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Abstract

Background: We presentan analysisof the utilit y of multispectral versusstandard RGB imageryfor routine

H&E stainedhistopathologyimages,in particular for pixel-levelclassi¯cationof nuclei. Our multispectral

imageryhas29 spectral bands,spaced10 nm within the visualrangeof 420-700nm. It hasbeenhypothesized

that the additional spectral bandscontain further information usefulfor classi¯cationas compared to the 3

standard bandsof RGB imagery. We presentanalysesof our data designedto test this hypothesis.

Results: For classi¯cationusingall availableimagebands,we ¯nd the best performance(equal tradeo®between

detectionrate and falsealarm rate) is obtainedfrom either the multispectral or our \ccd" RGBimagery, with an

overall increasein performanceof 0.79%compared to the next best performing imagetype. For classi¯cation

usingsingleimagebands,the singlebest multispectral band (in the red portion of the spectrum) gavea

performanceincreaseof 0.57%,compared to performanceof the singlebest RGB band (red). Additionally, red

bandshad the highestcoe±cients/preferencein our classi¯ers.Principal componentsanalysisof the

multispectral imageryindicatesonly two signi¯cant imagebands,which is not surprising giventhe presenceof

two stains.

Conclusions: Our resultsindicate that multispectral imageryfor routine H&E stainedhistopathologyprovides

minimal additional spectral information for a pixel-levelnuclear classi¯cationtask than would standard RGB

imagery.
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Background

The useof multisp ectral imaging capabilities is relatively new to the ¯eld of cyto- and histo-pathology,

particularly for transmitted bright¯eld microscopy [1,2]. Recent publications (e.g., [3{6]) have begun to

explore the useof extra information contained in such spectral data (29-33 wavelengths in the visible

spectrum, from 400 nm to 720 nm, spaced10 nm apart), in particular for multiply stained (>2 stains)

specimens.Speci¯cally, there have beencomparisonsof spectral unmixing algorithms (to separate

constituent dyes) which demonstrate the advantage of multisp ectral data [5,7]. The added bene¯t of

multisp ectral imaging for analysis of routine H&E cyto/histopathology imagery, however, is still largely

unknown, although somepromising results are presented in [6].

While the useof multisp ectral light microscopy is new to cyto/histopathology , many researchers have used

single or dual narrow-band ¯lters to enhanceimagery for particular stains, most using a red ¯lter (or the

red channel of an RGB image) for enhancement of Hematoxylin or Feulgenstaining [8{12], and someusing

a green¯lter for enhancement of Feulgenstaining [13{16].

We present analysesof our multisp ectral data designedto test the hypothesis that the additional spectral

bands contain more information useful for classi¯cation as comparedto the 3 standard bands of RGB

microscopy imagery. The work presented here is an extensionof the work presented in [17].

Results and Discussion
Classi¯cation using all image bands

We split our dataset in (approximately) half to create a set of training imagesand a set of test images;half

each of the benign and malignant subsetswere randomly assignedto the training or test set to allow for

even representation of benign and malignant characteristics in both sets. (One lessbenign image is

included in the training set.) Applying all six classi¯ers to each image, using all available image bands, and

averaging over the imagescontained in the test (out-of-sample) set, we achieve the results shown in

Figure 1. Sincethe AFE tool GENIE is stochastic, we averageten independent runs. We would like to
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Figure 1: Averageperformanceusing all available imagebandsPerformance(Equation 1) is presented within
the range [0; 1].

Table 1: Wilcoxon p-valuesfor performancesof multisp ectral versusRGB imagery. Wilcoxon paired signed-
rank test p-valuesare presented to 5 signi¯cant digits, and bold entries correspond to statistical signi¯cance
at the p-value of 0.05.

Classi¯er Image Image
rgbequal truecolor ccd

ML multi 0.5440 0.0978 0.0822
MED multi 0.0000 0.0001 0.0000
SAM multi 0.0057 0.7343 0.8290
FLD A multi 0.0656 0.0752 0.1156
AFE multi 0.0030 0.1109 0.0285
LSVM multi 0.0012 0.6288 0.4284
NLSVM multi 0.0000 0.0047 0.0060

point out that the quadratic SVM (NLSVM) was run with only 10% of the total training data.

The best performanceP is obtained with either the multisp ectral or ccd image stacks, with ML and AFE

performing better with ccd imagery, and MED, FLDA, SAM, and both SVMs performing better with

multisp ectral. It is important to note, however, that theseincreasesin performanceare only, on average,

0.79%. We usea paired Wilcoxon signedrank test to determine the statistical signi¯cance of these

di®erencesin performance,and show our results in Table 1; we seethat lessthan half of thesedi®erences

are statistically signi¯cant.

We have shown in this section, using a pairwise Wilcoxon signedrank test, that only a few performance

di®erencesbetweenmultisp ectral and RGB imagery are statistically signi¯cant. Furthermore, we note that

thesestatistically signi¯cant di®erencesare 0.46%,0.76%,and 0.38%increasein favor of multisp ectral
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(a) Out-of-sample performance scoreson single mul-
tisp ectral bands.
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(b) Out-of-sample performance scores on single
RGB bands for the AFE classi¯er.

Figure 2: Performanceon single image bands.

imagery over rgbequal, truecolor, and ccd, respectively, for MED; 0.32%in favor of multisp ectral over

rgbequal for SAM; 0.58%in favor of multisp ectral over rgbequal and 0.35%in favor of ccd over

multisp ectral for AFE; 1.06%in favor of multisp ectral over rgbequal for LSVM; and 1.7%, 1.1%, and 1.1%

in favor of multisp ectral over rgbequal, truecolor, and ccd, respectively, for NLSVM.

Classi¯cation using single image bands

To gain a better understanding of the relative contributions of speci¯c image bands, we apply the ML,

MED, FLDA, and AFE classi¯ers to each individual image band for each image type. We excludethe SAM

classi¯er here since it will fail on one-bandimages,and we exclude the SVM for computational reasons(it

would be prohibitiv ely computationally intensive to optimize kernel parameters for each image band).

Performancescoresfor classi¯cation using single multisp ectral bands are shown in Figure 2 (a). Here we

seethe best performancescoresoccurring in the red portion of the spectrum, with poorer performancein

the lower greenportion and at the extremesof the spectrum.

Similarly, we note that for RGB images,the red channelsyield the best performance(Figure 2 (b)); we

choosethe AFE classi¯er for presentation here since it consistently yields the highest performancescores,

though the other three classi¯ers display the sametrends. While it may seemcontradictory that in RGB

imagery the greenchannel outperforms the blue channel when the opposite is true in multisp ectral
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Table 2: Wilcoxon p-values for performancesof the best multisp ectral band versus the red RGB chan-
nel.Wilcoxon paired signed-ranktest p-valuesarepresented to 5 signi¯cant digits, and bold entries correspond
to statistical signi¯cance at the p-value of 0.05.

Classi¯er Band Band
rgbequal R truecolor R ccd R

ML multi 590 nm 0.0316 0.3086 0.3389
MED multi 600 nm 0.0218 0.2452 0.1714
FLD A multi 620 nm 0.0017 0.2452 0.3600
AFE multi 660 nm 0.0937 0.4048 0.4653

imagery, it is important to remember how the multisp ectral bands are allocated to each of the RGB bands.

Consider, for example, the allocation of bands in rgbequal imagery: the bands from 510 nm to 600 nm are

averagedto yield the greenchannel. Referring to Figure 2 (a) we seethat thesebands have a large

variation in performance. Thus, to obtain the greenchannel, we are averaging multisp ectral bands, several

of which have relatively good performance. A similar situation occurs with the truecolor and ccd imagery,

albeit with a weighting applied to each band.

We ¯nd the analysis of performanceon single image bands satisfactory from an intuitiv e standpoint. Since

the nuclei are stained with the blue-coloredHematoxylin which will block red light, the red portions of the

spectrum have the best contrast and perform the best for this nuclear classi¯cation task. While greenlight

is also blocked by the Hematoxylin, so also is it blocked by the Eosin, rendering the greenportion of the

spectrum lessinformativ e for the task at hand.

The distinction in performanceof red channelsbetweenthe RGB image types is not large; we do note,

however, that the single best performing multisp ectral band yields a performanceincreaseof 0.57%as

comparedto the single best RGB band, averagedover all 4 classi¯ers. This performanceincreaseis

consistently in favor of single multisp ectral image bands, but are not generally statistically signi¯cant (refer

to Table 2).

We have shown in this section that performancedi®erencesbetweensingle multisp ectral image bands and

single RGB image bands are not statistically signi¯cant. This would seemto indicate that the individual

multisp ectral image bands are not yielding any more speci¯c spectral information than are the individual

RGB image bands for this nuclear classi¯cation task.
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Analysis of FLDA coe±cients and bands chosen in AFE solutions

We expect that the single image bands which yield the best performanceshould also be the bands used

most often by the classi¯ers. A direct examination of this is possiblewith the FLDA and AFE classi¯ers.

For FLDA, image bands are weighted and summed; the higher the absolute value of the coe±cient, the

more important the image band. Plots of thesecoe±cients for multisp ectral and RGB imagery are shown

in Figure 3. For the AFE classi¯er, more important image bands should be chosenmore often in solutions;

plots of the averagenumber of times an image band is chosenin an AFE solution are shown in Figure 4,

where the 10 independent runs have beenaveraged. Once again, in both the FLDA and AFE classi¯er, we

note a preferencefor the red portion of the spectrum.

We note also that with RGB imagery, the FLDA classi¯er weights the red channel the most, followed by

the blue, and ¯nally greenchannels. Similarly, the AFE classi¯er choosesthe red channel most often,

followed in turn by blue and green. Comparing the multisp ectral plots for the AFE and FLDA classi¯ers,

there are striking similarities in the relative use/weighting of bands, particularly in the red portion of the

spectrum (i.e., 580-650nm). The more prevalent useof greenand blue bands in the AFE classi¯er,

comparedto FLDA, may be due to the classi¯er's abilit y to extract local features, making those bands

more useful beyond the raw spectral attributes usedby the FLDA classi¯er. Overall, consideringthe

disparate nature of thesetwo classi¯ers, we ¯nd it very interesting that they both display similar

preferencesfor particular image bands.

We usethe analysis in this section as a complement to the analysis of performanceon single image bands.

Speci¯cally, we have shown that image bands that yielded the better performancesare also the image

bands chosenpreferentially in both the FLDA and AFE classi¯ers. While it may be more qualitativ ely

satisfying if the plots of Figures 3 and 4 would bear more resemblance to those of Figure 2, it is important

to remember that thesetwo analysesare very distinct from one another. In the caseof Figure 2, we are

limiting the classi¯ers to a single image band, and optimizing the performance,whereasfor Figures 3 and 4

we are providing the classi¯ers with a choice of all available image bands and optimizing performance. As a

more intuitiv e example, for the FLDA classi¯er, even if a speci¯c image band X performs well when used

alone, this sameimage band X may not yield as much information as, say, the linear combination of bands

Y and Z. We have shown, therefore, in this analysis, a classi¯er preferencefor image bands which yield

better performancewhen usedsingly in classi¯cation.
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(b) FLD A coe±cien ts for RGB imagery

Figure 3: FLDA coe±cients
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(b) RGB bands chosen in AFE solutions

Figure 4: Spectral bands chosenin AFE solutions, averagedover 10 independent runs.

Principal components analysis of image stacks

We usePrincipal Components Analysis (PCA) as a dimensionality reduction method to seehow many

\imp ortant" bands actually exist within our multisp ectral image stacks. We choosePCA rather than

another dimensionality reduction technique, such as Independent Components Analysis (ICA), sincePCA

has a well establishedranking for the resulting vectors. While there has beenat least one ranking method
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Figure 5: Logarithmic plot of the eigenvalues of multisp ectral imagery, from PCA. Eigenvalues for each
image are normalized so that the largest eigenvalue has unit value.

suggestedfor ICA, the ratio of between-classto within-class variance [18], there is not a universally

acceptedranking for ICA vectors. While ICA may yield a better separation of the independent causesin

our data (i.e., the two stains), we are interested in the useof a dimensionality reduction technique mainly

to help interpret the (lack of) di®erencesin performancewe have presented for our multisp ectral and RGB

imagery.

As input to the PCA algorithm, we usethe (768¢896)£ 29 matrix where the rows correspond to a single

image pixel and the columns are the pixel valuesfor each of the 29 multisp ectral image bands. We plot the

averagesorted eigenvaluesof the covariance matrix of this input in Figure 5, where for each image we

normalize the eigenvaluesso that the largest eigenvalue has unit value. We note that there appears to be

one dominant eigenvalue, with the secondranked eigenvalue at approximately one-tenth the value of the

dominant one; given the two stains in our histopathology imagery, we expected two dominant eigenvalues.

We show in Figure 6 the projection of an example image onto the ¯rst three eigenvectors. The ¯rst

projection seemsto highlight nuclear regions(i.e., the Hematoxylin), the secondprojection seemsto

highlight the connective tissue and cytoplasm (i.e., the Eosin), and the third and subsequent projections do

not have any obvious correlation with the tissue stains.

We have thus found that PCA indicates the presenceof 2 dominant eigenvalues,when we consider the

principle components responsible for 97% of the variation in the data. This indicates the presenceof only 2

information-b earing bands in the imagery for this nuclear classi¯cation task, providing insight into the
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Figure 6: Projection of example image onto ¯rst three eigenvectors.

approximately equivalent performanceof the RGB imagery and multisp ectral. We have also shown that

these2 informativ e bands demonstrate a direct relationship to the two image stains. Interestingly, the ¯rst

component is responsible for 93% of the total variation; this band is generally correlated with Hematoxylin,

but is sometimescorrelated instead with Eosin. The possibility that other image bands may contain

important diagnostic information for further analysis is still an open question [2].
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Conclusions

We have shown a demonstration of performancefor di®erent image typesand di®erent classi¯ers in a

nuclear classi¯cation task. Results seemto indicate only slight performancedi®erences(less than 1%)

using multisp ectral imagery as opposedto our derived RGB imagery; while theseperformanceincreasesare

small, we report them here sincethey are a direct result from our experiments, and may be statistically

signi¯cant. Theseconclusionshold for both classi¯cation using all available image bands as well as using

single image bands, indicating that the multisp ectral bands do not contain much more discriminatory

spectral information than do the RGB bands for this nuclear classi¯cation task. There are, undoubtedly, a

number of metrics that could be usedin a study such as this, and we may have beenable to ¯nd a metric

for which multisp ectral would fare better (or worse) than presented here. However, we wanted to usea

metric that provides an equal trade-o®betweentwo commonly usedmetrics (detection rate and falsealarm

rate). We have also shown that the single image bands with the best performanceare the image bands

chosenmore often/w eighted more heavily by the AFE and FLDA classi¯ers. Finally, we have shown

through the useof PCA as a dimensionality reduction method, that only 2 image bands are carrying 97%

of the variation in our image data, and appear to be correlated with the two image stains. This result

provides someinsight into the roughly equivalent performanceof RGB imagery to multisp ectral. While the

results presented here are intriguing, they are by no meanscomplete, sincewe are consideringonly a single

pixel-level classi¯cation task. Future work will continue to comparemultisp ectral with RGB imagery for

further classi¯cation tasks, as well as other image analysis tasks, including object-level analysis. In

particular, as previously mentioned, we are currently researching methods to segment (i.e., delineate)

individual nuclei using the results of thesepixel-level classi¯cations.

Metho ds
Sample preparation and image acquisition

Our dataset contains 58 H&E stained histopathology imagesof breast tissue from the Yale Tissue

Microarray Facilit y (inventory at http://tissuearra y.org/facilit y/in ventory/list.php). The data was

captured from 5 microarrays (ytma10, 12, 49, and 55), with (6, 6, 34, and 6) imagescaptured per array,

respectively; in total we have 26 malignant images,and 32 benign (including 6 normal from ytma55). Our

58 imagesare not microarray imagesin the generalsensesincewe are dealing with single histopathology

imagesas might be obtained from standard clinical biopsy specimens.The multisp ectral imageshave 29

bands, spaced10 nm apart, ranging within the visible spectrum from 420 to 700 nm, acquired using the
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Figure 7: Example multisp ectral stack. Only a portion of the 768£ 896 image is shown.

VariSpecTM (CRi, Woburn, MA) liquid crystal tunable ¯lter and a typical clinical pathology microscope

setup with a 40x objective (400x total magni¯cation). Each band is represented in an image stack as an 8

bit, 768£ 896 grayscaleimage; an example is shown in Figure 7. It should be noted that each image band

has beencorrected for illumination di®erencesvia a °at-¯elding operation; this is part of the acquisition

software included with the VariSpecTM .

Derivation of RGB imagery

One could foreseemany methods for the derivation of RGB imagery from multisp ectral. We usehere:

1. rgb equal: created by (approximately) equally allocating the 29 bands to R, G, and B, similar to the

approach in [7], re°ecting a rough approximation of the three spectral rangesassociated with the

three colors red, green,and blue, albeit with someambiguit y in allocation of intermediate colors

(e.g., yellow).

2. truecolor: created by converting the illumination wavelength for each band into the constituent

RGB valuesas perceived by humans, then averaging the contribution to R, G, and B for each band.

This method utilizes the MatlabCentral (http://www.math works.com/matlabcentral/¯leexc hange/)

function spectrumRGB.

3. ccd: a modi¯cation of truecolor imagery to better match the spectral responseof common 3-CCD
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Figure 8: RGB responsesfor the function spectrumRGB. Note the secondlobe of the red response in the
smaller wavelengths. This is due to the perception of such wavelengths as violet, represented in RGB as a
combination of red and blue. The ccd image representation removesthe contribution of this secondlobe.

(a) Bands allocated equally and
averaged, \rgb equal"

(b) Bands allocated with Mat-
labCentral function spectrum-
RGB, \truecolor"

(c) Bands allocated to approxi-
mate spectral responses of com-
mon 3-CCD color cameras, \ccd"

Figure 9: RGB representations of the example multisp ectral stack of Figure 7. The same portion of the
768£ 896 image is shown here.
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color camerasusedin microscopy setupsfor biomedical research. This method also utilizes the

spectrumRGB function.

It should be noted that the ccd and truecolor representations di®er only in the red band. The RGB

responsesof the function spectrumRGB function are shown in Figure 8 and examplesof each of thesethree

typesof RGB imagesare shown in Figure 9.

Classi¯ers

We describe here the six pixel-level classi¯ers usedin this study. We choosetheseclassi¯ers basedon their

establishedperformanceand usefor multisp ectral data, sparsity of parameters to optimize, computational

e±ciency, and the useof (primarily) spectral information. The useof primarily spectral information is

important in theseanalysessincethe basic hypothesis in question dealswith the spectral information

content of our imagery. The exceptionsto thesecharacteristics are noted in the classi¯er descriptions to

follow.

² Maxim um Lik eliho od (ML) [19]: Maximizes the likelihood of a pixel belonging to a certain class.

That is, a pixel is assignedthe label of the classthat it is most likely to be a member of. Likelihood

is de¯ned probabilistically , using the estimated joint probabilit y density or massfunction. We assume

a Gaussiandensity model, and estimate the mean and covariance matrix for each class. These

assumptionsresult in a quadratic discrimination boundary.

² Minim um Euclidean Distance (MED): Minimizes the Euclidean distance betweenan

observation and the classmeans.

² Spectral Angle Mapp er (SAM): Minimizes the angle betweenan observation and the class

means.

² Fisher Linear Discriminan t Analysis (FLD A): Projects the multi-dimensional data to one

dimension, maximizes a function representing the di®erencebetweenthe projected classmeans,and

normalizesby the within-class scatter along a direction perpendicular to the decisionhyperplane [20].

This is also equivalent to a Maximum Likelihood formulation assumingequal covariance matrices for

each class,resulting in a linear discrimination boundary.

² An Automated Feature Extraction (AFE) tool called GENIE: GENIE is basedon evolutionary

computation, and is designedto explore the entire feature spaceof multisp ectral data, and evolve a
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solution best ¯t for the classi¯cation task. More practically speaking, GENIE selectsan initial set of

algorithms consisting of randomly selectedoperators and randomly selecteddata planesas input.

Throughout the evolution process,only appropriate algorithms with appropriate data input will

survive. GENIE has the abilit y to use information from both the spectral and spatial domain, which

renders it unique among the six classi¯ers. For more information, seeReference[21].

² Supp ort Vector Mac hine (SVM) : Constructs a linear hyperplane that maximizes the margin

betweenclasses.In the caseof nonlinear SVMs, the data is ¯rst mapped to a higher dimensional

spacewhere a linear hyperplane is computed to separatethe classes,using a kernel function which

de¯nes the inner product operation in the higher dimensional space[22]. We have implemented an

SVM using SVM l ig ht [23], with a linear kernel (LSVM ) using all training data as input, and a

quadratic kernel (NLSVM ) using a randomly selected10% of our training data as input (to speed

the training processto a reasonabletime). For this classi¯er, the kernel parametersmust be

explicitly optimized for the training data; this is the only classi¯er usedin this study which requires

optimization of parameters.

Before discussingour performancemetric and results, we would like to brie°y discusshow thesepixel-level

nuclear classi¯cations will be used. We are currently working towards a hierarchical image analysis system,

wherewe will alternate classi¯cation and segmentation of the imagery in an interactive systemeliciting user

feedback. Current active research involvesnuclear segmentation, i.e., the proper delineation of all nuclei

contained in the image. As such, it is necessaryto achieve an accurate classi¯cation of all nuclei pixels if we

are to useshape and other appropriate metrics to their best advantage in the nuclear segmentation process.

Humans inherently incorporate higher-level information in their analysis of imagery; sincewe are

consideringthe nuclear classi¯cation performancebasedon primarily spectral information, it is di±cult, if

not impossible,to specify the expected level of performancefor a human expert. The issuesof human

performancein diagnosis,particularly the inter- and intra-observer variabilit y (see[24,25] and the

referencestherein) will be an important consideration in our future work and is indeed a strong motivation

for a computerized quantitativ e analysis.

Performance metric

We choosea generalmetric of classi¯cation performancethat equally penalizesboth typesof classi¯cation

errors: 1) true (nuclei) pixels incorrectly labeled as false (non-nuclei) and 2) false pixels incorrectly labeled
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as true. In particular, the performancemetric is de¯ned as

P = 0:5(Rd + (1 ¡ Rf )) ; (1)

where Rd is the fraction of true pixels classi¯ed correctly (detection rate), R f is the fraction of false pixels

classi¯ed incorrectly (false alarm rate), and the factor of 0.5 scalesthe metric to the range [0; 1]. Note that

a perfect segmentation will yield a performancescoreof 1 (100%), while a scoreof 0.5 (50%) can be

obtained by a trivial solution of all pixels labeled as a single class(true or false). This metric is an equal

tradeo®betweendetection rate and false alarm rate.

As a compromisebetweenthe necessity of comprehensive ground truth for proper quanti¯cation of

classi¯cation accuracy, and the tedious and time-consuming aspect of human delineation of such ground

truth, we have marked a 200£ 200 pixel window in each of our 58 histology images. This window is used

to determine classi¯cation performancefor each image.
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