
Malware Images: Visualization and Automatic
Classification

L. Nataraj, S. Karthikeyan,
Dept. of Electrical and Computer

Engineering,
University of California, Santa Barbara
lakshmanan_nataraj,karthikeyan

@ece.ucsb.edu

G. Jacob,
Dept. of Computer Science,

University of California, Santa Barbara
gregoire.jacob@gmail.com

B. S. Manjunath
Dept. of Electrical and Computer

Engineering,
University of California, Santa Barbara

manj@ece.ucsb.edu

ABSTRACT
We propose a simple yet effective method for visualizing and
classifying malware using image processing techniques. Malware
binaries are visualized as gray-scale images, with the observation
that for many malware families, the images belonging to the same
family appear very similar in layout and texture. Motivated by this
visual similarity, a classification method using standard image
features is proposed. Neither disassembly nor code execution is
required for classification. Preliminary experimental results are
quite promising with 98% classification accuracy on a malware
database of 9,458 samples with 25 different malware families. Our
technique also exhibits interesting resilience to popular obfuscation
techniques such as section encryption.

 Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive Software (viruses,
worms, Trojan horses)

I.4 [Image Processing and Computer Vision]: Applications

I.5 [Pattern Recognition]: Applications

H.1.2 [User/Machine Systems]: Human Information Processing

General Terms
Computer Security, Visualization, Malware, Image Processing,

Keywords
Malware Visualization, Image Texture, Malware Classification

1. INTRODUCTION
Traditional approaches towards analyzing malware involve
extraction of binary signatures from malware, constituting their
fingerprint. Due to the rapid proliferation of malware, there is an

exponential increase in the number of new signatures released every
year (in [1], Symantec reported 2,895,802 new signatures in 2009,
as compared to 169,323, in 2008).

Other approaches of analyzing malware include static code analysis
and dynamic code analysis. Static analysis works by disassembling
the code and exploring the control flow of the executable to look for
malicious patterns. On the other hand, dynamic analysis works by
executing the code in a virtual environment and a behavioral report
characterizing the executable is generated based on the execution
trace. Both these techniques have their pros and cons. Static
analysis offers the most complete coverage but it usually suffers
from code obfuscation. The executable has to be unpacked and
decrypted before analysis, and even then, the analysis can be
hindered by problems of intractable complexity. Dynamic analysis
is more efficient and does not need the executable to be unpacked or
decrypted. However, it is time intensive and resource consuming,
thus raising scalability issues. Moreover, some malicious behaviors
might be unobserved because the environment does not satisfy the
triggering conditions.

In this paper, we take a completely different and novel approach to
characterize and analyze malware. At a broader level, a malware
executable can be represented as a binary string of zeros and ones.
This vector can be reshaped into a matrix and viewed as an image.
We observed significant visual similarities in image texture for
malware belonging to the same family. This perhaps could be
explained by the common practice of reusing the code to create new
malware variants. In Sec.3 we discuss representing malware
binaries as images. In Sec.4 we consider malware classification
problem as one of image classification. Existing classification
techniques require either disassembly or execution whereas our
method does not require either but still shows significant
improvement in terms of performance. Further, it is also resilient to
popular obfuscation techniques such as section encryption. This
automatic classification technique should be very valuable for anti-
virus companies and security researchers who receive hundreds of
malware everyday.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VizSec’11, July 20, 2011, Pittsburg, PA, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

The rest of this paper is organized as follows. In Sec. 2, we discuss
the related work in malware visualization and classification. In
Sec.3 and Sec.4, we describe our method to visualize malware and
automatically classify them using images. The experiments are
detailed in Sec. 5. We discuss the limitations of our approach in
Sec. 6 and conclude in Sec.7.

2. RELATED WORK

Several tools such as text editors and binary editors can both
visualize and manipulate binary data. Of late, there have been
several GUI-based tools which facilitate comparison of files.
However, there has been limited research in visualizing malware. In
[3] Yoo used self organizing maps to detect and visualize malicious
code inside an executable. In [4] Quist and Liebrock develop a
visualization framework for reverse engineering. They identify
functional areas and de-obfuscate through a node-link visualization
where nodes represent the address and links represent state
transitions between addresses. In [5] Trinius et al. display the
distributions of operations using treemaps and the sequence of
operations using thread graphs. In [6] Goodall et al. develop a visual
analysis environment that can aid software developers to understand
the code better. They also show how vulnerabilities within software
can be visualized in their environment.

While there hasn’t been much work on viewing malware as digital
images, Conti et al. [8,9] visualized raw binary data of primitive
binary fragments such as text, C++ data structure, image data, audio
data as images. In [7] Conti et al. show that they can automatically
classify the different binary fragments using statistical features.
However, their analysis is only concerned with identifying primitive
binary fragments and not malware. This work presents a similar
approach by representing malware as grayscale images.

Several techniques have been proposed for clustering and
classification of malware. These include both static analysis [13-19]
as well as dynamic analysis [20-24]. We will review papers that
specifically deal with classification of malware. In [24] Rieck et al.
used features based on behavioral analysis of malware to classify
them according to their families. They used a labeled dataset of
10,072 malware samples labeled by an anti-virus software and
divide the dataset into 14 malware families. Then they monitored
the behavior of all the malware in a sandbox environment which
generated a behavioral report. From the report, they generate a
feature vector for every malware based on the frequency of some
specific strings in the report. A Support Vector Machine is used for
training and testing the feature on the 14 families and they report an
average classification accuracy of 88%. In contrast to [24], Tian et
al [16] use a very simple feature, the length of a program, to classify
7 different types of Trojans and obtain an average accuracy of 88%.
However, their analysis was only done on 721 files. In [17,18] the
same authors improve their above technique by using printable
string information from the malware. They evaluated their method
on 1521 malware consisting of 13 families and reported a
classification accuracy of 98.8%. In [20], Park et al. classify
malware based on detecting the maximal common sub graph in a
behavioral graph. They demonstrate their results on a set of 300
malware in 6 families.

With respect to related works, our classification method does not
require any disassembly or execution of the actual malware code.
Moreover, the image textures used for classification provide more
resilient features in terms of obfuscation techniques, and in
particular for encryption. Finally, we evaluated our approach on a
larger dataset consisting in 25 families within a malware corpus of
9,458 malware. The evaluation results show that our method offers
similar precision at a lower computational cost.

3. VISUALIZATION

A given malware binary is read as a vector of 8 bit unsigned
integers and then organized into a 2D array. This can be visualized
as a gray scale image in the range [0,255] (0: black, 255: white).
The width of the image is fixed and the height is allowed to vary
depending on the file size (Fig. 1). Tab. 1 gives some recommended
image widths for different file sizes based on empirical
observations.

 Fig.1 Visualizing Malware as an Image

Fig. 2 shows an example image of a common Trojan downloader,
Dontovo A, which downlods and executes arbitrary files [26]. It is
interesting to note that in many cases, as in Fig. 2, different sections
(binary fragments) of the malware exhibit distinctive image
textures. A detailed taxonomy of various primitive binary fragments
and their visualization as grayscale images can be found in [9].

Fig. 2 Various Sections of Trojan: Dontovo.A

The .text section contains the executable code. From the figure, we
can see that the first part of the .text section contains the code
whose texture is fine grained. The rest is filled with zeros (black)
indicating zero padding at the end of this section. The following
.data section contains both uninitialized code (black patch) and
initialized data (fine grained texture). The final section is the .rsrc
section which contains all the resources of the module. These may
also include icons that an application may use.

Binary to
8 bit

vector

8 Bit vector to
Grayscale

Image

011100110101
100101011010
10100001..

Malware Binary

.text

.rdata

.data

.rsrc

Tab. 1: Image Width for Various File Sizes

File Size Range Image Width

<10 kB 32

10 kB – 30 kB 64

30 kB – 60 kB 128

60 kB – 100 kB 256

100 kB – 200 kB 384

200 kB – 500 kB 512

500 kB – 1000 kB 768

>1000 kB 1024

4. MALWARE CLASSIFICATION
Fig. 3 shows examples of malware from two different families. An
empirical observation one can make here is that images of different
malware samples from a given family appear visually similar and
distinct from those belonging to a different family. As noted earlier,
this can perhaps be attributed to re-use of old malware binaries to
create new ones. The visual similarity of malware images motivated
us to look at malware classification using techniques from computer
vision, where image based classification has been well studied. The
images of specific families of malware can be seen in Fig. 7. As can
be seen from Fig.7, various malware families have distinct visual
characteristics.

Fig. 3 The images in the first row are images of 3 instances of
malware belonging to the family Fakerean [26] and those in the
second row belong to the family Dontovo.A [26].

4.1 Image Texture
There is no commonly accepted definition of what visual texture
means, but it often is associated with (repeated) patterns such as
those shown in Fig 4 [27]. Three of the main areas on texture
research are texture classification, texture analysis and texture
synthesis. Texture classification is concerned identifying various
uniformly textured regions in images. Identifying the boundaries of
various texture regions is the main goal of texture segmentation.
Texture synthesis methods are used to synthesize texture images.
They are frequently used in computer graphics.

Fig. 4 Examples of two texture images from Brodatz’s album [28]

Texture analysis is an important area of study in computer vision.
Most surfaces exhibit some amount of texture. Texture analysis is
used in many applications including medical image analysis, remote
sensing, and document image processing. The malware pictures
shown earlier in Fig 2-3, though not exactly are repeated patterns,
exhibit significant amount of "texture" and this information can be
exploited for automated classification.

4.2 Feature Vector and Classifier
Several features have been proposed to analyze texture. One of the
most common methods of texture analysis is analyzing the
frequency content of a texture block. Standard approaches divide
the frequency domain into rings (scale) and wedges (orientations)
and features are computed in these regions. Psychophysical results
have shown that the human eye analyzes texture by decomposing
the image into its frequency and orientation components. A popular
computational approach to texture analysis is using Gabor filtering.
A two dimensional Gabor function consists of a sinusoidal plane of
certain frequency and orientation that is modulated by a Gaussian
envelope. A Gabor filter is a filter that is frequency and orientation
selective. By varying the frequencies and orientations, we obtain a
bank of Gabor filters. An image is passed through this bank of
filters to obtain several filtered images from which texture based
features are extracted. One such feature is obtained by computing
the absolute average deviation of the transformed values from the
filtered images from a mean within a small window. Texture
features using Gabor filters have been successful in texture
segmentation and classification.

We use a similar feature in this paper to characterize and classify
malware. To compute texture features, we use GIST [11],[12] which
uses a wavelet decomposition of an image. This feature has been
successful in scene classification and object classification. Each
image location is represented by the output of filters tuned to
different orientations and scales. We use a steerable pyramid with 8
orientations and 4 scales applied to the image. The local
representation of an image is then given by:

 where N=20 is the number of sub-bands.

In order to capture global image properties while retaining some
1,() { ()}L

k k Nv x v x ==

local information, we compute the mean value of the magnitude of
the local features averaged over large spatial regions:

'
() (') (')

x
m x v x w x x=∑ − (1)

where is the averaging window. The resulting representation
is downsampled to have a spatial resolution of MxM pixels (here we
use M=4). Thus, has size M x M x N = 320 which is the
dimension of the GIST feature we use. A more detailed explanation
on GIST features can be found in [12].

()w x

m

We use k-nearest neighbors with Euclidean distance for
classification. For all our tests, we do a 10 fold cross validation,
where under each test, a random subset of a class is used for
training and testing. For each iteration, this test randomly selects
90% data from a class for training and 10% for testing. Hence, a
given test data is classified to the class which is the mode of its k
nearest neighbors.

5. EXPERIMENTS
In this section, the malware we examined are malware executables
submitted to the Anubis analysis system [2]. The tested samples are
thus recent malware that can be found “in the wild”. To obtain the
ground truth for our tests, we classify them into different malware
families using the labels provided by Microsoft Security Essentials.

5.1 Hypothesis Validation
In order to validate the hypothesis that malware families exhibit
some visual similarities, we first picked a smaller dataset consisting
of 8 malware families, totaling 1713 malware images. We went
through the thumbnails of these images and verified that the images
belonging to a family were indeed similar. GIST image features are
computed for each of these images. The average time to compute
the Gist feature on an image is 54 ms. The high-dimensional GIST
features are then projected to a lower dimensional space for
visualization/analysis [10]. As shown in Fig. 5, the feature points
for families Allaple.A, VB.AT, Wintrim.BX, Yuner.A and Fakerean
are well separated. However, there seems to be confusion amongst
families Instantaccess, Obfuscator.AD and Skintrim.N. This is also
evident from their grayscale visualizations shown in Fig.7 and they
appear very similar to the human eye as well. However, these
families are still classified accurately with our classification
method. We then use a k-nearest neighbor (k=3) classifier using 10
fold cross validation for classification and obtain an classification
rate of 0.9993, averaged over 10 tests with a standard deviation of
0.0019. The confusion matrix is shown in Tab.2. Varying k between
1 and 10 gave similar results although k=3 gave the best accuracy.
These tests are repeated after adding to the set an additional 123
benign executables from the Win32 system files and applications.
The dataset we used can be obtained from [30]. With the new
dataset, the classification rate was 0.9929 over a 10 fold cross
validation with a standard deviation of 0.002.

 Fig.5 GIST Features projected in lower dimensions using
 multidimensional scaling [10]

Tab2. Confusion Matrix for classification using GIST Features

 A B C D E F G H

A 1 0 0 0 0 0 0 0

B 0 1 0 0 0 0 .01 0

C 0 0 1 0 0 0 0 0

D 0 0 0 1 0 0 0 0

E 0 0 0 0 .997 0 .01 0

F 0 0 0 0 0 1 0 0

G 0 0 0 0 0 0 .98

H 0 0 0 0 .003 0 0 1

The malware families in this experiment include 335 of
Instantaccess (A), 485 of Yuner.A (B), 111 of Obfuscator.AD (C),
80 of Skintrim.N (D), 298 of Fakerean (E), 88 of Wintrim.BX (F),
97 of VB.AT (G) and 219 of Allaple.A (H).

5.2 Large Scale Experiments
We now extend our analysis to a larger dataset consisting of 25
malware families, totaling 9,458 malware, see Tab.3 for more
details. Malware belonging to families Yuner.A, VB.AT,
Malex.gen!J, Autorun.K, Rbot!gen, were packed (UPX). These are
unpacked for preliminary analysis. The above tests are then
repeated to obtain a classification accuracy of 0.9718 for the 25
malware families. The images of these families can be obtained
from [30]. The confusion matrix is shown in Fig. 6(a). As seen in
Fig.6(a), there is confusion between the families such as C2Lop.P,
C2Lop.gen!g and Swizzor.gen!I, Swizzor.gen!E. These are variants
of C2Lop and Swizzor respectively. If these families are combined
together as one, the recomputed accuracy is 0.992 and the
corresponding confusion matrix is shown in Fig. 6(b). On adding an
extra set of benign executables, the accuracy still remained high at
0.9808.

Fig.6 (a) Confusion matrix with confusion among variants.

Fig. 6 (b) Variants combined as one family.

5.3 Resilience to Obfuscation
The analysis so far has been on unpacked executables. Packing
alters the structure of the binary and hence the new binary after
packing no longer appears like the unpacked one. However, when
malware belonging to the same family are packed with the same
packer, we conjecture that the images of the packed malware appear
similar. Hence, in this experiment, we treat the packed malware of a
family as a new family and repeat the above experiment. The total
number of families is now 29. Our technique is still able to classify
the different families even after packing and the overall
classification accuracy is 0.9808.
To avoid the use of packers, certain malware families directly
embed a polymorphic engine within their code. The most
representative example in our experiments is Allaple where the code
section is encrypted in several layers, using random keys [29].
Nonetheless, the proposed method is able to classify these samples
as well. Our approach can successfully handle section encryption

because it mainly relies on textural information which is preserved
by the weak encryption schemes used by polymorphic engines.

5.4 Performance Comparison
Looking at related works on classification using static features,
classification based on bi-gram extraction seems the prevalent
method, such as in [13]. To measure the performance gain brought
by our approach, we extract the bi-grams distributions from our first
dataset of 8 families. Bi-grams are computed directly from the raw
data without any disassembly, which would have been even slower.
Using these distributions as feature vectors, we obtained a
classification accuracy of 0.98, which is similar to our approach.
However, the average extraction time is 5s and the time taken to
classify a sample is 56s. In contrast, the time taken to compute
GIST feature is 54ms and the overall classification time was 1.4s.
The proposed method is about 40 times faster, and is partly
explained by the fact that the feature vector length used to
characterize a malware image is about 320 whereas about 65K
elements are needed for the distribution based analysis using the bi-
grams.

6. LIMITATIONS AND FUTURE WORK
Although an image processing based approach is a novel approach
to analyze malware, an adversary who knows the technique can take
countermeasures to beat the system since our technique is based on
global image based features. Some examples of countermeasures
could be relocating sections in a binary or adding vast amount of
redundant data. To tackle against such attacks, we will explore more
localized feature extraction schemes that take into account the
distinct characteristics of malware executables and their primitive
binary segments [8, 9]. One possible future extension is to segment
out the image regions, and characterize the local texture and spatial
distribution of these texture patterns.

Another area of future work is clustering of malware using image
based features. Although clustering and classification are similar,
the former is unsupervised and the latter is supervised. Current state
of the art clustering algorithms [21],[22] report highly accurate
results in terms of precision and recall. However, in a recent paper,
Li et al.[25] did a performance evaluation of the current clustering
algorithms and concluded that high accuracy is due to the selection
bias in the ground truth data. Hence, the results reported in state of
the art clustering papers are not reliable.

7. CONCLUSIONS
This paper presented a novel approach to malware analysis based on
visualizing and processing malware as images. A commonly used
image feature descriptor is used to characterize the malware
globally. The preliminary results are very encouraging, with high
accuracy classification that is competitive with the state of the art
results in the literature at a significantly less computational cost. We
believe that using computer vision techniques for malware analysis
opens the path to a broader spectrum of novel ways to analyze
malware.

8. ACKNOWLEDGEMENTS
We are grateful to authors of Anubis [2] for providing us with the
malware dataset. We would also like to thank Prof. Giovanni Vigna,

Prof. Christopher Kruegel and the anonymous reviewers for their
valuable feedback. This work has been supported by the grant ONR
N00014-11-10111.

Tab.3 Malware Dataset of 25 Families

Class Family #

1. Worm Allaple.L 1591

2. Worm Allaple.A 2949

3. Worm Yuner.A 800

4. PWS Lolyda.AA 1 213

5. PWS Lolyda.AA 2 184

6. PWS Lolyda.AA 3 123

7. Trojan C2Lop.P 146

8. Trojan C2Lop.gen!g 200

9. Dialer Instantaccess 431

10. TDownloader Swizzot.gen!I 132

11. TDownloader Swizzor.gen!E 128

12. Worm VB.AT 408

13. Rogue Fakerean 381

14. Trojan Alueron.gen!J 198

15. Trojan Malex.gen!J 136

16. PWS Lolyda.AT 159

17. Dialer Adialer.C 125

18. TDownloader Wintrim.BX 97

19. Dialer Dialplatform.B 177

20. TDownloader Dontovo.A 162

21. TDownloader Obfuscator.AD 142

22. Backdoor Agent.FYI 116

23. Worm:AutoIT Autorun.K 106

24. Backdoor Rbot!gen 158

25. Trojan Skintrim.N 80

9. REFERENCES

[1]. Symantec Global Internet Security Threat Report, April 2010.
[2]. Anubis: Analyzing Unknown Binaries,
 < http://anubis.iseclab.org/>
[3]. Yoo, I. Visualizing Windows Executable Viruses Using Self-
Organizing Maps., 2004 International Workshop on Visualization
for Cyber Security (VizSec)..
[4]. Quist, D.A. and Liebrock, L.M. 2009. Visualizing compiled
executables for malware analysis. International Workshop on
Visualization for Cyber Security (VizSec), 27-32.
[5]. Trinius, P. Holz, T. Gobel, J. and Freiling, F.C. 2009. Visual
analysis of malware behavior using treemaps and thread graphs. In

International Workshop on Visualization for Cyber Security
(VizSec), 33-38.
[6]. Goodall, J,H. Randwan H. and Halseth, L. 2010. Visual
analysis of code Security. In International Workshop on
Visualization for Cyber Security (VizSec).
[7]. Conti, G. Bratus, S. Sangster, B. Ragsdale, S. Supan, M.
Lichtenberg, A. Perez, R. and Shubina, A. 2010. Automated
Mapping of Large Binary Objects Using Primitive Fragment Type
Classification Digital Forensics Research Conference (DFRWS)

[8]. Conti, G. and Bratus, S. 2010. Voyage of the Reverser: A
Visual Study of Binary Species, Black Hat USA.

[9]. Conti, G. Bratus, S. Shubina, A. Lichtenberg, A. Ragsdale, R.
Perez-Alemany, R. Sangster, B. and Supan, M. 2010. A Visual
Study of Binary Fragment Types Black Hat USA.
 [10]. Multi-dimensional Scaling, Dr Toolbox
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensional
ity_Reduction.html
[11] Torralba, A. Murphy, K.P. Freeman, W.T. and Rubin, M.A.
2003, Context-based vision systems for place and object
recognition, Intl. Conf. on Computer Vision (ICCV).
[12]. Oliva, A. and Torralba. A, 2001. Modeling the shape of a
scene: a holistic representation of the spatial envelope, International
Journal of Computer Vision, Vol. 42(3), 145-175.
[13]. Karim, M. E., Walenstein, A., Lakhotia, A. & Parida, L.
2005. Malware phylogeny generation using permutations of code.
Journal in Computer Virology, 1 (1):13-23.

[14]. Kolter, J. Z. and Maloof, M. A. 2004. Learning to detect
malicious executables in the wild. International Conference on
Knowledge Discovery and Data Mining, 470-478.

[15]. Gao, D., Reiter, M. K. & Song, D. 2008. Binhunt:
Automatically finding semantic differences in binary programs.
Information and Communications Security, 5308:238–255,

[16] Tian, R. Batten, L.M. and Versteeg. S.C. 2008. Function
length as a tool for malware classification. 3rd International
Conference on Malicious and Unwanted Software (MALWARE),.

[17] Tian, R. Batten, L. Islam, R. and Versteeg, S. 2009 An
automated classification system based on the strings of trojan and
virus families. 4rd International Conference on Malicious and
Unwanted Software: MALWARE 2009, pages 23–30.

[18] Islam, R., Tian R., Batten, L., Versteeg, S. 2010
Classification of Malware Based on String and Function Feature
Selection. 2nd Cybercrime and Trustworthy Computing Workshop.

[19] Gheorghescu, M. 2005 An automated virus
classification system. Virus Bulletin Conference, 294-300.

[20]. Park, Y. Reeves, D. Mulukutla, V. Sundaravel, B. 2010. Fast
malware classification by automated behavioral graph matching,
Proc. Of Sixth Annual Workshop on Cyber Security and Information
Intelligent Research (CSIIRW’ 10), 2010.

http://anubis.iseclab.org/
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Islam,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ronghua%20Tian.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Batten,%20L..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Versteeg,%20S..QT.&newsearch=partialPref

[27]. Tuceryan, M. and Jain, A.K. 1998. Texture Analysis, In The
Handbook of Pattern Recognition and Computer Vision (2nd
Edition),pp. 207-248.

[21] Bailey, M. Oberheide, J. Andersen, J..Mao, Z.M. Jahanian, F.
and Nazario, J. 2007 Automated classification and analysis of
internet malware. RAID, 4637:178–197.
[22]. Bayer, U. Milani Comparetti, P. Hlauschek, C. Kruegel, C.
and Kirda, E. 2009. Scalable, behavior-based malware clustering.
NDSS’09 Security Symposium, 2009.

[28]. Brodatz, P., Textures: A Photographic Album for Artists and
Designers. New York, Dover Publications, 1966.

 [29]. Krejdl M. Inside Win32:Allaple – Avast Blog.
[23]. Lee, T. and Mody, J.J. 2006. Behavioral classification. EICAR
2006.

<http://blog.avast.com/2009/05/22/inside-win32allaple/>

[24]. Rieck, K. Holz, T. Willems, C. Dussel, P. and Laskov, P.
Learning and classification of malware behavior. 2008. Fifth
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA’08), pages 108–125.

[30]. Malware Images.
<http://vision.ece.ucsb.edu/~lakshman/malware_images/album/>

[25]. Li. P, Liu. L, Gao. D, Reiter. M, 2010. On Challenges in
evaluating malware clustering, Proc. RAID’10

 [26]. Microsoft Malware Enclyopedia,
 <http://www.microsoft.com/security/portal/Threat/Encyclopedia/Br

owse.aspx>

(a)Instantaccess

(b)Yuner.A

(c)Obfuscator.AD

(d)Skintrim

(e) Fakerean

(f) Wintrim.BX

(g) VB.AT

(h) Allaple.A

(i) Agent.FYI

(j) Dialplatform.B

(k) Dontovo.A

(l) Rbot.gen

(m)Alueron.gen!J

(n) Adialer.C

(o) Malex.gen!J

(o) Azero.A

Fig. 7 Malware Images belonging to various malware families

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Browse.aspx
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Browse.aspx
http://blog.avast.com/2009/05/22/inside-win32allaple/
http://vision.ece.ucsb.edu/%7Elakshman/malware_images/album/

	1. INTRODUCTION
	2. RELATED WORK
	3. VISUALIZATION
	4. MALWARE CLASSIFICATION
	4.1 Image Texture
	4.2 Feature Vector and Classifier

	5. EXPERIMENTS
	5.1 Hypothesis Validation
	The malware families in this experiment include 335 of Instantaccess (A), 485 of Yuner.A (B), 111 of Obfuscator.AD (C), 80 of Skintrim.N (D), 298 of Fakerean (E), 88 of Wintrim.BX (F), 97 of VB.AT (G) and 219 of Allaple.A (H).
	5.2 Large Scale Experiments
	5.3 Resilience to Obfuscation
	5.4 Performance Comparison

	6. LIMITATIONS AND FUTURE WORK
	7. CONCLUSIONS
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

