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ABSTRACT 
We propose a simple yet effective method for visualizing and 
classifying malware using image processing techniques. Malware 
binaries are visualized as gray-scale images, with the observation 
that for many malware families, the images belonging to the same 
family appear very similar in layout and texture. Motivated by this 
visual similarity, a classification method using standard image 
features is proposed. Neither disassembly nor code execution is 
required for classification. Preliminary experimental results are 
quite promising with 98% classification accuracy on a malware 
database of 9,458 samples with 25 different malware families. Our 
technique also exhibits interesting resilience to popular obfuscation 
techniques such as section encryption. 

 Categories and Subject Descriptors 

D.4.6 [Security and Protection]: Invasive Software (viruses, 
worms, Trojan horses) 

I.4 [Image Processing and Computer Vision]: Applications 

I.5 [Pattern Recognition]: Applications 

H.1.2 [User/Machine Systems]: Human Information Processing 

General Terms 
Computer Security, Visualization, Malware, Image Processing,  

Keywords 
Malware Visualization, Image Texture, Malware Classification 

1. INTRODUCTION 
Traditional approaches towards analyzing malware involve 
extraction of binary signatures from malware, constituting their 
fingerprint. Due to the rapid proliferation of malware, there is an 

exponential increase in the number of new signatures released every 
year (in [1], Symantec reported 2,895,802 new signatures in 2009, 
as compared to 169,323, in 2008).  

Other approaches of analyzing malware include static code analysis 
and dynamic code analysis. Static analysis works by disassembling 
the code and exploring the control flow of the executable to look for 
malicious patterns. On the other hand, dynamic analysis works by 
executing the code in a virtual environment and a behavioral report 
characterizing the executable is generated based on the execution 
trace. Both these techniques have their pros and cons. Static 
analysis offers the most complete coverage but it usually suffers 
from code obfuscation. The executable has to be unpacked and 
decrypted before analysis, and even then, the analysis can be 
hindered by problems of intractable complexity. Dynamic analysis 
is more efficient and does not need the executable to be unpacked or 
decrypted. However, it is time intensive and resource consuming, 
thus raising scalability issues. Moreover, some malicious behaviors 
might be unobserved because the environment does not satisfy the 
triggering conditions.  

In this paper, we take a completely different and novel approach to 
characterize and analyze malware. At a broader level, a malware 
executable can be represented as a binary string of zeros and ones. 
This vector can be reshaped into a matrix and viewed as an image. 
We observed significant visual similarities in image texture for 
malware belonging to the same family. This perhaps could be 
explained by the common practice of reusing the code to create new 
malware variants. In Sec.3 we discuss representing malware 
binaries as images. In Sec.4 we consider malware classification 
problem as one of image classification. Existing classification 
techniques require either disassembly or execution whereas our 
method does not require either but still shows significant 
improvement in terms of performance. Further, it is also resilient to 
popular obfuscation techniques such as section encryption. This 
automatic classification technique should be very valuable for anti-
virus companies and security researchers who receive hundreds of 
malware everyday. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
VizSec’11, July 20,  2011, Pittsburg, PA, USA. 
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00. 
 

The rest of this paper is organized as follows. In Sec. 2, we discuss 
the related work in malware visualization and classification. In 
Sec.3 and Sec.4, we describe our method to visualize malware and 
automatically classify them using images. The experiments are 
detailed in Sec. 5. We discuss the limitations of our approach in 
Sec. 6 and conclude in Sec.7.  



2. RELATED WORK 
 
Several tools such as text editors and binary editors can both 
visualize and manipulate binary data. Of late, there have been 
several GUI-based tools which facilitate comparison of files.  
However, there has been limited research in visualizing malware. In 
[3] Yoo used self organizing maps to detect and visualize malicious 
code inside an executable. In [4] Quist and Liebrock develop a 
visualization framework for reverse engineering. They identify 
functional areas and de-obfuscate through a node-link visualization 
where nodes represent the address and links represent state 
transitions between addresses. In [5] Trinius et al. display the 
distributions of operations using treemaps and the sequence of 
operations using thread graphs. In [6] Goodall et al. develop a visual 
analysis environment that can aid software developers to understand 
the code better. They also show how vulnerabilities within software 
can be visualized in their environment.    

While there hasn’t been much work on viewing malware as digital 
images, Conti et al. [8,9] visualized raw binary data of primitive 
binary fragments such as text, C++ data structure, image data, audio 
data as images. In [7] Conti et al. show that they can automatically 
classify the different binary fragments using statistical features.  
However, their analysis is only concerned with identifying primitive 
binary fragments and not malware. This work presents a similar 
approach by representing malware as grayscale images.  

Several techniques have been proposed for clustering and 
classification of malware. These include both static analysis [13-19] 
as well as dynamic analysis [20-24].  We will review papers that 
specifically deal with classification of malware. In [24] Rieck et al. 
used features based on behavioral analysis of malware to classify 
them according to their families. They used a labeled dataset of 
10,072 malware samples labeled by an anti-virus software and 
divide the dataset into 14 malware families. Then they monitored 
the behavior of all the malware in a sandbox environment which 
generated a behavioral report. From the report, they generate a 
feature vector for every malware based on the frequency of some 
specific strings in the report. A Support Vector Machine is used for 
training and testing the feature on the 14 families and they report an 
average classification accuracy of 88%. In contrast to [24], Tian et 
al [16] use a very simple feature, the length of a program, to classify 
7 different types of Trojans and obtain an average accuracy of 88%. 
However, their analysis was only done on 721 files. In [17,18] the 
same authors improve their above technique by using printable 
string information from the malware. They evaluated their method 
on 1521 malware consisting of 13 families and reported a 
classification accuracy of 98.8%.  In [20], Park et al. classify 
malware based on detecting the maximal common sub graph in a 
behavioral graph.  They demonstrate their results on a set of 300 
malware in 6 families.  
 
With respect to related works, our classification method does not 
require any disassembly or execution of the actual malware code. 
Moreover, the image textures used for classification provide more 
resilient features in terms of obfuscation techniques, and in 
particular for encryption. Finally, we evaluated our approach on a 
larger dataset consisting in 25 families within a malware corpus of 
9,458 malware. The evaluation results show that our method offers 
similar precision at a lower computational cost. 

3. VISUALIZATION  
 

A given malware binary is read as a vector of 8 bit unsigned 
integers and then organized into a 2D array. This can be visualized 
as a gray scale image in the range [0,255] (0: black, 255: white). 
The width of the image is fixed and the height is allowed to vary 
depending on the file size (Fig. 1). Tab. 1 gives some recommended 
image widths for different file sizes based on empirical 
observations.  
 
 
 

 

 

 

           Fig.1 Visualizing Malware as an Image 

 

Fig. 2 shows an example image of a common Trojan downloader, 
Dontovo A, which downlods and executes arbitrary files [26]. It is 
interesting to note that in many cases, as in Fig. 2, different sections 
(binary fragments) of the malware exhibit distinctive image 
textures. A detailed taxonomy of various primitive binary fragments 
and their visualization as grayscale images can be found in [9].  
 

 

                  
Fig. 2 Various Sections of Trojan: Dontovo.A 

 
The .text section contains the executable code. From the figure, we 
can see that the first part of the .text section contains the code 
whose texture is fine grained. The rest is filled with zeros (black) 
indicating zero padding at the end of this section. The following 
.data section contains both uninitialized code (black patch) and 
initialized data (fine grained texture). The final section is the .rsrc 
section which contains all the resources of the module. These may 
also include icons that an application may use.  
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Tab. 1: Image Width for Various File Sizes 

File Size Range Image Width 

<10 kB 32 

10 kB – 30 kB 64 

30 kB – 60 kB 128 

60 kB – 100 kB 256 

100 kB – 200 kB  384 

200 kB – 500 kB  512 

500 kB – 1000 kB  768 

>1000 kB 1024 

 

4. MALWARE CLASSIFICATION 
Fig. 3 shows examples of malware from two different families. An 
empirical observation one can make here is that images of different 
malware samples from a given family appear visually similar and 
distinct from those belonging to a different family. As noted earlier, 
this can perhaps be attributed to re-use of old malware binaries to 
create new ones. The visual similarity of malware images motivated 
us to look at malware classification using techniques from computer 
vision, where image based classification has been well studied. The 
images of specific families of malware can be seen in Fig. 7. As can 
be seen from Fig.7, various malware families have distinct visual 
characteristics.  
 

 
Fig. 3 The images in the first row are images of 3 instances of 
malware belonging to the family Fakerean [26] and those in the 
second row belong to the family Dontovo.A [26].              

4.1 Image Texture 
There is no commonly accepted definition of what visual texture 
means, but it often is associated with (repeated) patterns such as 
those shown in Fig 4 [27]. Three of the main areas on texture 
research are texture classification, texture analysis and texture 
synthesis. Texture classification is concerned identifying various 
uniformly textured regions in images. Identifying the boundaries of 
various texture regions is the main goal of texture segmentation. 
Texture synthesis methods are used to synthesize texture images. 
They are frequently used in computer graphics.       
  

       
Fig. 4 Examples of two texture images from Brodatz’s album [28] 

Texture analysis is an important area of study in computer vision. 
Most surfaces exhibit some amount of texture. Texture analysis is 
used in many applications including medical image analysis, remote 
sensing, and document image processing. The malware pictures 
shown earlier in Fig 2-3, though not exactly are repeated patterns, 
exhibit significant amount of "texture" and this information can be 
exploited for automated classification. 
 

4.2 Feature Vector and Classifier 
Several features have been proposed to analyze texture. One of the 
most common methods of texture analysis is analyzing the 
frequency content of a texture block. Standard approaches divide 
the frequency domain into rings (scale) and wedges (orientations) 
and features are computed in these regions. Psychophysical results 
have shown that the human eye analyzes texture by decomposing 
the image into its frequency and orientation components. A popular 
computational approach to texture analysis is using Gabor filtering. 
A two dimensional Gabor function consists of a sinusoidal plane of 
certain frequency and orientation that is modulated by a Gaussian 
envelope. A Gabor filter is a filter that is frequency and orientation 
selective. By varying the frequencies and orientations, we obtain a 
bank of Gabor filters. An image is passed through this bank of 
filters to obtain several filtered images from which texture based 
features are extracted. One such feature is obtained by computing 
the absolute average deviation of the transformed values from the 
filtered images from a mean within a small window. Texture 
features using Gabor filters have been successful in texture 
segmentation and classification.  
 
We use a similar feature in this paper to characterize and classify 
malware. To compute texture features, we use GIST [11],[12] which 
uses a wavelet decomposition of an image. This feature has been 
successful in scene classification and object classification. Each 
image location is represented by the output of filters tuned to 
different orientations and scales. We use a steerable pyramid with 8 
orientations and 4 scales applied to the image. The local 
representation of an image is then given by: 

 where N=20 is the number of sub-bands. 

In order to capture global image properties while retaining some 
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local information, we compute the mean value of the magnitude of 
the local features averaged over large spatial regions: 

'
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where  is the averaging window. The resulting representation 
is downsampled to have a spatial resolution of MxM pixels (here we 
use M=4). Thus, has size M x M x N = 320 which is the 
dimension of the GIST feature we use. A more detailed explanation 
on GIST features can be found in [12].  
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We use k-nearest neighbors with Euclidean distance for 
classification. For all our tests, we do a 10 fold cross validation, 
where under each test, a random subset of a class is used for 
training and testing. For each iteration, this test randomly selects 
90% data from a class for training and 10% for testing. Hence, a 
given test data is classified to the class which is the mode of its k 
nearest neighbors.   

5. EXPERIMENTS 
In this section, the malware we examined are malware executables 
submitted to the Anubis analysis system [2]. The tested samples are 
thus recent malware that can be found “in the wild”. To obtain the 
ground truth for our tests, we classify them into different malware 
families using the labels provided by Microsoft Security Essentials. 
 

5.1 Hypothesis Validation 
In order to validate the hypothesis that malware families exhibit 
some visual similarities, we first picked a smaller dataset consisting 
of 8 malware families, totaling 1713 malware images. We went 
through the thumbnails of these images and verified that the images 
belonging to a family were indeed similar.  GIST image features are 
computed for each of these images. The average time to compute 
the Gist feature on an image is 54 ms. The high-dimensional GIST 
features are then projected to a lower dimensional space for 
visualization/analysis [10]. As shown in Fig. 5, the feature points 
for families Allaple.A, VB.AT, Wintrim.BX, Yuner.A and Fakerean 
are well separated. However, there seems to be confusion amongst 
families Instantaccess, Obfuscator.AD and Skintrim.N. This is also 
evident from their grayscale visualizations shown in Fig.7 and they 
appear very similar to the human eye as well. However, these 
families are still classified accurately with our classification 
method. We then use a k-nearest neighbor (k=3) classifier using 10 
fold cross validation for classification and obtain an classification 
rate of 0.9993, averaged over 10 tests with a standard deviation of  
0.0019. The confusion matrix is shown in Tab.2. Varying k between 
1 and 10 gave similar results although k=3 gave the best accuracy. 
These tests are repeated after adding to the set an additional 123 
benign executables from the Win32 system files and applications. 
The dataset we used can be obtained from [30]. With the new 
dataset, the classification rate was 0.9929 over a 10 fold cross 
validation with a standard deviation of 0.002. 
 
 

 

   
    Fig.5 GIST Features projected in lower dimensions using   
              multidimensional scaling [10] 
 
 
Tab2. Confusion Matrix for classification using GIST Features     

 A B C D E F G H 

A 1 0 0 0 0 0 0 0 

B 0 1 0 0 0 0 .01 0 

C 0 0 1 0 0 0 0 0 

D 0 0 0 1 0 0 0 0 

E 0 0 0 0 .997 0 .01 0 

F 0 0 0 0 0 1 0 0 

G 0 0 0 0 0 0 .98  

H 0 0 0 0 .003 0 0 1 

The malware families in this experiment include 335 of 
Instantaccess (A), 485 of Yuner.A (B), 111 of Obfuscator.AD (C), 
80 of Skintrim.N (D), 298 of Fakerean (E), 88 of Wintrim.BX (F), 
97 of VB.AT (G) and 219 of Allaple.A (H). 

5.2 Large Scale Experiments 
We now extend our analysis to a larger dataset consisting of 25 
malware families, totaling 9,458 malware, see Tab.3 for more 
details. Malware belonging to families Yuner.A, VB.AT, 
Malex.gen!J, Autorun.K, Rbot!gen, were packed (UPX). These are 
unpacked for preliminary analysis. The above tests are then 
repeated to obtain a classification accuracy of 0.9718 for the 25 
malware families. The images of these families can be obtained 
from [30]. The confusion matrix is shown in Fig. 6(a). As seen in 
Fig.6(a), there is confusion between the families such as C2Lop.P, 
C2Lop.gen!g and Swizzor.gen!I, Swizzor.gen!E. These are variants 
of C2Lop and Swizzor respectively. If these families are combined 
together as one, the recomputed accuracy is 0.992 and the 
corresponding confusion matrix is shown in Fig. 6(b). On adding an 
extra set of benign executables, the accuracy still remained high at 
0.9808. 



         

         
Fig.6 (a) Confusion matrix with confusion among variants. 

 
         

         
Fig. 6 (b) Variants combined as one family. 

 

5.3 Resilience to Obfuscation 
The analysis so far has been on unpacked executables. Packing 
alters the structure of the binary and hence the new binary after 
packing no longer appears like the unpacked one. However, when 
malware belonging to the same family are packed with the same 
packer, we conjecture that the images of the packed malware appear 
similar. Hence, in this experiment, we treat the packed malware of a 
family as a new family and repeat the above experiment. The total 
number of families is now 29. Our technique is still able to classify 
the different families even after packing and the overall 
classification accuracy is 0.9808.  
To avoid the use of packers, certain malware families directly 
embed a polymorphic engine within their code. The most 
representative example in our experiments is Allaple where the code 
section is encrypted in several layers, using random keys [29]. 
Nonetheless, the proposed method is able to classify these samples 
as well. Our approach can successfully handle section encryption 

because it mainly relies on textural information which is preserved 
by the weak encryption schemes used by polymorphic engines. 

5.4 Performance Comparison 
Looking at related works on classification using static features, 
classification based on bi-gram extraction seems the prevalent 
method, such as in [13].  To measure the performance gain brought 
by our approach, we extract the bi-grams distributions from our first 
dataset of 8 families. Bi-grams are computed directly from the raw 
data without any disassembly, which would have been even slower. 
Using these distributions as feature vectors, we obtained a 
classification accuracy of 0.98, which is similar to our approach. 
However, the average extraction time is 5s and the time taken to 
classify a sample is 56s. In contrast, the time taken to compute 
GIST feature is 54ms and the overall classification time was 1.4s. 
The proposed method is about 40 times faster, and is partly 
explained by the fact that the feature vector length used to 
characterize a malware image is about 320 whereas about 65K 
elements are needed for the distribution based analysis using the bi-
grams. 
 

6. LIMITATIONS AND FUTURE WORK 
Although an image processing based approach is a novel approach 
to analyze malware, an adversary who knows the technique can take 
countermeasures to beat the system since our technique is based on 
global image based features. Some examples of countermeasures 
could be relocating sections in a binary or adding vast amount of 
redundant data. To tackle against such attacks, we will explore more 
localized feature extraction schemes that take into account the 
distinct characteristics of malware executables and their primitive 
binary segments [8, 9]. One possible future extension is to segment 
out the image regions, and characterize the local texture and spatial 
distribution of these texture patterns.   

Another area of future work is clustering of malware using image 
based features. Although clustering and classification are similar, 
the former is unsupervised and the latter is supervised. Current state 
of the art clustering algorithms [21],[22] report highly accurate 
results in terms of precision and recall. However, in a recent paper, 
Li et al.[25] did a performance evaluation of the current clustering 
algorithms and concluded that high accuracy  is due to the selection 
bias in the ground truth data. Hence, the results reported in state of 
the art clustering papers are not reliable.  

7. CONCLUSIONS 
This paper presented a novel approach to malware analysis based on 
visualizing and processing malware as images. A commonly used 
image feature descriptor is used to characterize the malware 
globally. The preliminary results are very encouraging, with high 
accuracy classification that is competitive with the state of the art 
results in the literature at a significantly less computational cost. We 
believe that using computer vision techniques for malware analysis 
opens the path to a broader spectrum of novel ways to analyze 
malware. 
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Tab.3 Malware Dataset of 25 Families 

# Class  Family  # 

1. Worm Allaple.L 1591 

2. Worm Allaple.A 2949 

3. Worm Yuner.A 800 

4. PWS Lolyda.AA 1 213 

5. PWS Lolyda.AA 2 184 

6. PWS Lolyda.AA 3 123 

7. Trojan C2Lop.P 146 

8. Trojan C2Lop.gen!g 200 

9. Dialer Instantaccess 431 

10. TDownloader Swizzot.gen!I 132 

11. TDownloader Swizzor.gen!E 128 

12. Worm VB.AT 408 

13. Rogue Fakerean 381 

14. Trojan Alueron.gen!J 198 

15. Trojan Malex.gen!J  136 

16. PWS Lolyda.AT 159 

17. Dialer Adialer.C  125 

18. TDownloader Wintrim.BX 97 

19. Dialer Dialplatform.B 177 

20. TDownloader Dontovo.A 162 

21. TDownloader Obfuscator.AD 142 

22. Backdoor Agent.FYI 116 

23. Worm:AutoIT Autorun.K 106 

24. Backdoor Rbot!gen 158 

25. Trojan Skintrim.N 80 

 

9. REFERENCES 
 
[1]. Symantec Global Internet Security Threat Report, April 2010. 
[2]. Anubis: Analyzing Unknown Binaries,  
      < http://anubis.iseclab.org/>  
[3]. Yoo, I. Visualizing Windows Executable Viruses Using Self-
Organizing Maps., 2004 International Workshop on Visualization 
for Cyber Security (VizSec).. 
[4]. Quist, D.A. and Liebrock, L.M. 2009. Visualizing compiled 
executables for malware analysis. International Workshop on 
Visualization for Cyber Security (VizSec), 27-32. 
[5]. Trinius, P. Holz, T. Gobel, J. and Freiling, F.C. 2009. Visual 
analysis of malware behavior using treemaps and thread graphs. In 

International Workshop on Visualization for Cyber Security 
(VizSec), 33-38. 
[6]. Goodall, J,H. Randwan H. and Halseth, L. 2010. Visual 
analysis of code Security. In International Workshop on 
Visualization for Cyber Security (VizSec). 
[7].  Conti, G. Bratus, S. Sangster, B. Ragsdale, S. Supan, M.  
Lichtenberg, A. Perez, R. and Shubina, A. 2010. Automated 
Mapping of Large Binary Objects Using Primitive Fragment Type 
Classification Digital Forensics Research Conference (DFRWS) 
 
[8]. Conti, G. and Bratus, S. 2010. Voyage of the Reverser: A 
Visual Study of Binary Species, Black Hat USA. 
 
[9]. Conti, G. Bratus, S. Shubina, A. Lichtenberg, A. Ragsdale, R. 
Perez-Alemany, R. Sangster, B. and Supan, M. 2010. A Visual 
Study of Binary Fragment Types Black Hat USA. 
 [10]. Multi-dimensional Scaling, Dr Toolbox 
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensional
ity_Reduction.html 
[11] Torralba, A. Murphy, K.P. Freeman, W.T. and Rubin, M.A. 
2003, Context-based vision systems for place and object 
recognition, Intl. Conf. on Computer Vision (ICCV).   
[12]. Oliva, A. and Torralba. A, 2001. Modeling the shape of a 
scene: a holistic representation of the spatial envelope, International 
Journal of Computer Vision, Vol. 42(3), 145-175. 
[13]. Karim, M. E., Walenstein, A., Lakhotia, A. & Parida, L. 
2005. Malware phylogeny generation using permutations of code. 
Journal in Computer Virology, 1 (1):13-23. 
 
[14]. Kolter, J. Z. and Maloof, M. A. 2004. Learning to detect 
malicious executables in the wild. International Conference on 
Knowledge Discovery and Data Mining, 470-478. 
 
[15]. Gao, D., Reiter, M. K. & Song, D. 2008. Binhunt: 
Automatically finding semantic differences in binary programs. 
Information and Communications Security, 5308:238–255, 
 
[16] Tian, R. Batten, L.M.  and Versteeg. S.C. 2008. Function 
length as a tool for malware classification. 3rd International 
Conference on Malicious and Unwanted Software (MALWARE),. 
 
[17] Tian, R. Batten, L. Islam, R. and Versteeg, S. 2009 An 
automated classification system based on the strings of trojan and 
virus families. 4rd International Conference on Malicious and 
Unwanted Software: MALWARE 2009, pages 23–30. 
 
[18] Islam, R.,  Tian R.,   Batten, L.,   Versteeg, S. 2010 
Classification of Malware Based on String and Function Feature 
Selection. 2nd  Cybercrime and Trustworthy Computing Workshop. 
  
[19] Gheorghescu, M. 2005 An automated virus 
classification system. Virus Bulletin Conference, 294-300. 
 
[20]. Park, Y. Reeves, D. Mulukutla, V. Sundaravel, B. 2010. Fast 
malware classification by automated behavioral graph matching, 
Proc. Of Sixth Annual Workshop on Cyber Security and Information 
Intelligent Research (CSIIRW’ 10), 2010.  
 

http://anubis.iseclab.org/
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Islam,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ronghua%20Tian.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Batten,%20L..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Versteeg,%20S..QT.&newsearch=partialPref


[27]. Tuceryan, M. and Jain, A.K. 1998. Texture Analysis, In The 
Handbook of Pattern Recognition and Computer Vision (2nd 
Edition),pp. 207-248.  

[21] Bailey, M. Oberheide, J. Andersen, J..Mao, Z.M. Jahanian, F. 
and Nazario, J. 2007 Automated classification and analysis of 
internet malware. RAID, 4637:178–197. 
[22]. Bayer, U. Milani Comparetti, P. Hlauschek, C. Kruegel, C. 
and Kirda, E. 2009. Scalable, behavior-based malware clustering. 
NDSS’09 Security Symposium, 2009. 

[28]. Brodatz, P., Textures: A Photographic Album for Artists and 
Designers. New York, Dover Publications, 1966. 
 

 [29]. Krejdl M. Inside Win32:Allaple – Avast Blog.  
[23]. Lee, T. and Mody, J.J. 2006. Behavioral classification. EICAR 
2006. 

<http://blog.avast.com/2009/05/22/inside-win32allaple/> 
 

 
[24]. Rieck, K. Holz, T. Willems, C. Dussel, P. and Laskov, P. 
Learning and classification of malware behavior. 2008. Fifth 
Conference on Detection of Intrusions and Malware & 
Vulnerability Assessment (DIMVA’08), pages 108–125. 

[30]. Malware Images.  
<http://vision.ece.ucsb.edu/~lakshman/malware_images/album/> 
 
 
 

  
[25]. Li. P, Liu. L, Gao. D, Reiter. M, 2010. On Challenges in 
evaluating malware clustering, Proc. RAID’10 

 
 
 [26]. Microsoft Malware Enclyopedia,  
 <http://www.microsoft.com/security/portal/Threat/Encyclopedia/Br

owse.aspx> 

 
(a)Instantaccess 

 
(b)Yuner.A 

 
(c)Obfuscator.AD 

 
(d)Skintrim 

 
(e) Fakerean 

 
(f) Wintrim.BX 

 
(g) VB.AT 

 
(h) Allaple.A 

 
(i) Agent.FYI 

 
(j) Dialplatform.B 

 
(k) Dontovo.A 

 
(l) Rbot.gen 

 
(m)Alueron.gen!J 

 
(n) Adialer.C 

 
(o) Malex.gen!J 

 
(o) Azero.A 

Fig. 7 Malware Images belonging to various malware families 

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Browse.aspx
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http://blog.avast.com/2009/05/22/inside-win32allaple/
http://vision.ece.ucsb.edu/%7Elakshman/malware_images/album/
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