequently occurring



Table 1. A comprehensive overview of the performance of different SRS methods over different datasets. Each sequence has 80 time
frames. The F-measure is computed after every 10 frames.

Datasets Methods F-measure at frame number-
10th 20th 30th 40th 50th 60th 70th 80th

D1

GSRS 0.9324 0.9364 0.9175 0.9098 0.9179 0.8937 0.8552 0.8712
SRS+DP 0.9187 0.9167 0.8881 0.8476 0.8427 0.8279 0.8146 0.8105
SRS 0.8392 0.6789 0.4718 0.1068 -lost tracking-
BT 0.4038 0.4317 0.4985 0.4165 -lost tracking-

D2

GSRS 0.8749 0.8829 0.8404 0.8660 0.8638 0.8502 0.8651 0.9018
SRS+DP 0.8636 0.8362 0.7910 0.8170 0.7954 0.7970 0.8389 0.8883
SRS 0.7726 0.8314 0.7643 0.7827 0.8048 0.8020 0.7729 0.7820
BT 0.6978 0.6859 0.7815 0.8030 0.6397 0.6630 0.7734 0.8094

D3

GSRS 0.9558 0.9222 0.8930 0.8739 0.8917 0.8822 0.8349 0.8713
SRS+DP 0.9433 0.9179 0.8665 0.8318 0.8777 0.8594 0.7643 0.7631
SRS 0.7520 0.8287 0.7090 0.4949 0.4113 0.6891 0.6025 0.3864
BT 0.3488 0.1432 0.0306 0.0349 0.0602 0.0620 0.1270 0.1060

D4

GSRS 0.9451 0.9350 0.7263 0.8202 0.8793 0.8557 0.7517 0.8651
SRS+DP 0.8218 0.6635 0.6688 0.8711 0.8209 0.7826 0.6940 0.7869
SRS 0.8065 0.7701 0.6943 0.5817 0.3158 0.1314 0.0607 0.0538
BT 0.6805 0.8167 0.7192 0.6093 0.4797 0.2812 0.2624 0.1193

challenges, e.g., illumination change, inter-reflection, scat-
tering etc.

An area of further improvement can be better initializa-
tion of various system parameters while running optimiza-
tion for different components, e.g., the displacement vector
field, the level-set evolution and the spatially varying illu-
mination term. Secondly, the motion computation for all
the points in image domain (dense flow) is generally ineffi-
cient and error prone. Instead, we would like to investigate
the computation of region specific motion field, which is
more suitable for our problem. Currently, we are studying
the effect of sequential optimization using different approx-
imations for C1 on segmentation/tracking performance as
discussed in Section 3.
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