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Abstract

A Signal Processing Approach To Malware Analysis

by

Lakshmanan Nataraj

There is an alarming increase in the amount of malware that is generated today. Several

studies have shown that most of these new malware are just variants of existing ones. In

this research we focus on developing orthogonal methods motivated by Signal and Im-

age Processing. We exploit the fact that most malware variants are similar in structure.

One could then treat malware as digital signals and apply Signal and Image Processing

techniques to compute descriptions that facilitate detection and classification of mal-

ware. First, we will present SARVAM: Search And RetrieVAl of Malware, an online

malware search and retrieval system where one can upload a binary executable and

search over a database of approximately 7 million malware samples using Image Sim-

ilarity metrics. Next, we generalize this approach by expanding malware as a sparse

linear combination of other malware samples. Finally, the methods can be generalized

to data forensics, where given a block of data we can determine the data type.
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Chapter 1

Introduction

Sarvam Sattva Mayam

Everywhere there is purity

The number of malicious attacks have risen in recent times. Today’s defense mecha-

nisms are based on scanning systems for suspicious or malicious activity. If such an

activity is found, the files under suspect are either quarantined or the vulnerable system

is patched with an update. These scanning methods are based on a variety of tech-

niques such as static analysis, dynamic analysis and other heuristics based techniques,

which are often slow to react to new attacks and threats. Static analysis is based on

analyzing an executable without executing it, while dynamic analysis executes the bi-

nary and studies its behavioral characteristics. Hackers are familiar with these standard

methods and come up with ways to evade the current defense mechanisms. The tra-

ditional analysis techniques are known to hackers who produce new malware variants

that easily evade these detection methods. They create a large number of malware vari-
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ants from existing malware using inexpensive easily available “factory toolkits” in a

“virtual factory” like setting, which then spread over and infect more systems. Once

a system is compromised, it either quickly looses control and/or the infection spreads

to other networked systems. While security techniques constantly evolve to keep up

with new attacks, hackers too change their ways and continue to evade defense mecha-

nisms. As this never-ending billion dollar “cat and mouse game” continues, it may be

useful to look at avenues that can bring in novel alternative and/or orthogonal defense

approaches to counter the ongoing threats. The hope is to catch these new attacks using

orthogonal and complementary methods which may not be well known to hackers, thus

making it more difficult and/or expensive for them to evade all detection schemes. This

dissertation focuses on such Orthogonal Solutions from Signal and Image Processing

that complement standard approaches.

1.1 Challenges

While most malware are geared towards Windows Operating System, they are also

quickly expanding to other avenues such as Android, Linux and OS X. Antivirus vendor

G-DATA reported that they discovered more than 1.5 Million malicious Android apps

in 2014 and more than 400,000 apps in just the first quarter of 2015. Similarly, there

has also been a stark rise in Linux malware and OS X malware. An important question

in this context is: Can we have a single method that can detect malware irrespective

of which Operating System it comes from without having to know the nuances of each

system?

Traditional methods to analyze malware are using static code analysis methods
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which usually disassemble an executable to study its control flow, and dynamic analy-

sis techniques which execute the binary in a virtual environment to study its behavioral

characteristics. However, a common way to defeat static analysis is by using packers

on a executable which compress and/or encrypt the executable code and create a new

packed executable that mimics the previous executable in function but reveals the ac-

tual code only upon execution runtime. Dynamic analysis is agnostic to packing but

is slow and time consuming. Further, today’s malware are designed to be Virtual Ma-

chine (VM) aware which either do not do any malicious activity in the presence of VM

or attempts a “suicide” when a VM is detected. The challenges here are: Can we design

techniques that are fast, do not need disassembly, unpacking or execution?

Finally, malware of today are constantly evolving and show up in forms other than

an executable such as compressed malware, in PDF files and other documents. This

poses an important question: Can we identify malware when they are compressed or in

other forms?

A key emphasis in all the above-mentioned challenges is development of comple-

mentary methods that address the limitations of existing approaches. Alternative repre-

sentations of malware data such as signals or images have patterns that are not captured

by standard methods. We explore these types of representations in this dissertation.

1.2 Summary of Contributions

1. Image Similarity based Malware Analysis: A common method of viewing and

editing malware binaries is by using Hex Editors, which display the bytes of the binaries

in hexadecimal representation.An equivalent representation is viewing a binary as a

3
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8 Bit 
Vector

Malware Binary Image

SignalHex Viewer

Figure 1.1: Malware represented as a Signal and an Image

grayscale image or a signal as shown in Fig. 1.1.

In the first part of the dissertation we represent malware binaries as digital grayscale

images with the observation that malware variants that are similar in structure and from

the same family also appear similar visually (Fig. 1.2). We then apply image descriptors

to model the similarity between malware variants, identify malware families, separate

malware from benign software and retreive similar malware from a large database. The

advantages of our proposed method are:

• Fast: Since our method works on raw bytes, there is no need for disassembly or

execution, thus making it faster than both static analysis and dynamic analysis.

• Agnostic to Packing: When unpacked malware variants from the same family

are packed, the structure of the packed malware variants is different but there
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(c) Fakerean (d) Yuner.A(b) Dialplatform.B(a) Adialer.C

Figure 1.2: Visual similarity among malware variants of 4 different families

is still visual similarity among the packed malware variants, thus making our

method agnostic to packing.

• Agnostic to Operating System: Since malware authors use similar techniques

while creating malware variants irrespective of the Operating System, our tech-

nique works on malware from various Operating Systems such as Windows,

Linux, Android and OS X.

2. Signal and Sparsity based Malware Analysis: In the second part we generalize

the 2D image based representation further by representing malware as digtial signals.

Motivated by the observation that variants from the same malware family have small

changes, we model the variant as a sparse linear combination of other variants from the

same family, and thus determine families of unknown malware . We further show that

lower dimensional projections can also capture this similarity (Fig. 1.3).

3. Extensions to Data Type Classification: In the final part we extend the previous

approaches to find similarities in compressed malware and identify their families. We

further extend this to data forensics where the objective is to determine the type of a

file, given a block of data.
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Figure 1.3: Malware samples are represented as numerical vectors, projected to lower

dimensions and then modeled using the Sparse Representation based Classification

(SRC) framework

1.3 Organization

The dissertation is organized as follows:

• In Chapter 3 we treat malware binaries as 2D signals (digital images) and bring

in well known image processing methods to process, organize and search through

such image based descriptions. With the observation that malware variants from

the same families appear visually similar, we analyze similarity among malware

by computing the Intra-family distances and Inter-family distances using global

image descriptors. We then model malware family identification as a multi class

classification problem using a Nearest Neighbor Classifier.
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• In Chapter 4 we describe the systems we developed for malware detection and

retrieval. In order to separate malware from benign software, we compute image

descriptors on the whole executable as well as individual sections to obtain a

richer descriptor, which we use for malware detection. Further, we designed

an online system, SARVAM, to retrieve visually similar malware from a large

database of malware.

• In Chapter 5 we generalize the 2D image based representation to a 1D signal

based representation. We further model a malware variant belonging to a partic-

ular malware family as a linear combination of variants from that family. Since

variants of a family have small changes in the overall structure and differ from

variants of other families, we show that Random Projections of malware in lower

dimensions preserve this “similarity”.

• In Chapter 6 we deal with similarity among compressed malware variants and use

a two layer meta learning based approach to find similarities among data types

and compressed malware variants.

• In Chapter 7 we present some future directions based on this dissertation and

conclude the dissertation.
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Chapter 2

Overview of Malware Analysis

Malware - malicious software, is any software that is designed to cause damage to

a computer, server, network, mobile phones and more such devices. Based on their

function, malware are classified into different Types such as Trojans, Backdoors, Virus,

Worm, Spyware, Adware and more. Malware are also identified by which Platform

they belong to, such as Windows, Linux, AndroidOS and others. Apart from Types

and Platforms, malware are further classified into Families depending on their spe-

cific function. These Families in turn have many Variants which perform almost the

same function. The entire malware landscape is shown in Fig. 2.1. According to the

Computer Antivirus Research Organization (CARO) convention for naming malware,

a malware is represented by: Type:Platform/Family.Variant.

There is a tremendous increase in the amount of malware being generated today.

Antivirus software vendor Kaspersky recently reported that they process on average

325,000 samples per day. The main reason for such a deluge is malware mutation:

the process of creating new malware variants from existing ones. Variants are created
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1

MALWARE

Type Type Type

Family Family Family Family Family Family

. . . . . .

Variants Variants

. . . . . . . . .

Variants Variants Variants Variants

Figure 2.1: Malware Landscape

either by making changes to the malware code or by using executable packers. In the

former case simple mutation occurs by changing small parts of the code. In the latter

case a more complex mutation occurs either by compressing or encrypting (usually with

different keys) the main body of the code and appending a decompression/decryption

routine, which during runtime decompresses/decrypts the encrypted payload. The new

variants perform the same function as the original malware but their attributes would

be so different that Antivirus software, which use traditional signature based detection,

would not work on them. Based on their function, these variants are classified into

different malware families. As an example, if we assume there are M structurally

unique malware samples belonging to M malware families, these M malware undergo

N code mutations and we obtain MN samples. These are then packed using P packers
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N Mutations P Packers

M malware samples
from M families

MN malware samples
from M families

MNP malware samples
from M families

(1+P)MN malware samples
from M families

Figure 2.2: Example of Malware Evolution

to get MNP samples. The final dataset is a mixture of MNP packed samples and

MN unpacked samples, a total of MN(1+P ) samples as shown in Fig. 2.2. In reality,

apart from these samples there may be mixture of unpacked and packed malware from

other families.

Malware classification deals with identifying the family of an unknown malware

variant from a malware dataset that is divided into many families (Fig. 2.3). The level

of risk of a particular malware is determined by what function it does which is in turn

reflected in its family. Hence, identifying the malware family of an unknown malware

is crucial in understanding and stopping new malware. It is usually assumed that an

unknown malware variant belongs to a known set of malware families (supervised clas-

sification). Having a high classification accuracy (the number of correctly classified

families) is desirable. A closely related problem is search and retrieval where the ob-
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Malware

Family?

Figure 2.3: Illustration of Malware Classification

jective is to retrieve similar malware matches for a given query from a large database

of malware.

In malware detection the problem is to determine if an unknown executable is mali-

cious, benign or unknown as shown in Fig. 2.4. This problem is more challenging than

malware classification where all samples are known to be malicious. High detection

accuracy (the number of correctly classified malware) and low false positives (number

of benign misclassified as malware) are important. For example, if an essential benign

system file is falsely classified as malicious, then it can result in system not working

properly.
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Malware
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New
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Figure 2.4: Illustration of Malware Detection

2.1 Malware Analysis

Malware analysis can be broadly classified into Static Analysis, Dynamic Analysis

and Statistical Analysis (Fig. 2.5). We will briefly describe each below.

Malware Analysis

Static Code Analysis Dynamic Analysis Statistical and Content Analysis

Disassemble the code
and build control

flow graphs

Execute the malware in
a virtual environment

and analyze its execution 
trace (behavior analysis)

Analyze Raw binaries
and build signature based

on n-grams

1

Figure 2.5: Types of Malware Analysis
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2.1.1 Static Analysis

As the name suggests, static analysis is based on analyzing a malware without exe-

cuting it. These techniques study the functioning of an executable by disassembling the

executable and then extracting features. The most common static code based analysis

method is control flow graph (CFG) analysis. After disassembly, the control flow of the

malware is obtained from the sequence of instructions and graphs are constructed to

uniquely characterize the malware. The control flow graphs are decomposed into a set

of subgraphs of fixed size k. A graph similarity measure is used to measure the similar-

ity between two malware. The similarity measure between two samples is calculated

as follows:

CFG similarity =
number of matching subgraphs

total number of subgraphs

.

The control flow graphs of known malware are stored in a database. For an unknown

executable, the control flow graph is extracted and compared with the database to find

a match. Although this approach is promising, it does not work on packed/obfuscated

malware since the control flow of a packed malware reveals only the unpacking routine

and not the actual flow.

2.1.2 Dynamic Analysis

In dynamic analysis the behavior of the malware is traced by running the malware

executable in a virtual sandboxed environment for several minutes. The most com-

monly used approach is system-call level monitoring. A sequential report of the moni-

13



Overview of Malware Analysis Chapter 2

tored behavior for each malware binary is generated based on the performed operations

and actions. The report typically includes all system calls and their arguments are stored

in a representation specifically tailored to behavior-based analysis. Another approach

called forensic snapshot comparison relies on a combination of features that are based

on comparing the pre-infection and post-infection system snapshots. A key difference

between system-call monitoring and forensic comparison, is that the latter approach

does not capture the temporal ordering of forensic events. While dynamic analysis is

promising, it is time consuming since the malware has to be observed for several min-

utes. Also, some of the most recent malware are designed to be “Virtual Machine”

aware and do not perform malicious activities if a virtual machine is detected.

2.1.3 Statistical and Content Analysis

Statistical and content analysis based techniques are based on a variety of tech-

niques: n-grams, n-perms, hash based techniques and file structure based techniques.

The most common of these are n-grams based techniques. The n-grams signature of

a string is a set of all substrings of the string with a length n. In the case of a binary

executable, the n-grams signature is usually computed on the string of its raw bytes, or

disassembled instructions. Various similarity measures have been proposed to compare

the similarity between n-grams signatures. The Pearsons χ2-test has been proposed as

a similarity measure, where the n-grams signature also includes the frequency distri-

bution of individual n-grams. For a faster and scalable computation of similarity, the

Jaccard similarity metric has been extensively used. Jaccard similarity is the number

of common occurrence of n-grams in both n-grams signatures with respect to the to-

tal number of unique n-grams. More precisely, given two n-grams signatures (sets of

14
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n-grams) sa and sb:

J(sa, sb) =
sa ∩ sb
sa ∪ sb

. However, n-grams based approaches are less scalable because of the computation-

ally expensive feature matching operation over relatively large dimensionality of the

n-grams feature space.

File structure based techniques extract simple features from the file header such as

length of the file, number of sections, length of sections and more. A compact feature

vector based on the above entities is used to characterize a malware. Although the

method is fast and simple, a malware can easily be designed to have a file structure that

mimics a benign software.

2.2 Summary of Related Work

This chapter provided some insights on malware analysis. More information on

control flow graph (CFG) analysis can be found in [36, 33, 61, 51, 53]. Karim et

al. examine the problem of developing phylogenetic models for detecting malware

that evolves through code permutations [54, 106]. Carrera et al. develop a tax-

onomy of malware using graph-based representation and comparison techniques for

malware [36]. Hu et al. [51] proposed function call graphs to implement an efficient

nearest-neighbor search on a large graph database of malware. Kruegel et al. [61]

extracted CFGs from network streams and detected polymorphic worms by identify-

ing structural similarities. Worm detection and classification occurs by identifying the

prevalence of k-subgraph features between worm-like executable content and unknown

executable content.
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For more on behavioral profile based dynamic analysis, see [63, 24, 56, 85, 27, 86].

Some works generate a human readable report of the execution flow and extract features

from the reports [85, 86]. Bailey et al. were among the first to point out inconsistencies

in labeling by popular AV vendors and present an automated classification system as

a solution for robustly classifying malware binaries through offline behavioral analy-

sis [24]. Another related work is from Kolbitsch et al. [56], where dynamic analysis is

used to build models of malware programs based on information flow between system

calls. Similarly, Bayer et al. [27] propose an unsupervised learning system to automat-

ically cluster malware based on their behavioral profile. Although they obtained high

precision and recall on a small dataset, Li et al. [64] argued that the high precision and

recall of the above technique is due to selection bias in generating their ground truth.

In [79], Park et al. classified malware based on detecting the maximal common sub-

graph in a behavioral graph. Rieck et al. proposed a supervised learning approach to

behavior based malware classification [85]. They use a labeled malware dataset com-

prising many families and monitored the behavior of the samples in a sandbox environ-

ment from which behavioral reports were generated. From every report, they generated

feature vectors based on the frequency of some specific strings and used Support Vec-

tor Machines for classification. In [86], they extend this technique and build a system

which combines both classification and clustering. Several tools exist for sandboxed

execution of malware including TTanalyze [105], CWSandbox [108], Norman Sand-

box [11], Anubis [1], Cuckoo Sandbox [3] and Malwr [9]. While CWSandbox and

TTanalyze leverage API hooking, Norman Sandbox implements a simulated Windows

environment for analyzing malware. A complementary analysis is proposed in [68],

where a layered architecture is proposed for building abstract models based on run-
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time system call monitoring of programs. Another approach based on forensic snapshot

comparison is presented in [113].

There are several approaches that use statistical and content based methods, the

most common being n-grams analysis [21, 57, 58, 54, 81, 91, 53] and n-perms [54, 52,

62]. Kolter and Maloof [57] were among the first to use n-grams of raw binary data

for malware detection. A malware phylogeny generation technique was proposed us-

ing n-perms to match every possible permuted code [54]. Jacob et al. [52] studied the

preserved statistical similarity over packed binaries, and proposed a packer-agnostic bi-

grams based similarity measure. Jang et al. [53] proposed feature hashing to reduce the

high-dimensional feature space in malware analysis, and implemented feature hashing

on n-grams based features. However, its evaluation was performed on the clustering of

an unpacked malware dataset, and no benign samples were used to test the accuracy

of the system. Apart from n-grams, there are also techniques based on file structure

statistics [93, 95, 84] and computing hashes on malware [60, 107]. Schultz et al. [93]

proposed the extraction of static features from the header and the resource section of

executables for the detection of malware. Shaq et al. [95] proposed PE-Miner, a similar

approach, based on 189 features from the structural information of the PE file. In an-

other work, only seven PE based features were used to produce comparable detection

results [84]. Among hash based methods, ssdeep [60] is a common technique to com-

pute context triggered piecewise hashes on raw binaries. Pehash [107], however, uses

the Portable Executable (PE) file structure to compute a hash.
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Chapter 3

Malware Images

3.1 Introduction

We propose a novel method to analyze malware by representing malware binaries

as digital signals and images. Based on the observation that variants belonging to the

same malware family exhibit structural and visual similarity, we use Image similarity

techniques to capture the similarity between the variants. Examples of such variants

are shown in Fig. 3.1. More specifically, we combine some of the most commonly

used image similarity features in one setting and define them as Generalized Features.

This allows us to not depend on one specific feature but rather use a suite of methods

which can be tuned according to the problem at hand. As opposed to current malware

analysis techniques, our approach does not require disassembly, decompiling, deobfus-

cation or execution of the binary. This allows us to capture patterns that are not usually

captured by standard techniques. Using the large number of malware samples avail-

able in the wild, we employ supervised learning based techniques to model malware
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(a) Adialer (b) Alueron (c) Autorun (d) Dontovo

Figure 3.1: Examples of malware variants from various Windows malware families.

The top row shows grayscale visualizations of malware from four families: (a) Adialer,

(b) Alueron, (c) Autorun and (d) Dontovo. The bottom row are the variants from the

corresponding families. We observe two main points: (1) there is similarity in variants

within families, (2) they can be distinguished from variants of other families.

similarity and distinguish them between different families-malware classification. Ex-

perimental results on various datasets show that our approach is better than most static

analysis based methods and comparable to dynamic analysis based methods. Another

advantage of our approach is that it is independent of the Operating System (OS) for

which a malware is designed for. Today’s malware are no longer restricted to Windows

platforms and are rapidly expanding to other platforms such as Android [4], Linux [6]

and MAC OS X [17]. The rise has been stark in the case of Android and Anti Virus
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(a) Win (b) OS X (c) Linux (d) Android

Figure 3.2: Examples of malware variants from different OS: (a) Win 32 variants of

Fakerean family, (b) MAC OS X variants of Wirenet family, (d) ELF malware which

are Backdoors, (d) Android variants of Kungfu1. These clearly show that the visual

and structural similarity hold for malware variants irrespective of their platform

software vendor G Data reported that they discovered 1,548,129 new Android malware

samples in 2014 [4]. However, the malware variants, irrespective of their platforms,

still have similar structure since the underlying techniques in creating variants more or

less remains the same. This is further illustrated in Fig. 3.2, where we clearly see that

variants of different platforms still exhibit similarity. While static and dynamic analy-

sis methods have to be re-developed for various OS platforms and their versions, our

method would at most need tuning of parameters. Experiments on malware datasets

from various OS further confirm this (refer Sec. 3.4.4 and Sec. 3.5.2).
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The rest of this chapter is organized as follows. Sec. 3.2 describes the image rep-

resentation of malware binaries and how malware variants appear when visualized as

digital images. Sec. 3.3 combines some of the common image similarity descriptors in

one setting called Generalized Features and explains the steps while computing the fea-

ture. Similarity Analysis of malware variants is presented in Sec. 3.4. Sec. 3.5 explains

classification of malware variants into different families with detailed experiments. The

summary is presented in Sec. 3.6.

3.2 Visualizing Unpacked and Packed Malware

A common method of viewing and editing malware binaries is by using Hex Edi-

tors, which display the bytes of the binaries in hexadecimal representation.An equiv-

alent representation is viewing a binary as a grayscale image or a signal.The range of

this signal is [0, 255] (0: black, 255: white). In the case of an image, the width of the

image is fixed and the height is allowed to vary depending on the file size. Examples of

these images are shown in Fig. 3.1 and Fig. 3.2.

Most unpacked malware variants are created using simple mutation techniques.

Fig. 3.3 shows an example of unpacked malware variants of the recently exposed Regin

malware [16]. Since simple mutation techniques are used, these variants differ in only

7 bytes.

An executable can be packed using methods such as compression, encryption or a

combination of both. Packers transform the original executable’s binaries to a different

form and generate new executables by embedding the compressed, possibly encrypted

code with an appended loading routine. This routine is responsible for the automated
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(a) Regin Variant 1 (b) Regin Variant 2

Figure 3.3: In this example, we see visualizations of unpacked variants ((a),(b)) of

the recently exposed Regin malware [16]. Both these variants are of the same length

(13,284 bytes) but only 7 bytes (0.0527 %) are different.

decompression and decryption of the code before executing them. There are hundreds

of packers that exist today, both commercial and open source. This makes it very

easy for malware writers to create new malware variants which are not detectable by

traditional anti-virus software. Hence, these software resort to either creating a new

signature for every new packed threat it encounters or try to emulate the executable

code and then scan the image of the code in memory. In general, it is believed that

nearly 80% of malware are packed [66, 49] and 50% of existing malware are packed

versions of old malware [96]. Even detecting if an executable is packed or not is a

challenging problem [66, 80, 44, 73].

When two unpacked variants belonging to a specific malware family are using a

packer to obtain packed variants of the same family, their structure no longer remains

the same as that of the unpacked variants. However, the structure within the packed

variants are still similar though the actual bytes may vary due to compression and/or

encryption. Fig. 3.4 shows examples of packed malware variants of two different fam-

ilies (Adialer and Azero) that are packed using UPX packer. We observe that within
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(a) ADR Variant 1 (b) ADR Variant 2 (c) RBT Variant 1 (d) RBT Variant 2

(e) ADB Variant 1 (f) ADB Variant 2 (g) AZO Variant 1 (h) AZO Variant 2

Figure 3.4: Examples of UPX packed malware variants: (a) Adialer (ADR), (b) Rbot

(RBT), (d) Adultbrowser (ADB), (d) Azero (AZO). We see that even among packed

variants, visual similarity is maintained among families.

families, the variants exhibit structural similarity and is absent across families. Since

there is visual and structural similarity, for both unpacked and packed malware variants,

we will use global image similarity descriptors and obtain compact signatures for these

variants, which are then used for similarity and classification as explained in the next

sections.

3.3 Generalized Features for Malware Similarity

We define Generalized Features (GF) as compact signatures that are computed on an

image using a generic set of parameters. These are common parameters such as number

of filters used, size of blocks that an image is divided into and statistical quantities
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such as mean and standard deviation. Global image similarity features such as Color

Layout Descriptor (CLD) [90], Homogeneous Texture Descriptor (HTD) [67, 90] and

GIST [77, 102] use a combination of these parameters. These descriptors are explained

later in Sec. 3.3.2.

Let Xm ∈ RL represent a malware sample, where L is the length (number of bytes)

of the malware. For simplicity, we assume thatL is an even number in order to represent

the malware as a digital grayscale image Xg of dimensions Lw × Lh, where Lw,Lh

represent the width and height of the image (if L is odd, it can be made even by zero

padding). Let sov ∈ Z+ be the parameter that divides an image into overlapping or

non-overlapping blocks (sov ≥ 0, 0 being no overlap), (bx, by) be the block sizes that an

image is divided into in the horizontal and vertical directions. For practical purpose, an

image is resized to a standard size and this can be parameterized as Rs = (Rsx, Rsy),

where Rsx, Rsy are the resizing factors in the horizontal and vertical directions.. Let

Nf be the number of filters used to filter the image. This can be a single filter or

a bank of filters (such as Wavelets or Gabor filters). Finally, let Sq denote the set

of statistical quantities used while computing the feature. Sq usually includes mean,

standard deviation and other statistical quantities. We define Generalized Feature GF

as follows:

GF = f(Xg, [Rs, (bx, by), sov, Nf , {Sq}]) (3.1)

where f(·) is a function that takes the malware image Xg as input and generates a

feature vector based on various parameters.
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(a) Resizing (b) Filtering

𝜇11 𝜇12 𝜇13

𝜇21 𝜇22 𝜇23

𝜇31 𝜇32 𝜇33

𝜇41 𝜇42 𝜇43

(c) Block Averaging

Figure 3.5: Illustration of some of the common operations that are carried out while

computing image similarity descriptors.

3.3.1 Generalized Features as Linear Measurements

Some of the common operations that are performed while computing image sim-

ilarity features are resizing, filtering and block averaging. These operations can be

represented as obtaining linear measurements on an image.

Resizing: Resizing an image to a standard size is a common practice while computing

image similarity features for speed and compactness [43, 101]. The malware image Xg

is resized (usually downsampled) to a smaller image Xr (usually square) of length Lr.

Let Rs be resizing factor and RM be the Lr × L resizing matrix (we assume linear

interpolation). The resizing operation can be expressed as taking linear measurements

on an image,

Xr = RMXg (3.2)
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For example, if the image is downsampled by a factor of 2 (Rs = (0.5, 0.5)), then

RM =



1 0 0 0 . . .

0 0 1 0 . . .

0 0 0 0 . . .

...
...

...
... . . .


(3.3)

Filtering: Filtering is another operation that is usually carried out while computing im-

age similarity features. An image is passed through a series of filters Nf and statistical

quantities are computed from the filtered images to obtain a rich image signature. For

example, when computing HTD or GIST, oriented Gabor features are computed on an

image at different scales (refer Sec. 3.3.2).

Block Averaging: Block averaging is the process of dividing an image into smaller

blocks and computing the average intensity value on those blocks. Similarity descrip-

tors such as Color Layout Descriptor (CLD) and GIST use block averaging. Here, we

show how the block averaging operation can be expressed in terms of linear measure-

ments. Consider a LW × LH malware image Xg (L = LWLH). This image is divided

into smaller QW × QH blocks (Q = QWQH) on which the average value is com-

puted to form a QW × QH feature matrix h. The block averaging can be represented

as taking inner products of the image with a set of Q masks {φφφ1,φφφ2, ...,φφφQ}, each of

dimensions LW ×LH which have values for pixel positions of the corresponding block

and zero elsewhere. Let {h1, h2, ..., hQ} be the values of h. Then h1 = 〈Xg · φφφ1〉,

h2 = 〈Xg · φφφ2〉, ..., hQ = 〈Xg · φφφQ〉, where 〈·〉 represents the inner product operation.

All these operations can be represented as a linear system of equations:

h = Φ Xg (3.4)

26



Malware Images Chapter 3

where h = [h1, h2, ..., hQ]
T is a Q × 1 vector formed by vectorizing h, Xg is a L × 1

vector formed by vectorizing the image Xg and Φ is the Q× L fat transformation ma-

trix, (L >> Q). The rows of Φ are formed by stacking the set ofQmasks in vectorized

form, Φ = [φφφT1 ;φφφ
T
2 ; ...;φφφ

T
Q], where φφφi, (i = 1, 2, ..., Q) are the L × 1 vectorized form

of masks φφφi.

The dimensionality of GF depends on the number of filters Nf , number of blocks

Nb and the number of statistical quantities NSq . If no filtering is done, then Nf is

assumed to be 1. The dimensionality is given by dGF
= NfNbNSq feature descriptor.

3.3.2 Common Similarity Descriptors

Color Layout Descriptor (CLD): This descriptor [90] divides an image into smaller

blocks which are factors of 8×8. The average value of every smaller block is computed

to obtain a 8 × 8 matrix. The Discrete Cosine Transform (DCT) is computed on this

matrix and the top coefficients form the descriptor. We can express CLD in terms of

Generalized Features as shown in (3.5). In this case, Sq = µ, (bx, by) = (8, 8),Rs =

(1, 1), Nf = 1, sov = 1. The dimensionality is 64 (Nf = 1, Nb = 64, NSq = 1).

GF = f(Xm, [(1, 1), (8, 8), 0, 1, µ]) (3.5)

Homogeneous Texture Descriptor: One of the common descriptors to classify texture

images is the Homogeneous Texture Descriptor (HTD) [67, 90]. An image is passed

through a set of Gabor filters of various scales and orientations to obtain a set of fil-

tered images. The set of means and the standard deviations of all filtered images form

the descriptor. In this case, Sq = {µ, σ}, (bx, by) = (1, 1), (Rx,Ry) = (1, 1), sov =

0, Nf = 24 and the dimensionality is 48 (Nf = 24, Nb = 1, NSq = 2). The Generalized
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Features representation of HTD is given in (3.6),

GF = f(Xm, [(1, 1), (1, 1), 0, 24, {µ, σ}]) (3.6)

GIST Descriptor: This descriptor [77, 102] is a popular global image descriptor that

describes the texture and spatial layout of a scene. An image is filtered with filters of

various scales and orientations and then divided into blocks. The set of average values

on all blocks form the descriptor. For GIST, Sq = µ, (bx, by) = (4, 4), (Rx,Ry) =

(1, 1), Nf = 32 and dimensionality is 512 (Nf = 32, Nb = 16, NSq = 1). However, in

some works [43], the dimensionality is 320, when only Nf = 20 filters are used. The

Generalized Features representation of GIST descriptor is given in (3.7),

GF = f(Xm, [(1, 1), (4, 4), 0, 32, µ]) (3.7)

We will use GIST descriptors in our experiments since it has a richer description

and also gives better performance in terms of accuracy (Sec. 3.5.3).

Malware
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Figure 3.6: Steps to compute GIST descriptor on a malware
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3.4 Malware Similarity

The objective here is to determine how much a malware variant is similar to another

variant of the same family. We measure the similarity between malware variants in

terms of Intra-Family distances and Inter-Family distances.

Consider a dataset of N labeled malware belonging to L different malware families

with P malware per family. Let GF
i
k represent the feature descriptor of the i-th family

and k-th sample in that family (i = 1, 2, ..., L and k = 1, 2, ..., P ). The features are

arranged such that the first P features are from family 1, the next P from family 2 and

so on. Let DM be theN×N distance matrix obtained by computing pairwise Euclidean

distance on all the features. Let {GF
i
1, ...,GF

i
k, ...GF

i
P} represent the features of the

i-th family. The entries of DM are distances {di,jk,l}, where the indices i, j keep track of

the family and k, l keep track of the individual samples both within and across families.

We define a P × P matrix, Sij , whose entries are distances {di,jk,l} computed between

families i and j, where k = 1, 2, ..., P and l = 1, 2, ..., P . Further for every family i,

we define a P ×N matrix Di formed by concatenating Sij such that:

Di = [Si1,Si2, ...,SiL], i = 1, 2, ..., L (3.8)

The complete distance matrix DM is now formed by stacking the block matrices Di:

DM = [D1;D2; ...;DL] ∈ RN×N (3.9)

3.4.1 Intra-Family Distances

These are pairwise distances computed on features belonging a family and used to

measure the amount of variation within that family. The set of features belonging to
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Figure 3.7: A simple example to illustrate Intra-Family Distances and Inter-Family

Distances. We consider a dataset with N = 12 samples, L = 3 families and P = 4

samples per family. If we consider a particular family i = 1, we get a 4 × 12 matrix

D1 = [S11,S12,S13]. The upper triangular part of S11 (excluding the diagonals) are the

Intra-Family Distances while the entries of S12 and S13 are the Inter-Family Distances

for this family.

family i are given by {GF
i
1, ...,GF

i
k, ...GF

i
P}. Computing pairwise distances on these

features will result in a P × P symmetric distance matrix whose entries are given by

{di,ik,l} where k = 1, 2, ..., P and l = 1, 2, ..., P . Let dintra
i represent the set of Intra-

Family Distances for family i. This results in P (P−1)
2

distances per family given by:

dintra
i = {di,ik,l} (3.10)

where i = 1, 2, ..., L, l > k, l 6= k, k = 1, 2, ..., P and l = 1, 2, ..., P .

3.4.2 Inter-Family Distances

These are pairwise distances computed across families and measure the dissimilar-

ity across different families. Let dinter
i represent the set of Inter-Family Distances for
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family i. This results in P (N − P ) distances per family given by:

dinter
i = {di,jk,l} (3.11)

where i = 1, 2, ..., L, j 6= i, k = 1, 2, ..., P and l = 1, 2, ..., P .

We illustrate the computation of these distances with a toy example. Consider a

dataset with N = 12 samples, L = 3 families with P = 4 samples per family. This will

result in 6 Intra-Family Distances and 32 Inter-Family Distances per family as shown

in Fig.3.7.

3.4.3 Measuring Similarity

For every family i where i = 1, 2, ..., L, we compute the Intra-Family Distances

(Eqn. (3.10)) and Inter-Family Distances (Eqn. (3.11)). Next for every variant in a

family, we compute the minimum value of the Intra and Inter-family distances within

and across families. The rationale behind computing the minimum value is that as

long as there are two variants in a family that are similar, their pairwise distance will be

small. For example, for the first variant of family 1, this would correspond to computing

the minimum value of the first row of S11 (excluding the distance with itself d1111). For

every family i, the Intra-Family Minimum Distances (dmin
intra

i
(k))are given by:

dmin
intra

i
(k) = min

l
{Sii[k, l]} (3.12)

where k = 1, 2, ..., P, l = 1, 2, ..., P, l 6= k and i = 1, 2, ..., L. At the same time, there

should not be a variant similar in other families. For this we compute the Inter-Family

Minimum Distances (dmin
inter

i
(k)) across families as:

dmin
inter

i
(k) = min

j,l
{Sij[k, l]} (3.13)
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where k = 1, 2, ..., P, l = 1, 2, ..., P and i = 1, 2, ..., L, j = 1, 2, ..., L, j 6= i. For

the first variant of family 1, this would correspond to finding the minimum value in the

first rows of both S12 and S13. These would result in P distances per family. We then

compute the median value of these Intra and Inter-Family Minimum Distances:

mmin
intra(i) = median {dmin

intra

i
(k)} (3.14)

mmin
inter(i) = median {dmin

inter

i
(k)} (3.15)

where i = 1, 2, ..., L, k = 1, 2, ..., P , mmin
intra(i) and mmin

inter(i) represent the median

values of the Intra and Inter-Family Minimum Distances for family i. We will use these

values to measure the similarity within a family and the dis-similarity across families.

3.4.4 Analysis on Unpacked Malware

We consider four datasets of unpacked malware from various Operating Systems.

Windows Malware Dataset: This dataset consists of Portable Executable (PE) mal-

ware variants from 10 different families: Adialer.c, Adultbrowser, Azero.a, Casino,

Dorfdo, Jhee.v, Magiccasino, Podnhua, Rbot.gen and Yuner.a, with each family having

10 variants. These were obtained and pruned from various sources including [72, 86].

Linux Malware Dataset: This dataset contains ELF malware binaries that were ob-

tained and pruned from [18]. The labels were obtained from [19] and divided into 8 dif-

ferent families, with each having 10 variants: Tsunami, Agent.T, Matrics.A, Grip!gen0,

OSF.A, RST.B, Telf.8000 and Adore.

Android Malware Dataset: This dataset was obtained and pruned from the Android

Malware Genome Project [114]. To measure similarity, the Dalvik Executable (DEX)

file from the Android Application Package (apk) was extracted and the dataset was di-
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vided into 10 families with 10 variants each: ADRD, AnserverBot, BaseBridge, Dream-

Light, KungFu3, KungFu4, Geinimi, GoldDream, KMin and Pjapps.

OS X Malware Dataset: Due to the shortage of OS X malware binaries in public,

we used 4 different OS X malware families with each having 2 variants: FkCodec.74,

IceFog, Olyx and Wirenet. These were obtained and pruned from [2].

Table 3.1: Maximum and minimum value of mmin
intra and mmin

inter across different families

for Various OS and Packers

OS/Packer Min mmin
intra Max mmin

intra Min mmin
inter Max mmin

inter

Win/None 0 0.0779 0.1615 0.4268
Linux/None 0.0003 0.1442 0.1512 0.4608

Android/None 0 0.1093 0.1955 0.3906
OS X/None 0 0.0433 0.4029 0.4972
Win/UPX 0 0.1619 0.2173 0.4663
Win/FSG 0 0.1921 0.2063 0.4991

Win/NsPack 0.0001 0.1802 0.1842 0.5228
Win/PECompact 0 0.1757 0.1885 0.5047

Win/Polyene 0.0628 0.1778 0.2167 0.5281
Win/Telock 0.0353 0.1936 0.1899 0.7052

Win/Themida 0.0920 0.1747 0.1161 0.5399
Win/Upack 0 0.1991 0.1781 0.5367

Results: For every family, we compute the median of the Intra-Family Minimum Dis-

tances (Eqn. (3.14)) and Inter-Family Family Distances (Eqn. (3.15)). We repeat this

for all 4 datasets from Various OS and the results are shown in Fig. 3.8. For all families

in the 4 datasets, mmin
intra is larger than mmin

inter. This shows that similarity is maintained

within a family and there is also enough variation across families. In Tab. 3.1, we com-

pute the maximum and minimum values of the medians. The maximum of mmin
intra for

all families in all 4 datasets is always lesser than the minimum median value of mmin
inter.

This allows simple classifiers like thresholding to separate the families. The difference
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is highest for OS X malware (0.3596), followed by Android (0.0862) and Windows

(0.0836), and lowest for Linux (0.007).
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(c) Android
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(d) OS X

Figure 3.8: Analysis on Unpacked Malware: We compare the median values of Intra-

Family Minimum Distances (mmin
intra) and Inter-Family Minimum Distances (mmin

inter)

for unpacked malware variants from various platforms: (a) Windows, (b) Linux, (c)

Android and (d) OS X. For all case we see that mmin
intra is lesser than mmin

inter, thus show-

ing that there is similarity within families and not across families.
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3.4.5 Analysis of Packed Malware

Most of the malware observed today are packed. To evaluate our methodology on

packed malware, we pack the Windows malware dataset using 8 packers: UPX, FSG,

NsPack, PECompact, Polyene, Telock, Themida and Upack. These 8 packers can be

grouped into 4 categories [52]: Compressors (UPX, FSG, NsPack, PECompact, Up-

ack), Cryptors (Polyene), Multi-layer cryptors (Telock) and Virtualization-based pack-

ers (Themida). After packing, the packed families for every packer are treated as

new families, example Adialer.C.UPX, Adultbrowser.UPX. This allows us to measure

the similarity among the packed variants within the families of a specific packer. In

Sec. 3.5, we will see how packed variants can be differentiated both across families and

packers.

Results: Similar to the analysis of unpacked malware, we compute mmin
intra and mmin

inter

of of the packed variants for every family per packer. Fig. 3.9 shows the results for

UPX and FSG, Fig. 3.10 for NsPack and PECompact, Fig. 3.11 for Polyene and Telock,

and Fig. 3.12 for Themida and Upack. For all packers, mmin
intra for a family is always

lesser than mmin
inter for that family. In Tab. 3.1, we see that the maximum value of mmin

intra

is greater than the minimum value of mmin
inter(i) for UPX, FSG, NsPack, PECompact

and Polyene. In the case of Telock, Themida and Upack, there are some families whose

maximum value of mmin
intra is lesser than the minimum value of mmin

inter and a simple

threshold based classifier will not work for these classifiers. However, since the indi-

vidual median values of mmin
intra of all families are lesser than the median of mmin

inter, we

will use Nearest Neighbor based classifier to classify families (Sec. 3.5).
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(b) FSG

Figure 3.9: Analysis on Packed Malware: We compare the median values of Intra-

Family Minimum Distances (mmin
intra) and Inter-Family Minimum Distances (mmin

inter)

for packed malware variants from various packers: (a) UPX, (b) FSG
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Figure 3.10: Analysis on Packed Malware: We compare the median values of Intra-

Family Minimum Distances (mmin
intra) and Inter-Family Minimum Distances (mmin

inter)

for packed malware variants from various packers: (a) NsPack, (b) PECompact
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Figure 3.11: Analysis on Packed Malware: We compare the median values of Intra-

Family Minimum Distances (mmin
intra) and Inter-Family Minimum Distances (mmin

inter)

for packed malware variants from various packers: (a) Polyene, (b) Telock
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(a) Themida
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Figure 3.12: Analysis on Packed Malware: We compare the median values of Intra-

Family Minimum Distances (mmin
intra) and Inter-Family Minimum Distances (mmin

inter)

for packed malware variants from various packers: (a) Themida, (b) Upack
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3.5 Malware Classification

Here we conduct several experiments and show how malware variants can be clas-

sified according to their families. We start with small datasets of unpacked malware

from various platforms and then evaluate on packed malware datasets. Then we test on

publically available malware datasets belonging to platforms of Windows, Android and

Linux. Finally, we evaluate our method on a large malware corpus.

For all our experiments, we perform supervised classification with 10-fold cross

validation and compute the average classification cacc. We use Nearest Neighbor (NN)

classifier which assigns the family of the nearest malware to an unknown malware. For

Generalized Features, we use GIST with the following parameters: Sq = µ, (bx, by) =

(4, 4), Nf = 20 to obtain a 320 dimensional feature vector. All images are resized

to 64 × 64 before computing the features. The effect of various parameters and other

similarity features are also evaluated.

3.5.1 Classification of Small Scale Datasets

Unpacked Malware: We first evaluate our method on the unpacked malware datasets

from different platforms for which we performed the similarity analysis. We obtained

a cacc of 100% for Windows Malware Dataset, 93.75% Linux Malware Dataset, and

99% for the Android Malware Dataset. This shows the there are samples in some of

Linux Malware Dataset which are closer to other families. We did not evaluate on OS

X Malware Dataset since the number of samples was too low.

Packed Malware: Next we evaluate on the packed malware datasets that were packed

using 8 packers: UPX, FSG, NsPack, PECompact, Polyene, Telock, Themida and Up-
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ack. A popular misconception is that if two binaries belonging to different families are

packed using the same packer, then the two binaries are going have similar character-

istics. While this is true for static code analysis, this does not hold for their structural

characteristics as we see in Fig. 3.4. Images of malware variants belonging to differ-

ent families but packed with the same packer are indeed different. Hence, we treat

the variants of a family coming from a particular packer as a new family (for exam-

ple: Adialer.C.UPX, Adialer.C.PeC, Adialer.C.Upack). We repeated the classification

for experiments for the 8 different packers and obtained a cacc of 100% for all packers

except Upack, for which cacc was 99%.

Mixing Unpacked and Packed Malware: Now, we include unpacked malware fam-

ilies and the corresponding packed families in a single dataset repeat the experiments.

For 10 families with each having 10 variants and packed with 8 different packers, we

obtain a total of 900 samples divided among 90 families (10 unpacked and 80 packed

families). We obtained a cacc of 99.44% which shows that similarity is preserved in

datasets which contain both unpacked and packed malware variants. From the confu-

sion matrix (Fig. 3.13), we see that the packed variants neither get misclassified with

packed variants from other packers nor with the unpacked variants from which they

were generated from. Almost all families have an accuracy of 100% except a few

which are packed using Upack packer. Based on these results from our controlled ex-

periments, we will evaluate our technique on real world malware datasets in Sec.3.5.2.

3.5.2 Classification of Public Datasets

Malimg Dataset: The Malimg dataset contains 25 malware families with 9,342 sam-

ples, which we obtained from the authors of [72]. The dataset has a mixture of both
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packed and unpacked malware and the number of samples per family varies from 80 to

2,949. The families were labeled using a single Antivirus software. We obtained a cacc

of 97.4% on this dataset.

Malheur Dataset: The Malheur dataset consists of 3,131 malware binaries from 24

malware families, which we obtained from the authors of [86]. The malware binaries

were labeled such that a majority amongst six different Antivirus products shared sim-

ilar labels. The number of samples per family varied between 20 and 300. For this

dataset, we obtained a cacc of 98.37%.

Android MalGenome Dataset: This dataset is part of the Android Malware Genome

Project [114] comprising over 1,200 Android malware among 49 families. We chose

families that had atleast 20 samples for our analysis. This yielded 1094 samples divided

among 13 families and we obtained a cacc of 84.55%.

VxShare ELF Malware Dataset: We obtained this dataset from VxShare [18]. It com-

prised over 2,000 Linux malware which we labeled using an Antivirus software. We

chose families that had atleast 20 samples which yielded 568 samples divided among 8

families. We obtained a cacc of 83.27% on this dataset.

3.5.3 Comparison with Other Image based Similarity Features

We compare the GIST features based on texture and spatial layout with other simi-

larity features, namely, the Homogenous Texture Descriptor (HTD) and the Color Lay-

out Descriptor (CLD). The HTD is a 96-dimensional texture based image similarity de-

scriptor where an image is filtered over 48 sub-bands after which the mean and standard

deviation on each filtered image are grouped to form the feature vector. The CLD,on

the other hand, is a layout based descriptor. The image is divided into an 8x8 grid and
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the mean value of every grid block is computed to obtain an 8x8 matrix. The Discrete

Cosine Transform (2D) is computed on this matrix and the first n (17 in our case) co-

efficients form the descriptor. Apart from these, we also consider GIST features on

different number of sub-bands, namely 20 and 3 (GIST-320 and GIST-48).

Varying Training dataset size: We vary the size of the training set keeping the number

of nearest neighbors constant and repeat the experiments. As shown in Fig. 3.14, the

GIST features based on texture and layout outperforms both the texture based HTD

and the layout based CLD image similarity descriptors. As expected, the classification

accuracy decreases as the training sample size decreases.

Varying number of nearest neighbors: Here, we fix the training dataset size to

50% and vary the nearest neighbors. Once again, GIST outperforms all other features

(Fig. 3.15). The accuracy is maximum for k=1 and decreases as the number of nearest

neighbors increases.

Classification Time: Next, we report the time needed to classify a sample as we vary

the training dataset size (Fig. 3.16). We fix the number of nearest neighbors as 1. As

expected, the features with low dimensions (CLD, GIST-48) require less time and the

GIST-320 requires the most time to be classified. Also, this time linearly increases with

increase in training dataset size.

3.5.4 Comparison with Static Analysis

We compare our technique with a recently proposed static analysis based on the

distribution of bigrams. The code section of a malware is dumped and the distribution

of its bigrams is computed over a bit shifted window to obtain a 65,536 dimensional

feature vector. We repeated the experiments using this feature vector and the results are
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Table 3.2: Average computation time

Static FeatureImage Feature
Feature Length 65536 384

Classification Accuracy 0.9124 0.9830
Computation Time 6 s 60 ms

shown in Tab. 3.2. We see that the classification accuracy is almost the same. However,

the image based feature is around 100 times faster than bigrams based static analysis.

Also, in terms of storage, the image feature requires 384 features while the bigrams

based feature requires 65536, close to 170 times more.
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Figure 3.13: Confusion matrix on both Unpacked and Packed malware families. Un-

packed variants from 10 malware families ( Adialer.c, Adultbrowser, Azero.a, Casino,

Dorfdo, Jhee.v, Magiccasino, Podnhua, Rbot.gen and Yuner.a) are packed using 8 pack-

ers: UPX, FSG, NsPack, PECompact, Polyene, Telock, Themida and Upack. Each

family has 10 variants thus resulting in 900 malware (100 unpacked and 800 packed).

Unpacked are suffixed with ’.org’ (example Adialer.c.org). On doing supervised classi-

fication with 10-fold cross validation, the average classification accuracy (cacc) obtained

was 99.44%. This shows that after packing, packed variants can be treated as new fam-

ilies and they will not get misclassified with packed variants from other packers or with

the original unpacked variants from they were generated from.
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Figure 3.14: Varying Training Data Size

Figure 3.15: Varying k-Nearest Neighbors

Figure 3.16: Classification Time
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3.5.5 Comparison with Dynamic Analysis

In dynamic analysis, the behavior of the malware is traced by running the malware

executable in a sandbox environment for several minutes. Based on the sandbox system

under consideration, the type and granularity of data that is recorded might be different.

Here, we evaluate two different dynamic analysis approaches. The first and com-

monly used approach is system-call level monitoring which might be implemented us-

ing API hooking or VM introspection. The system generates a sequential report of the

monitored behavior for each binary, based on the performed operations and actions.

The report typically includes all system calls and their arguments stored in a represen-

tation specifically tailored to behavior-based analysis.

The second approach, called forensic snapshot comparison relies on a combination

of features that are based on comparing the pre-infection and post-infection system

snapshots. Some of the key features collected include AUTORUN ENTRIES, CON-

NECTION PORTS, DNS RECORDS, DROP FILES, PROCESS CHANGES, MU-

TEXES, THREAD COUNTS, and REGISTRY MODS. A whitelisting process is used

to weigh down certain commonly occurring attribute values for filenames and DNS

entries. A key difference between system-call monitoring and forensic comparison, is

that the latter approach does not capture the temporal ordering of forensic events. The

advantage is that it is simpler to implement and prioritize events that are deemed to be

most interesting. To identify deterministic and non-deterministic features, each mal-

ware is executed three different times on different virtual machines and a JSON object

is generated describing the malware behavior in each execution [113]. Depending on

the presence of the key features, a binary feature vector is generated from the JSON

object. If a key feature is present in the JSON object, then corresponding component
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in the feature vector is 1; otherwise the component is 0. The size of the feature vec-

tor depends on the diversity of the behavior of the malware corpus, but varies between

600-2000 for most datasets we have used.

Evaluation: In this section we present several experiments that compare the results of

the image similarity analysis strategy against datasets analyzed in three separate mal-

ware binary classification efforts. In each experiment, every malware binary is char-

acterized by a feature vector. We then use k-nearest neighbors (k-NN) with Euclidean

distance measure for classification. The feature vectors are computed for all binaries

in the datasets and are divided into a training set and a testing set. For every feature

vector in the testing set, the k-nearest neighbors in the training set are obtained. Then

the vector is classified to the class which is the mode of its k-nearest neighbors. For

all tests, we do a 10-fold cross validation, where under each test, a random subset of a

class is used for training and testing. For each iteration, this test randomly selects 90%

data from a class for training and 10% for testing.

We summarize our datasets in Table 3.3. In the first experiment, Section 3.5.6, we

compare image similarity analysis against a 2140 sample dataset. Out of this 2140,

we downselected 393 binaries that have consistent labels and sufficient membership.

We call this subset the Host-Rx reference dataset which was classified using a dynamic

analysis technique where the binaries are clustered based on their observed forensic

impacts on the host [113]. These clusters are also examined against antivirus labels, and

the minimum family sample size is 20. We employed both image analysis and dynamic

analysis on the Host-Rx dataset, recomputing the dynamic features and comparing the

classification performance, since clustering is mainly focused in [113]. The average

classification accuracy is 98% and 95% for dynamic and image analysis, respectively.
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Table 3.3: Malware datasets

Dataset Num BinariesNum Families
Host-Rx Reference Dataset 393 6

Host-Rx Application Dataset 2,140 -
Malhuer Reference Dataset 3,131 24

Malheur Application Dataset 33,698 -
VXHeavens Dataset 63,002 531

Anubis Dataset 685,000 1441
Offensive Computing Dataset 1.4 M 2140

Thus, we find the image similarity technique achieves comparable success but is able

to complete its feature analysis in approximately 1/4000 the time required per binary.

In the second experiment, we examine the Malhuer dataset, which was originally

classified based on features derived by dynamic system call interception, as presented

in [86]. These execution traces were converted to a Malware Instruction Set (MIST)

format, from which feature vectors were extracted to effectively characterize the bina-

ries. Since [86] already reports the results of a malware classification based on these

features, we do not repeat the dynamic analysis. In Section 3.5.7, we present a com-

parative assessment of the Malheur dataset, which includes both a reference data set

of 3131 malware binaries comprising 24 unique malware families, and an application

dataset of roughly 33 thousand binaries that range from malicious, to unknown, to

known benign. Using these datasets, we found that image similarity classification pro-

duced comparable accuracies in both datasets, ranging from 97% for the reference set,

to 86% accuracy for the application set.

Finally, we present large scale experiments using three datasets: VX Heavens dataset,

Anubis Dataset and Offensive Computing Dataset.
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Figure 3.17: Lower dimensional visualization of dynamic features on Host-Rx dataset

3.5.6 Experiment 1: Image Similarity Analysis vs Host-Rx Dynamic

Analysis Dataset

In this experiment, we compute the feature vectors for image similarity analysis

and forensic dump-based dynamic analysis. We use the Host-RX dataset [113], for this

comparison.

The following process was used to select malware instances with reliable labels.

The initial malware corpus consisted of 2,140 malware binaries. The AV labels for

these binaries were obtained from Virustotal.com [19]. Six AV vendors were used:

AVG, AntiVir, BitDefender, Ikarus, Kaspersky and Microsoft. We attribute a label to a

malware instance if at least 2 AV vendors share similar labels. Out of 2140 instances,

only 450 malware samples had consistent labels. However, some malware families had

very few samples. To conduct a meaningful (representative) analysis of the features

collected, each family should have a large enough group of exemplars from which to
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Table 3.4: Family/packer summary: Host-Rx reference dataset

Family TotalPacked Packer
Allaple 81 3 UPX

Ejik 30 11 10 PeC, 1 nsPack
Mydoom 151 124 UPX

Tibs 31 0 -
Udr 34 34 AsPack
Virut 66 3 UPX

derive consistent features. For consistency with previous classification research ( [86])

that is compared in the next section, we chose to remove families with less than 20 sam-

ples, and compiled a final collection of 393 malware binaries. These binaries (shown in

Tab. 3.4) represented 6 malware families. We also check if these malware are packed

or not using PeID and report the labels in Tab. 3.4. However, some of the malware that

PeID did not detect could also be packed.
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Figure 3.18: Feature matrix of dynamic analysis features on Host-Rx dataset

Dynamic Analysis Features: The dynamic analysis features are obtained from the
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forensic memory dumps and then converted to a vectorial form to produce a 651 di-

mensional vector for every malware instance, as shown in Fig. 3.18. The result is a

binary matrix, where 1 refers to the presence of a corresponding feature. The first 81

samples belong to Allaple and most of their features are between 75 and 219 (Fig. 3.18).

Similarly, we observe that other families like Ejik, Mydoom, Tibs, Udr and Virut have

features concentrated in different sections of the feature matrix. For better visualiza-

tion, these 651 dimensional features are projected to a lower dimensional space using

multidimensional scaling [10]. As shown in Fig. 3.17, the 6 families cluster well.
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Figure 3.19: Lower dimensional visualization of image similarity features on Host-Rx

dataset

To further validate the dynamic features, we classify the malware using a k-NN

based classification across a 10-fold cross validation. For k=3, we obtain an average

classification accuracy of 98.22%. As shown in Tab. 3.5, 387 out of 394 samples get

classified correctly. Four samples of Virut are misclassified as Allaple due to feature

similarity with that of Allaple (Fig. 3.18).
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Table 3.5: Confusion matrix for dynamic features on Host-Rx dataset

AllapleEjikMydoomTibsUdrVirut
Allaple 81 0 0 0 0 4

Ejik 0 30 1 1 0 1
Mydoom 0 0 150 0 0 0

Tibs 0 0 0 30 0 0
Udr 0 0 0 0 34 0
Virut 0 0 0 0 0 61

Image Similarity Features: Every malware binary is converted to an image and the

GIST feature is computed. Hence every malware is characterized as a 384 dimensional

vector which is based on the texture and layout of the malware image. Fig. 3.19 illus-

trates a lower dimensional visualization of the static features. Some malware families,

such as Ejik, Allaple, Udr and Tibs, are tightly clustered. Mydoom exhibits an interest-

ing pattern, where three sub-clusters emerge, and each is tightly formed. We manually

analyzed each sub-cluster of Mydoom and found that the first sub-cluster had 124 sam-

ples, all of which were packed using UPX. The second and third sub-clusters had 15

and 12 members, respectively, but the images inside these sub-clusters appeared similar

among themselves but different from the images of other sub-clusters. In contrast to the

other families, the Virut family was not tightly clustered, as most images of the Virut

family were found to be dissimilar.

Similar to dynamic analysis, we performed a k-NN based classification across a 10-

fold cross validation using the image based features. For k=3, we obtained an average

classification accuracy of 95.14%. The confusion matrix is shown in Table 3.6. Ex-

cept for Allaple and Virut families, almost all samples of the other four families were

accurately classified.
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Table 3.6: Confusion matrix for image similarity features on Host-Rx dataset

AllapleEjikMydoomTibsUdrVirut
Allaple 74 0 0 0 0 4

Ejik 0 30 0 0 0 2
Mydoom 0 0 151 0 0 2

Tibs 0 0 0 30 0 4
Udr 0 0 0 0 34 0
Virut 7 0 0 1 0 54

Size of training set: We evaluate image similarity anslysis and dynamic analysis by

varying the number of training samples. We fix k = 3. The test is repeated three times

and the average classification accuracy is obtained for each test, and then average again.

Fig. 3.20 illustrates that the dynamic features outperform the image similarity features

when the number of training samples are fewer (10%, 30%). Using 50% - 90% training

samples, the difference is only marginal.

Varying k: Next, we fix the percentage of training samples at 50% per family and

explore the impact of varying k. Similar to the previous test, the dynamic features are

better at higher values of k (Fig. 3.21, but there is only a marginal difference at lower

values of k. This is also evident from Fig. 3.17, where we see that the dynamic features

are more tightly clustered when compared to the image similarity features (Fig. 3.19).

Computation Time: The primary advantage of image similarity features is the com-

putation time. Since, our image similarity features are a direct abstraction of the raw

binaries and do not require disassembly, the time to compute these features are consid-

erably lower. We used an unoptimized Matlab implementation to compute the GIST

features ([5]) on an Intel(R) Core(TM) i7 CPU running Windows 7 operating system.

The average time to convert a malware binary to an image and compute the GIST fea-
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Figure 3.20: Comparing classification accuracies of image similarity features and dy-

namic analysis features by varying number of training samples on Host-Rx Dataset

Table 3.7: Average computation time

Dynamic FeatureImage Similarity Feature
4 mins 60 ms

tures was 60 ms. In contrast, the average time required to obtain dynamic features from

the same binary was 4 minutes. As shown in Table 3.7, the image similarity features

are about 4000 times faster.
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Figure 3.21: Comparing classification accuracies of image similarity features and dy-

namic analysis features by varying k on Host-Rx Dataset

3.5.7 Experiment 2: Image Similarity Analysis vs Malheur Dy-

namic Analysis Dataset

For further validation, we compare image similarity analysis to another dynamic

analysis technique that derives its features from system call intercepts [86]. Here, we

employ the Malheur dataset, which includes both a reference dataset and an application

dataset. We obtained both dataset and classification results from the researchers who

performed a dynamic analysis using this corpus [86]. We do not repeat their dynamic

analysis here, but rather focus on performing a image similarity analysis on this dataset,

and then compare results from both methods.

The Malheur [86] reference dataset consists of 3131 malware binaries from in-

stances of 24 malware families. The malware binaries were labeled such that a major-
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Figure 3.22: Confusion matrix obtained on Malheur Reference dataset using: (a) 10-

fold cross validation, (b) 10% training sample

ity amongst six different antivirus products shared similar labels. Further, in order to

compensate for skewed distribution of samples per family, the authors of [86] discarded

families less than 20 samples, and restricted the maximum samples per family to 300.

The exact number of samples per family and the number of malware packed are given

in Tab. 3.8. Once again we identify the packers using PeID. Although it is known that

PeID could sometimes miss some packers, we still go with these labels.

For the image similarity analysis, we repeated the experiments by converting these

malware to images, computing the image features and then classifying them using k-

NN based classification. Initially, we do a 10-fold cross validation: the confusion ma-

trix is shown in Fig. 3.22. We obtained an average classification accuracy of 97.57%.

In [86], the authors obtained similar results using dynamic analysis. From Tab. 3.8, we

see that many families are packed, and some families such as Adultbrowser, Casino,

Magiccasino and Podnhua, are all packed using the same packer, viz. UPX.

A popular misconception is that if two binaries belonging to different families are
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packed using the same packer, then the two binaries are going to appear similar. In

Fig. 3.23, we can see that the images of malware binaries belonging to different families

but packed with the same packer are indeed different.

Figure 3.23: Images of malware binaries packed with UPX belonging to (a) Adult-

browser, (b) Casino, (c) Flystudio, (d) Magiccasino

Instead of doing 10-fold cross validation, we randomly chose 10% of the samples

from each family for training and the rest for testing. This was repeated multiple times.

The average classification accuracy only dropped to 91.30% and the confusion matrix

is shown in Fig. 3.22.

Malheur Application Dataset: This dataset consists of unknown binaries obtained

over a period of seven consecutive days from AV vendor Sunbelt Software. We re-

ceived a total of 33,698 binaries. However, the authors of [86] labeled these using

Kaspersky Antivirus. Out of 33,698 binaries, 7612 were labeled as ’unknown’. The

authors mention that these are a set of benign executables.

In performing image similarity analysis on the Application Dataset, we retained

the same labels given by the authors of [86]. Fig. 3.22 shows the confusion matrix

we obtained. The row with maximum confusion corresponds to the set of ’Nothing

Found’ as mentioned in [86]. This set consisted of 7,622 binaries and were labeled

as being “benign” in [86]. However, when we scanned these binaries using Microsoft
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Security Essentials, 3,393 binaries were flagged as malicious (our experiments also

confirm this). We then repeated the experiment by not considering this mixed set. We

obtained an average classification accuracy of 86.15% (Fig. 3.22).
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Figure 3.24: Confusion matrix on (a) Malheur Application data, (b) Malheur Applica-

tion data without “benign” executables.

3.5.8 Large Scale Experiments

VX-Heavens Application Dataset: We performed image similarity analysis on a larger

corpus, consisting of 63,002 malware from 531 families (as labeled by Microsoft Se-

curity Essentials). These malware were obtained from VX-Heavens [20]. The re-

sults are shown in Fig. 3.25. The average classification accuracy we obtained was

72.8%. 33 families were classified with an accuracy of 100%. Some of these in-

clude Skintrim.N,Yuner.A, Rootkit.AFE, Autorun.K, Adrotator. A total of 105 fami-

lies fell above 90% accuracy, including Vake.H, Lolyda.AT, Seimon.D, Swizzor.gen!I,

Azero.A, Allaple.A, Alueron.d, Instantaccess, Dialplatform, Jhee.V, Startpage.DE, to

name a few. The families with high classification accuracies are those for which the
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Table 3.8: Family/packer summary: Malheur Reference dataset

Family TotalPacked Packer
Adultbrowser 262 262 UPX

Allaple 300 0 -
Bancos 48 0 -
Casino 140 140 UPX
Dorfdo 65 0 -

Ejik 168 168 PECompact
Flystudio 32 2 UPX
Ldpinch 43 0 -
Looper 209 209 Aspack

Magiccasino 174 174 UPX
Podnhua 300 300 UPX
Poison 26 25 PEncrypt

Porndialer 97 0 -
Rbot 101 0 -

Rotator 300 0 -
Sality 84 0 -

Spygames 139 0 -
Swizzor 78 0 -
Vapsup 45 0 -

Viking dll 158 0 -
Viking dz 58 58 FSG

Virut 202 0 -
Woikoiner 50 0 -
Zhelatin 41 0 -
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variants appear visually similar. However, there are also families with low classifica-

tion accuracies. 23 families had classification less than 10%. These comprised a total of

1,061 binaries (about 1.6% of the dataset). Some example families include Orsam.RTS,

Koutodoor.A, Adrotator.A, Startpage, Kerproc.RTS.

The lower accuracy in certain families arises mainly due to two reasons. The first is

due to the visual dissimilarity of images in families such as Orsam.RTS, Kerproc.RTS.

This dissimilarity could be due to a disparity of the labeling scheme (unlike our other

experiments, our labels here are derived from one AV source). The second reason is

because some families such as Startpage were classified as Starpage.DE or Startpage.E,

which presumably imply that are variants derived from the same family. This is not

completely incorrect since there is only a misclassification in the subscript and not on

the family name. However, for completeness we still present these discrepancies as

misclassification in our results, as we treat Microsoft’s labels Startpage, Startpage.DE,

and Startpage.E as three separate families in our analysis.

Anubis Dataset: We also performed image similarity analysis on 685,490 malware

binaries which we obtained from the authors of [27]. These malware were further

clustered into 1,441 behavioral clusters using the clustering technique proposed in [27]

and we were given the cluster labels. We used these labels as the ground truth and

performed k-NN based supervised classification with 10-fold cross validation to obtain

a classification accuracy of 71.8%. In other words, close to 500,000 malware inside

the behavioral clusters are visually similar. This further reinforces that image similarity

analysis is comparable with dynamic analysis even on a large malware corpus.

Offensive Computing Dataset: We finally repeated the experiments on a malware

corpus of 1.4 million malware which we obtained from Offensive Computing LLC and
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Figure 3.25: Large scale analysis with confusion matrix for 63,002 malware comprising

531 families

we obtained a classification accuracy of 78.2%. This shows that close to 1.1 million

malware were classified correctly.

3.6 Summary

In this chapter we have proposed a novel approach to analyze malware by represent-

ing malware binaries as digital images and using image similarity descriptors to com-

pactly summarize malware. With extensive experiments, we showed how this method
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can be used for malware similarity and classification. Our method scales well and is

comparable in performance with state of the art static and dynamic analysis approaches

but several times faster. This technique could be a useful complement to current mal-

ware analysis strategies. In the next chapter we will describe two systems based on this

approach for malware detection and retrieval.
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Chapter 4

Malware Detection and Retrieval using

Image Similarity

4.1 Introduction

In this chapter we build upon the image similarity approach described in the previ-

ous chapter. First we present SigMal, a fast image similarity based malware detection

framework. It can operate on both packed and unpacked samples, avoiding the re-

source intensive unpacking process. We use heuristics based on Portable Executable

(PE) structure information and extract image similarity features using a section-aware

approach. Our experiments show that SigMal produces the best result in terms of pre-

cision, compared to other existing static malware detection methods. We perform large

scale experiments on 1.2 Million recent samples, both packed and unpacked, observed

over three months and demonstrate that our method can detect 50% of the recent in-

coming samples with above 99% precision.
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In the second part of the chapter (Sec. 4.3) we present SARVAM, a web based

system for content-based Search And RetrieVAl of Malware that finds similar malware

using image similarity. SARVAM has been operational since May 2012. During this

period, we received more than 440,000 samples of which nearly 60% were possible

variants of already existing malware from our database. SARVAM lets users to upload

malware samples and obtain the possible variants. Our system has been built on a single

desktop computer and the average query time is less than 6 seconds on a database of 7

Million malware.

In the third part of this chapter (Sec. 4.4), we discuss some techniques that an ad-

versary who is familiar with our method can use to defeat our approach. The rest of the

chapter is organized as follows. In Sec. 4.2 we present SigMal, a framework for fast

image similarity based malware detection. We present SARVAM, a web based similar

malware retrieval system in Sec. 4.3. In Sec. 4.4 we discuss the adversarial ways to

defeat our approach. The summary is presented in Sec. 4.5.

4.2 SigMal: SIGnal processing based MALware triage

4.2.1 Section-aware feature extraction

A normal executable file structure consists of many sections, such as code or data.

Apart from some special types of malware executables, such as COM files, usually all

malware executable files are also structured in this way. The true malicious behavior

of malware is represented by the section containing the code, which executes the actual

malicious activities. Computing GIST on the entire image ignores this critical infor-

mation and generates malware fingerprints that are agnostic to the internal executable

66



Malware Detection and Retrieval using Image Similarity Chapter 4

structure. This approach may cause the code section similarity to be out-weighted by

dissimilarities of other sections, such as resource section, and fail to identify a variant.

Generic packers and installers usually share resources, such as icons and extraction rou-

tines. With relatively small packed executables, these resource similarities will produce

false-positive similarity detection.

SigMal takes advantage of the internal structure of an executable. The texture prop-

erties of an executable section depends on its content type. An executable can contain

different types of contents such as code, packed and unpacked data, and other resources,

which produce corresponding different types of GIST filter responses. The texture fea-

ture extracted from the entire binary captures the spatial structure of these contents. To

capture more localized information from the important regions of the binary, we extract

separate feature sets from each “important” section of the executable. We say a sec-

tion is an important section if it is likely to contain the code (packed or unpacked) of

the executable. These sections get more weight in the feature set, because the texture

features are computed on a per-section basis and represented separately in the feature

vector. To extract separate feature sets from the important sections of the binary, we

first need to identify them. One way to extract this information is to use the PE file

structure information. However, especially in case of malware binaries, the mapping

of section information from the PE structure to the binary file data is not always re-

liable. For example, code sections can be compressed, relocated, or obfuscated, and

their size can be spuriously specified as an arbitrarily large value. We use heuristics to

find boundaries of the important sections of an executable within the raw binary data,

and select two important sections using the heuristics presented in Algorithm 1. These

heuristics are loosely based on [52]. We also experimented with heuristics that priori-
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Algorithm 1 Finding important sections
Data: PE Executable

Result: A list of important sections

0.1 Map sections into raw binary file if overlapping section exits then

0.2 resize section to make it contiguous with adjacent sections

0.3 end

0.4 if .text section exists then

0.5 if is the largest section then

0.6 Result.append(.text section and the second largest section)

0.7 else

0.8 if .text section is writable then

0.9 Result.append(two largest sections)

0.10 else

0.11 Result.append(.text section and the largest section)

0.12 end

0.13 end

0.14 else

0.15 if any non-writable executable section exists then

0.16 Result.append(this section and the largest section)

0.17 else

0.18 Result.append(two largest sections)

0.19 end

0.20 end
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tizes the section selection based on entropy instead of size. However, the results were

slightly less precise.

4.2.2 Methodology

Our approach to malware detection is based on instance-based learning. That is,

the model learns from instances of known samples. To classify an unknown sample,

the model finds the most similar instance and returns its class label as the prediction.

A variation of this approach is the k-nearest-neighbor method, where class label is

deduced from the top-k most similar instances by majority vote. This method with a

larger value of k is suitable where enough learning instances are available to form a

majority vote for each class. In our case, k = 1 produced the best detection results.

Feature matching

To find the nearest-neighbor sample in the learning dataset, we use the Euclidean

distance metrics between feature vectors. For each unknown sample q, we perform

nearest-neighbor query on the malicious and the benign datasets, which returns two

distances, say dm and db, respectively. If both distances are very similar, we cannot say

for sure whether the sample q is malicious or benign. This confusion is even more pro-

nounced when dm and db themselves are large (i.e., when the similarity to the dataset

is weak). In order to model this nature of the distances, we introduce a detection con-

fidence parameter c as described in Eq. 4.1. We mark the sample q as unknown if the

value of c is less than certain threshold (i.e., the absolute difference of distances dm and

db is not large enough).
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Figure 4.1: Illustration of a Balltree

c =
|dm − db|√
d2m + d2b

(4.1)

Here, the value of detection confidence c varies from 0 to 1, such that the value of

0 implies no confidence (unknown), and the value of 1 implies the highest confidence.

In case of a faulty training set, where the same sample is present in the both malware

and benign datasets, the value of c for that sample will be undefined (dm = db = 0).

Fast nearest-neighbor

Because of the high dimensionality of the feature SigMal, brute-force nearest-

neighbor search is computationally expensive. For the efficient nearest-neighbor search

in a high-dimensional space, we use Balltree data structures [78]. A Ball, in n-dimensional

Euclidean space Rn, is defined as a region bounded by a hyper sphere. It is represented

as B = {c, r}, where c is an n-dimensional vector specifying the coordinates of the
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ball’s centroid, and r is the radius of the ball. A balltree is a binary tree where each

node is associated with a ball. Each ball is a minimal ball that contains all balls asso-

ciated with its children nodes. The data is recursively partitioned into nodes defined by

the centroid and the radius of the ball. Each point in the node lies within this region.

Fig. 4.1 shows an illustration of a binary tree, and a Balltree over four balls (1,2,3,4).

Search is carried out by finding the minimal ball that completely contains all its chil-

dren. This ball also overlaps the least with other balls in the tree. For a dataset of M

samples and dimensionality N , the query time grows approximately as O[N log(M)]

(as opposed to O[NM ] for a brute force search).

We conduct a small experiment to compare the query time and build time. We

choose 500 pseudorandom vectors of dimension 320 (same as GIST). These are sent as

queries to a larger pseudorandom feature matrix of varying sample sizes (from 100,000

to 2 Million) and same dimension. The total build time and total query time are com-

puted for the cases of brute force search and Balltree-based search (Fig. 4.2). We see

that there is a significant difference in the query time between the Balltree-based search

and brute force search as the number of samples in the feature matrix increases. In

the case of build time, the time taken to build a Balltree increases as the sample size

increases. In practical systems, however, the query time is given more priority than the

build time.

4.2.3 Dataset Preparation

Benign dataset: For the first dataset, we collected benign executables from three dif-

ferent sources, a fresh Windows XP SP2 install, the ZDnet Software Directory, and the

National Software Reference Library (NSRL) maintained by NIST. Our benign dataset
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Figure 4.2: Comparison of Brute Force Search and Balltree Search: (a) Build Time (b)

Query Time
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Figure 4.3: The toxicity ratio distribution of 1.2 million malware samples.

contains 377 executables from a fresh Windows installation, the top 3000 most popular

downloads from ZDnet Software Directory, and 49,373 software binaries from NSRL.

We consider the most downloaded software from ZDnet Software Directory as benign.

We assume that a malicious software does not appear in the most-downloaded list of a

well-reputed site.

Malicious dataset: Malware dataset creation is a difficult problem [65, 87]. We built

our second dataset from the executable samples provide to us by the authors of Anu-

bis [1]. Anubis is a dynamic malware analysis platform that receives thousands for

samples for analysis everyday. We obtained the malware samples submitted to Anubis

in 2011, along with the latest antivirus labels associated with each sample. Antivirus
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labels are provided by VirusTotal [19], which includes labels from different antivirus

vendors for each submitted sample. To each sample, we associate a toxicity ratio τ ,

where τ is the ratio of the total number of antivirus vendors that detected the sample as

malicious to the total number of antivirus vendors checked by VirusTotal. The density

distribution of the toxicity ratio of 1.2 million malware samples is shown in Fig. 4.3.

It clearly shows that the ratio is concentrated either towards a smaller value or towards

a larger value. This means, either only a few anitvirus vendors are likely to label a

sample as malicious (sometimes spurious) or almost all vendors are likely to label it as

malicious. From this set of samples, we built the malicious dataset by taking samples

with τ > 0.9, that is, the set of binary samples which were flagged as malicious by 90%

of the antivirus vendors. To maintain an effective large majority, we discarded those

samples which have results from less than 30 antivirus vendors (out of 49). This con-

sensus by a majority of antivirus vendors is a result of many human experts who have

analyzed the sample (or similar samples) and concluded it to be malicious. Moreover,

to have a stronger confidence on this consensus, we chose older samples observed in

2011 with their latest antivirus labels obtained after a year.

The samples-per-malware-family metric of this type of datasets are usually skewed

because of the abundance of some widely popular malware families, which are usually

more frequently submitted to such public analysis platform, such as Anubis. Therefore,

out of the large dataset observed over three months, we only took at most 100 samples

per malware family. The dataset after this selection contains 51,058 unique malware

samples representing 15,089 unique malware families.

Real-world dataset: To evaluate the performance of the detection methods on real-

world malware, we used the recent-feed of malware samples submitted to Anubis over

73



Malware Detection and Retrieval using Image Similarity Chapter 4

10% Noise

−0.15

−0.10

−0.05

0.00

0.05

0.10

−0.1 0.0 0.1 0.2

●●● ●●
●●●

●
●●●

●●●
●●

●
●
●

●

●
●●
●●

●

●
●

●

●
●
●

●
●
●●

●

●

●

● ●
●●
●
●
●

●

●

●

30% Noise

−0.10

−0.05

0.00

0.05

0.10

−0.10 0.00 0.05 0.10 0.15

●●

●

●

●
●

●●

●
●●

●

●

●
●

●

●

●
●

●

● ●● ●

●

●
●

●
●

● ●

●

●
●

●
●●

●

●

●
●●

●

●
●

●
● ●●

●

50% Noise

−0.05

0.00

0.05

−0.05 0.00 0.05 0.10

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●
●●●

●

●
●

●●

●

●●
●

●

●

●

●
●

Figure 4.4: Feature robustness against noise. Similar symbols represent the variants

from the same seed binary.

three months, starting from November 2012. This dataset contains 1.2 million samples.

4.2.4 Experiment 1: Evaluating SigMal on Malware and Benign

Datasets

The image similarity features of both malware and benign datasets are computed

and stored in memory in the Balltree data structure. In the n-grams-based detection,

we used a bitvector approach to encode the n-grams signature, as proposed in [53].

This transforms the Jaccard computation into more CPU-friendly logic operations, and

speeds up the computation by many orders of magnitude. Like previous n-grams based

works [81, 52], we set n=2 and n=3.

We performed a synthetic experiment to test the robustness of the feature against

small modifications (noise) introduced into the sample. We first generated four seed

binaries containing 200KB random bytes. We chose to use random bytes such that

we do not make any specific assumption on the data pattern. From each of these seed

binaries, we generated synthetic variants by introducing random noise to the original

binary. Note that the differences among the variants are even more pronounced due to

this random modifications. We computed image similarity features from these synthetic

variants and visualized using Multidimensional scaling (MDS), as shown in Fig. 4.4.
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Figure 4.5: The nearest-neighbor distance distribution of 100K samples from the 10-

fold cross-validation experiment of SigMal. For each point, X-axis represents the

nearest-neighbor distance to malware dataset, and Y-axis represents the the nearest-

neighbor distance to the benign dataset.

We can see that the features can be used to cluster the variants even when 50% of the

original bytes are randomly modified. In the case of malware binaries, such noise may

be introduced by polymorphic or metamorphic engines.

Detection: At first, we analyzed the classification strength of the SigMal features using

various machine learning classifiers: Nearest Neighbors (NN), k-Nearest Neighbors (k-

NN), Support Vector Machine (SVM, with radial basis kernel), Decision Trees, Naive

Bayes and Random Forest Classifier. We observed that the Nearest Neighbor (NN)

classifier outperforms all other machine learning classifiers. Best results were produced

when single nearest-neighbor distances were used for the detection (k=1). Increases in
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Figure 4.6: Comparison of malware detection algorithms.

the value of k slightly degraded the performance of the detection. In the next step, us-

ing Nearest Neighbor (NN) classifier, performed a comparative evaluation of SigMal

with existing detection methods. We used the standard 10-fold cross-validation process

on the same dataset for all methods. The evaluation dataset used in this experiment is

described in Sec. 4.2.3. We used Precision-Recall(PR) analysis instead of Receiver Op-

erating Characteristic (ROC) analysis for comparing performance of different detection

methods. When dealing with skewed datasets, PR analysis gives a more informative

picture of an algorithm’s performance [41].

We performed the precision-recall analysis of SigMal by varying the threshold value

t of the detection confidence parameter c (introduced in Sec. 4.2.2). For each testing

sample, SigMal returns two nearest-neighbor distances dm and db corresponding to the

malware and benign training sets, respectively. Fig. 4.5 shows the distribution of these

distances for all samples as computed from the 10-fold cross-validation experiment.
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A sample with shorter distance to the malware dataset than to the benign dataset falls

in the upper left section of the graph. The area inside the dotted line represents the

confusion area given by the inequality c < t, when the threshold value is chosen as

t = 0.1. Samples within this confusion area are marked as unknown because their

detection confidence value (c) is not large enough. A change in the threshold value t

changes the performance of the detection. Higher values of threshold t produces more

precise results by widening the confusion area, while reducing the recall rate.

Comparison with Other Features: We compared our image similarity similarity al-

gorithm with three popular malware detection methods: n-grams, control flow graphs

(CFG) and file structure based features. To compare n-grams, we used the Jaccard sim-

ilarity metric as previously explained in Sec. 2.1.3. For CFG comparison, we use the

technique followed in [61], which decomposes the CFG into a set of subgraphs and the

maximum common subgraphs between two CFGs measures the similarity (Sec. 2.1.3).

For file structure based features, seven PE based features are extracted and J48 decision

tree method to build models for the malware and benign classes.

Both n-grams based method and CFG based method provide similarity measures in-

stead of distance measures. To perform the precision-recall analysis, we vary a thresh-

old s, which, in this case, is a threshold for the minimum similarity. If a resulting value

of the similarity measure for a query sample is less than the threshold parameter s, we

consider the value to be too weak, and the sample is marked as unknown. In case of the

file-structure-based detection, we vary the output class probability of the decision tree

classifier.

The precision-recall analysis of all the detection methods is presented in Fig. 4.6.

One can see that our method has the best overall performance. We achieved very high
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precision (99.66%), while still maintaining a good recall rate of about 50%. When

only the code-section of the executable is used to extract the features, the performance

of the algorithm degrades. This shows that statistical similarity of executables only

based on the code-section is weaker. As reported in previous works [93, 95], PE-

structure-based methods produced overall good precision and recall rates. However, it

could not improve the precision above 98%. In cases where greater recall is important,

our method still has second best precision compared to the rest of the methods. n-

grams based method (when n = 3) has relatively good overall performance. However,

the computational overhead is high. Since the packed samples were not unpacked, as

expected, the control-flow-graph-based method did not produce good results. We are

aware that for better results, CFG requires a packed sample to be unpacked, which is a

hard problem in malware analysis. However, the scope of this experiment is to perform

a comparison of the detection methods when faced with unmodified samples found in

the wild.

Performance: In this section we compare the time and space efficiency of the algo-

rithms. We focus on the time required by two main steps: building the features, and

detecting the similarity. We measured the memory requirements to compare the space

efficiency. All of the feature-extraction processes were modified from multi-threaded

implementations to single-threaded implementations for this particular experiment. All

performance experiments were done in the same computational environment (Linux

3.2.0-35 machine, Intel i7 3.33GHz/12GB).

We measured the computation time required by the feature extraction of ten thou-

sands samples for each algorithm. The average time required to compute these different

types of features are presented in Tab. 4.1. Since the PE-heuristics method inspects only
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the header part of the executable, it is the fastest among all. SigMal feature extraction is

about five times faster than the CFG feature extraction, and seven times faster than the

N-gram feature extraction. We also measured the average per-sample space require-

ments for storing raw bytes of the features in the memory. Again, the PE-heuristics

method requires the least amount of space to store features, since its feature dimen-

sionality is the smallest. SigMal features require two times less memory compared to

n-grams features (2-grams), and 78 times less memory compared to CFG features.

Table 4.1: Average per sample feature extraction time in seconds and per sample mem-

ory requirements in KBs

SigMalN -gramPE-heuristicsCFG
Time 0.0265 0.1965 0.0024 0.1379
Space3.783 8.000 0.0664 297.745

To evaluate the scalability of the algorithms, we performed the 10-fold cross-validation

experiments using datasets of increasing number of samples, such that both the train-

ing samples and the testing samples are increasing in each experiment. We chose this

option to resemble a real-world scenario, where both the number of new known mal-

ware samples (training set) and the number of samples to be inspected (testing set) are

continuously increasing. For each 10-fold experiment, we computed the average of the

total time required for the detection query in each fold. The results are presented in

the Fig. 4.7. We can see that our method is easily scalable to hundreds of thousands

of samples. In a 10-fold cross-validation experiment on a dataset of 100,000 samples

(80,000 in the training set, 20,000 in the testing set) average per sample query response

was 47.95 milliseconds. The quadratic increase in the query response time of N-gram-

based and CFG-based approaches is primarily because of the O(n ∗m) computational
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Figure 4.7: Query performance comparison. X-axis is the number samples used in each

10-fold experiment. Y-axis is the average of the total query time in each fold of that

experiment

cost of the Jaccard-similarity comparisons. As expected, the decision tree-based PE-

heuristics method is the fastest among all.

4.2.5 Experiment 2: Evaluating SigMal on Real-World Data

We showed that our method works well in a limited dataset of old samples. Many of

the previous works were also evaluated using a similar dataset. However, we wanted to

evaluate their performance when applied to a large dataset of recent real-world samples.

Results from such datasets can demonstrate the true applicability of a method.

We observed that when an old malware dataset was used as the ground truth for

the detection of recent malware, as expected, the detection precision was poor. When

we took the entire malware dataset as the ground truth, the query response time of

SigMal significantly increased. This is because of the increased search-space for the
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Figure 4.8: Overview of the sliding window experiment on the real world samples

nearest-neighbor query. The scalability problems with other methods were even more

critical while using larger ground truth datasets. Because of this, we prepared a fresh

malware ground-truth everyday using the malware samples observed in the recent past.

The overview of this approach is presented in Fig. 4.8. More precisely, for the nth day’s

experiment, we build a dynamic malware dataset by taking the set of malware samples

observed in the past time window of w days (from day (n − w) to day (n − 1)). We

can infer from the toxicity density distribution at Fig. 4.3 that the confidence builds up

around τ = 0.6. Hence, for the recent samples, we used a less conservative value of

τ > 0.6 for building the dynamic training set. We use the samples submitted on day n as

the testing set for the nth day experiment. For the comparison of the SigMal detection

results, we need to label each of these incoming samples as benign or malicious using

recent antivirus labels. However, we noticed that few antivirus vendors falsely detect

a benign sample as malicious, if packed with some commonly available executable

packer, such as Winpack. To avoid including such spurious labels, we consider τ <=
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0.3 as a low confidence value for the result evaluation, and exclude it in our precision-

recall analysis.

To find the optimal sliding time window in terms of speed and accuracy for collect-

ing the ground truth, we performed a set of experiments using different values of w,

ranging from 7 days to 60 days. The precision did not improve significantly when the

time window was greater than 30 days. Therefore, we chose the time window w as 30

days for the rest of our daily experiments.

As seen in the performance experiments in Sec. 4.2.4, n-grams based and CFG

based methods have a high computational cost. For example, with the 30 days sliding-

window dataset, the CFG based method required several days to complete a single

sliding window experiment even with a parallelized implementation on a 24-core 96GB

machine. Hence, this part of the comparison experiment on the real-world dataset is

limited to few days.

Results: The precision and recall performance of the sliding window experiments are

presented in Fig. 4.9. We can see that at t = 0.33, more than 50% of the recent daily

samples can be accurately detected as malicious or benign with a precision of 99.5%

(standard error 0.000835). This can essentially reduce about 50% of the resource re-

quirements of a triage system by avoiding further, more expensive, analysis.

Fig. 4.10 presents the detection results of all methods, when applied to the sliding

window dataset (i.e., samples from the month of November 2012 as the training set,

and the samples from December 1st 2012 as the testing set). One can see that the

performance of other methods is less impressive in terms of precision. None of the

methods has a high precision result. The PE-heuristics-based method and CFG-based

method have a relatively larger recall. However, they do not produce high precision
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Figure 4.9: Precision and Recall of the SigMal detection on the real world samples

observed by Anubis in December 2012 and January 2013. The figure represents the

mean values of the daily results and the standard error.

results. In case of the CFG-based method, its computation cost is yet another critical

factor that makes it unsuitable for large-scale malware triage.

4.2.6 Experiment 3: Evaluating SigMal on current AV labels

Notice that the detection results were checked with the VirusTotal results obtained

at the time of the submission. However, there is a possibility that some malware may

not have been detected by the majority of antivirus vendors at that time. Antivirus

vendors may not eventually detect all malware. Hence, an accurate analysis of such

false-positive is difficult. Here, we are only interested in how many malware samples

SigMal could have detected that AV vendors missed at the time of submission, but later

identified them as malware. We used an old dataset observed in 2011. For this dataset,

we have old antivirus labels retrieved from VirusTotal during the time of the submis-
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Figure 4.10: Comparison of malware detection methods with live malware feed (2012-

12-01)

sion. We re-submitted the old samples to VirusTotal for rescanning and retrieved the

latest antivirus labels. We performed a simulated daily sliding-window experiment on

this dataset and re-evaluated our results with the updated antivirus labels. We found

out that SigMal could have detected, on average, 70 malware samples per day before

any antivirus vendor detected them as malicious. We also performed a similar experi-

ment with recent samples, however, waiting for a month only before retrieving the new

labels. We found 210 cases of malware in the month of December 2012 that SigMal

could have detected, while none of the antivirus vendors flagged them as malicious at

the time of the submission.

Packed Benign Samples: There is a possibility that the classifier may be biased on de-

tecting packed and unpacked executables, instead of malicious and benign. In order to

evaluate this, we performed 10-fold cross-validation experiment using packed benign

samples. We first packed the samples from the benign dataset using three popular exe-
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Figure 4.11: Precision-recall comparison with packed-benign dataset

cutable packers: UPX, WinUpack, and NSPack. We built the benign dataset from these

packed samples. We used the same malware dataset from 2011 for this experiment.

The 10-fold cross-validation result in Fig. 4.11 shows that the result is comparable to

the experiment with normal benign samples.
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4.3 SARVAM: Search And RetrieVAl of Malware

In this section we utilize signature extraction techniques from image processing

and build a system, SARVAM, for large scale malware search and retrieval. Leveraging

on past work in finding similar malware based on image similarity [72], we use these

compact features for content-based search and retrieval of malware. These features are

known to be robust, highly scalable and perform well in identifying similar images in a

web-scale dataset of natural images (110 million) [43]. They are fast to compute and are

shown to be 4,000 times faster than dynamic analysis while having similar performance

in malware classification [76] and also used in malware detection [55]. These image

similarity features are computed on a large dataset of malware (more than 7 million

samples) and stored in a database. For fast search and retrieval, we use a scalable

Balltree-based Nearest Neighbor searching technique. This reduces the average query

time to 6 seconds for a given query. We built SARVAM as a public web-based query

system, (accessible at http://sarvam.ece.ucsb.edu), where users can upload queries and

obtain similar matches for that query. Fig. 4.12 shows the web interface of SARVAM.

The system has been active since May 2012 and we have received more than 440,000

samples since then. For a large portion of the uploaded samples (approximately 60%),

we were able to find variants in our database of 7.1 Million samples.

Other similar systems that let users upload malware include Virustotal [19], Anu-

bis [1] and Malwr [9]. However, while the above systems do static and/or dynamic

analysis on a malware sample, ours is the only existing system that finds similar mal-

ware. Other related systems from the context of malware similarity and information

retrieval include VILO [62] and NEO [92]. We give an overview of SARVAM below.

The results are shown on samples uploaded between May 2012 and December 2013.
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Figure 4.12: Web Interface of SARVAM

At that time, our database had around 4 Million samples and we had received more than

212,000 samples. The average query time was 3 seconds.

4.3.1 Overview of SARVAM

A content-based search and retrieval system is one in which the content of a query

object is used to find similar objects in a larger database. Such systems are common

in the retrieval of multimedia objects such as images, audio and video. The objects

are usually represented as compact descriptors or fingerprints based on the their con-

tent [90].

SARVAM uses image similarity fingerprints to compactly describe a malware. These

effectively capture the visual (structural) similarity between malware variants and are

used for search and retrieval. There are two phases in the system design as shown in

Fig. 4.13. During the initial phase, we first obtain a large corpus of malware samples

from various sources [1, 12]. The compact fingerprints for all the samples in the corpus
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are then computed. To obtain similar malware, we use Nearest Neighbor (NN) method

based on the shortest distance between the fingerprints. But the high dimensionality of

the fingerprints makes the search slow. In order to perform Nearest Neighbor search

quickly and efficiently, we construct a Balltree (explained in Sec. 4.2.2), which signifi-

cantly reduces the search time. Simultaneously, we obtain the Antivirus (AV) labels for

all the samples from Virustotal [19], a public service that maintains a database of AV

labels. These labels act as a ground truth and are later used to describe the nature of a

sample, i.e., how malicious or benign a sample is. During the query phase, the finger-

print for the new sample is computed and matched with the existing fingerprints in the

database to retrieve the top matches. The various blocks of SARVAM are explained in

the following sections.

Initial Phase

Query Phase

Millions of 
Unlabelled 

samples

Get AV Labels 
From Virustotal

Compute 
Compact

Fingerprints

Build 
Ball Tree

for Fast NN

New 
Sample

Retrieve 
Top Matches and  

Corresponding Labels
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AV Label Database

Tree Indices

Malware

Malware

Malware

Malware

Malware

Figure 4.13: Block schematic of SARVAM
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4.3.2 SARVAM Implementation

SARVAM is implemented on a desktop computer (DELL Studio XPS 9100 Intel

Core i7-930 processor with 8MB L2 Cache, 2.80GHz and a 20 GB RAM) running

on Ubuntu 10. The web server is built using Ruby on Rails framework with MySQL

backend. Python is used for feature computation and matching. A MySQL database

stores information about all the samples such as MD5 hash, file size and number of

Antivirus (AV) labels. When a new sample is uploaded, its MD5 hash is updated in the

database. All the uploaded samples are stored on disk and saved by their MD5 hash

name. A Python script (daemon) checks the database for unprocessed keys and when

it finds one, it takes the corresponding MD5 hash and computes the image fingerprint

from the stored sample. Then, the top matches for that query are found and the database

is updated with their MD5 hashes. A Ruby on Rails script then checks the database and

displays the top matches for that sample. The average time taken for all the above steps

is approximately 3 seconds.

Database: The SARVAM database consists of approximately 4.3 million samples, most

of which are malware. We also include a small set of benign samples from clean in-

stallations of various Windows OS. All the samples are uploaded to Virustotal to get

Antivirus (AV) labels and these are stored in a MySQL database. Fig. 4.14 shows the

distribution of the AV labels for all the samples in our initial corpus. As we can see,

most samples have many AV labels associated with them, thus indicating they are most

certainly malicious in nature. The corpus and the MySQL database are periodically

updated as we get new samples. The AV labels of the samples are also periodically

checked with Virustotal and updated if there are changes in the labels. This is because

AV vendors sometimes take a while to catch up with the malware and hence, the AV
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labels may change.

Figure 4.14: Distribution of the number of AV labels in the corpus

SARVAM has a simple web interface built on Ruby on Rails as shown earlier in

Fig. 4.12. Some of the basic functionalities are explained below.

Search by upload or MD5 Hash: SARVAM currently supports two ways of search.

In the first case, users can upload executables (maximum size 10 MB) and obtain the

top matches. In the second, users can search for an MD5 hash and if the hash is found

in our database, the top matches are computed. Currently, only Win32 excutables are

supported but our method can be easily generalized to include a larger category of data.

Sample Reports: A sample query report is shown in Fig. 4.15. SARVAM supports

HTML, XML and JSON versions. While HTML reports aid in visual analysis, XML

and JSON reports can be used for script-based analysis.

4.3.3 Design Experiments

For a given query input, the output is a set of matches which are ranked according

to some criterion. In our case, the criterion is based on the distance between the query

and its top match. We set various thresholds to the distance and give confidence levels

to the matches.
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Figure 4.15: Sample HTML report for a query

Design Dataset: Two malware are said to be variants if they show similar behavior

upon execution. Although some existing works try to quantify such malware behav-

ior [25, 86], it is not very straightforward and can result in spurious matches. An alter-

native is to check if the samples have same AV labels. Many works including [25, 86]

use AV labels to build the ground truth. We evaluate the match returned for a query

based on the number of common AV labels. From our corpus of 4.3 million samples,

we select samples for which most AV vendors have some label. In Virustotal, the AV

vendor list for a particular sample usually varies between 42 and 45 and in some unique

cases goes down to 5. In order to not skew our data, we select samples for which at least

35 (approximately 75% - 80%) AV vendors have valid labels (None labels excluded).

This resulted in a pruned dataset of 1.4 million samples.
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Figure 4.16: Results of Design Experiment on 5000 samples randomly chosen from

the training set. Sorted Distance and corresponding percentage of correct match are

overlaid on the same graph. A low distance value has a high match percentage while a

high distance value has a low match percentage in most cases.

Validation: From the pruned dataset of 1.4 million samples, we randomly choose a

reduced set Rs of length NRs = 5000 samples. The remaining samples in the pruned

set are referred as the training set Ts. The samples from Rs are queries to the samples

in Ts. First, the features for all the samples are computed. For every sample of Rs, the

nearest neighbor among the samples of Ts is computed. Let qi = Rs(i), 1 ≤ i ≤ NRs

be a query, mi be its Nearest Neighbor (NN) match among the samples in Ts, di be the

NN distance and AVsh be a set of shared AV vendor keys (such as Kaspersky, McAfee).

Both the query and the match will have corresponding AV labels (such as Trojan.Spy,

Backdoor.Agent) for every shared vendor key. We are interested in finding how many

matching labels are present between a query and its match, and its relation with the

NN distance. The percentage of matching labels pmi between a query and its match is
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defined as:

pmi =

∑NAVsh
j=1 I(qi[AVsh(j)] = mi[AVsh(j)])

NAVsh

, 1 ≤ i ≤ NRs (4.2)

whereNAVsh is the total number of shared AV vendor keys, qi[AVsh(j)] andmi[AVsh(j)]

are the AV labels of the query and its NN match for the ith query and jth AV vendor

key and I(.) is the Indicator function. We are interested in seeing which range of the

NN distance d gives a high percentage of best AV label match pm. In order to visualize

this, the distances are first sorted in ascending order. The sorted distances and the cor-

responding percentage of correct match are overlaid in Fig. 4.16. We observe that the

percentage of the correct matches are highest for very low distances and they decrease

as the distance increases. Our results were the same even we chose various random

subsets of 5000 samples. Based on these results, we give qualitative tags and labels for

the quantitative results as shown in Tab. 4.2.

Qualitative vs Quantitative Tags: For every query, we have the distance from its

nearest neighbor and can compute the percentage of correct match between their labels.

In reality, only the AV labels of the nearest neighbor are known and AV labels of the

query may not be available. Hence, based on the NN distance and the number of AV

labels that are present in a match, we give qualitative tags.

Intuitively, we would expect that a low distance would give the best match. A low

distance means the match is very similar to the query and we give it a tag of Very High

Confidence. As the distance increases, we give qualitative tags: High Confidence, Low

Confidence and Very Low Confidence as shown in Tab. 4.2.

Very High Confidence Match: A Very High Confidence match usually means

that the query and the match are more or less the same. They just differ in a few

bytes. The example shown in Fig. 4.17 will help illustrate this better. The image in
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Table 4.2: Confidence of a Match

Distance dConfidence LevelPercentage of pmMedian of pmMean of pmStd. Deviation of pm
< 0.1 Very High 38.6 0.8462 0.7901 0.1782

(0.1,0.25] High 15.24 0.7895 0.7492 0.2095
(0.25 ,0.4] Low 44.46 0.1333 0.3454 0.3488
> 0.4 Very Low 1.7 0.0625 0.1184 0.1862

the left is the query image. We see an inverted image of a girl’s face which is the icon

of the executable. The image in the middle is the top match. If we take a byte by

byte difference between the query and the match, we see that most of the bytes in the

difference image is zero. Only 323 bytes out of 146304 bytes (0.22%) are non-zero.

The distance of the match from the query will usually be lesser than 0.1.

Figure 4.17: Example of a very high confidence match. The image in the left is of the

query while in the middle image is of the top match. Shown in the right is the difference

between the two. Only a few bytes in the difference image are non-zero.

High Confidence Match: When we talk about a high confidence match, most parts

of the query and the top match are the same but there is a small portion that is different.

In Fig. 4.18, we can see the image of the input query in the left. The image of the top

match in the middle appears visually similar to the query. But the difference image

shows that 11,108 out of 80,128 non-zero values (13.86%). Most variants in this cat-

egory are usually packed variants which have different decryption keys. The distance

between the query and the top match will usually be between 0.1 and 0.25.
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Figure 4.18: Example of a high confidence match. The image in the left is of the query

while in the middle image is of the top match. Shown in the right is the difference

between the two. A small portion in the difference image are non-zero.

Low Confidence Match: For low confidence matches, a major portion of the query

and the top match are different. We may not see any visual difference between the input

query and the top match but the difference image clearly shows the huge difference in

bytes (Fig. 4.19). These would usually be packed variants (UPX in this case). In the

difference image, 75,353 out of 98304 non zero (76.6%). The distance is usually greater

than 0.25 and less than 0.4. Low Confidence matches also end up in False Positives

(meaning the top match may not be a variant of the query) and hence they are tagged

as Low Confidence. In these cases, it is better to visually analyze the query and the top

match before arriving at a conclusion.

Figure 4.19: Example of a low confidence match. The image in the left is of the query

while in the middle image is of the top match. Shown in the right is the difference

between the two. A significant portion in the difference image are non-zero.

Very Low Confidence Match: For matches with Very Low confidence, in most of

the cases the results don’t really match the query. These are cases where the distance is
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greater than 0.4.

Apart from the confidence level, we also give qualitative tags to every sample in our

database based on how many Antivirus (AV) labels it has. For this, we obtain the AV

labels from Virustotal periodically. We use the count of the number of labels to give a

qualitative tag for a sample as shown in Tab. 4.3.

Table 4.3: Nature of a Match

No. of AV Labels Qualitative Label
0 Benign

[1,10] Possibly Benign
[11,25] Possibly Malicious
[26,45] Malicious
No data Unknown

4.3.4 Results on Uploaded Samples

Distribution based on Month: From May 2012 onwards till Oct 2013, we re-

ceived approximately 212,000 samples. In Fig. 4.20, we can see the distribution of the

uploaded samples based on the uploaded month. We observe that most of the samples

were submitted in Sep. 2012 and Oct. 2012 while the activity was very low in the

months of Nov. 2012, Feb. 2013, Mar. 2013 and May 2013.

Figure 4.20: Month of Upload
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Year of First Seen: In Fig. 4.21, we see the distribution of the year in which the

samples were first seen in the wild by Virustotal. Most samples that we received are

from 2011, while a few are from 2012 and 2013.

Figure 4.21: Year of First Seen for the Submitted Samples

File Size: The distribution of the file sizes of various samples are shown in Fig. 4.22.

We see that most of the files have sizes less than 500 kB.

Figure 4.22: File Sizes of Uploaded Samples (kB)

Confidence of Top Match: Of the 212,000 uploaded samples we received, not all

the samples have a good match with our corpus database. In Fig. 4.23, we see the

distribution of the confidence levels of the top match. Close to 37% fall under Very

High Confidence, 8% under High Confidence, 49.5% under Low confidence and 5.5%

under Very Low Confidence. This means that nearly 45% of the uploaded samples
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(close to 95,400) are possible variants of samples already existing in our database.

Figure 4.23: Confidence of the Top Match

Figure 4.24: For every uploaded sample, the distances of the top match are sorted

(marked in blue) and the corresponding percentage of correct match (marked in red) is

overlaid.

AV Label Match vs Confidence Level: Here, we further validate our system by

comparing the output of our algorithm with the AV labels. For this, we obtained the

AV labels for all the uploaded samples and their top match. However, Virustotal has

a bandwidth limitation on the total number of samples that can be uploaded. Due to

this, we were only able to obtain valid AV labels for a subset of the uploaded samples.

We also exclude the uploaded samples that were already present in our database. The

percentage of correct match is then computed. Fig. 4.24 shows the sorted histogram
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of the distance between the uploaded samples and their top match. Similar to the re-

sults obtained in our earlier design experiment (Fig. 4.16), we see that the percentage

of correct match is high for a low distance. In Fig. 4.25, we plot this distance versus

the percentage of correct match and see that the trend is similar. However, there are

a few cases which have a low percentage of correct match for a low distance. This is

because we do a one-one comparison of AV labels and malware variants may sometime

have different AV labels. For example, the variants in Fig. 4.17, have AV labels Tro-

jan.Win32.Refroso.depy and Trojan.Win32.Refroso.deqg as labeled by Kaspersky AV

vendor. Although, these labels differ only in a character, we do not consider this in

our current analysis and these could result in a low percentage of correct match despite

having a low distance.

Figure 4.25: Distance vs Percentage of Correct Match

Confidence vs Year of First Seen: For all the uploaded samples, we obtain the

year that it was first seen in the wild from Virustotal and compare it with the Nearest

Neighbor (NN) distance d. In Fig. 4.26, we plot the year of first seen and the NN

distance. We observe that most samples were first seen in the wild between the years

2010 and 2013. Many samples from 2012 and 2013 have a low NN distance and this

shows that our system has good matches even with most recent malware. If we consider
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only the very high confidence and high confidence matches and analyze their year of

first seen( Fig. 4.27), we observe that a large number of samples are from 2011 and a

reasonable amount are from 2012 and 2013.
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Figure 4.26: Year of First Seen vs Distance

Figure 4.27: Year of First Seen for Very High Confidence and High Confidence

Matches

Packed Samples: We also analyze the performance of SARVAM on packed mal-

ware samples. One problem that arises here is that identifying whether an executable is

packed or not is not easy. In this analysis, we use the packer identifiers f-prot and peid

that are available from the Virustotal reports. Only 39,260 samples had valid f-prot

packer signatures and 49,333 samples had valid peid signatures. The actual number

of packed samples is usually more but we consider only these samples in our anal-

100



Malware Detection and Retrieval using Image Similarity Chapter 4

ysis. Of these, 16,055 samples were common between the two and there were 970

unique f-prot signatures and 275 unique peid signatures in the two sets. This shows

the variation in the signatures of these two packer identifiers. For both cases, the most

common signature was UPX. Others included Aspack, Armadillo, Bobsoft Mini Delphi

and Pecompact. The signature BobSoft Mini Delphi need not always correspond to a

packed sample and it could just mean that the sample was compiled using Delphi com-

piler. For both sets of samples, we obtain their NN distance and plot the sorted distance

in Fig. 4.28. We observe that nearly half the samples in both sets fall in the Very High

Confidence and High Confidence range.
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Figure 4.28: Sorted NN Distance of Packed Samples

Next, we consider only packed samples that fall in the Very high Confidence and

High Confidence range (NN distance d <= 0.25). This reduced the samples identified

by f-prot to 14,936 and peid to 24,098. Tab. 4.4 shows the top 5 packer signatures

of f-prot, with the total number of unique signatures being 364. UPX was the most

common signature while others included Allaple, PECompact and Aspack. In the case

of peid, the number of unique signatures was 186. The top 5 are shown in Tab. 4.5.

Again, UPX was the most common followed by Armadillo, Bobsoft Mini Delphi and

PECompact. This analysis further shows that our approach works on different types of
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packed samples as well.

Table 4.4: Top Packer Signatures of f-prot

Packer No. of samples
UPX 7401

Allaple 920
PecBundle, PECompact 916

Aspack 896
UPX LZMA 724

Table 4.5: Top Packer Signatures of peid

Packer No. of samples
UPX 2.90 [LZMA] 9285
Armadillo v.1.71 4855

BobSoft Mini Delphi 1537
Armadillo v1.xx - v2.xx 1456

PECompact 2.xx 1402

4.4 Adversarial Modeling

In this section we discuss the limitations of our approach. First, the characteriza-

tion of malware using image based features does not give much information about the

actual behavior of the malware. Second, since our approach relies on instance-based

learning, its main limitation is that it can only detect/classify malware similar to what

has already been observed. Thus, zero day attacks of new unseen malware cannot be

prevented. However, this is a generic problem with any similarity based malware anal-

ysis framwork. Below, we provide some ways in which an adversary can attack our

approach.
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4.4.1 Adding blocks of redundant bytes

As a targeted attack to our method, an adversary could insert large unused sections

of random data into an executable. This may cause our heuristics to select wrong sec-

tions as important sections. Since it is likely that no previous sample matches with the

random data, such samples will be considered unknown. In a more crafted attack, an

adversary could embed code section of a benign executable as its largest section. This

will generate the exact same feature vectors corresponding to those sections. However,

the malicious code still needs to be embedded in the file to make the crafted executable

malicious. Because of this, the part of the feature vector generated from the entire file

will still be dissimilar from the feature vector of the actual benign executable. Hence,

the crafted attack will not match with the benign executable.

An attacker may also insert redundant codes between sections or interchange the

order of the sections which may result in a completely different fingerprint. This could

be potentially addressed by analyzing sections of the code rather than the entire code,

and computing localized descriptors.

We conduct a small experiment to see how much redundant information needs to be

added to destroy the similarity. The experimental setup is as follows. L random vectors

of length 2M in the range [0, 255] (8 bits) are generated. This is similar to files on disk

whose bytes are random. We refer to these as “random noise patterns” and are indexed

as {(Fi)}Li=1. From these, N files are generated as follows. K random “bytes” are

inserted in α random positions for every Fi. Hence, N ”variants” are generated from

every Fi. We loosely model this setup as L classes with each class containing N + 1

samples (original pattern Fi +N variants). The parameters we choose are L = 10,M =

12,N = 25, K = [1, 2, 3, 4, 5] and α = [2, 5, 10, 20, 50, 100, 200, 500]. Fig. 4.29 shows
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Figure 4.29: Visualization of random noise patterns ({(Fi)}10i=1)

the visualization of random noise patterns.

On this data, we compute GIST features and perform 10-fold cross-validation using

Nearest Neighbors Classifier. The results are shown in Fig. 4.30. The accuracy is high

when the number of alterations α = 50. When K = 1, α = 50 the accuracy is almost

100% and it drops as K increases. The accuracy is around 70% at K = 5, α = 250

and this corresponds to adding approximately 6% of redundant data (since length of Fi

= 4096). K = 1, α = 500 and K = 5, α = 100 correspond to adding around 12% of

redundant data and the accuracies are around 60% and 40% respectively. This shows

that adding fewer bytes in more positions preserves the similarity. At α = 500 and

K = 2, 3, 4, 5 (adding redundant data from 24% - 61%), the accuracy severely drops

down. An adversary will have to insert this much of redundant data to destroy the

similarity.

4.4.2 Strong Encryption

If some strong cryptographic methods, such as AES, are used by packers, it will be

hard to find statistical similarity among such encrypted samples. If the block chaining

is enabled, this problem becomes almost impossible. Our approach is unable to identify

similarity in such cases. A possible counter measure to this would be to unpack/decrypt
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Figure 4.30: Evaluation of GIST features on random noise patterns

the malware in a virutal environment and then compute the image based feature. How-

ever, current packers use simple encryption and do not go for strong encryption. The

use of strong encryption itself can be considered suspicious, which malware writers

would want to avoid.

4.4.3 Patching

Malware can infect a benign executable by patching and embedding malicious code

into it. If the embedded content is very small relative to the actual benign file-size, then

the infected file is likely to be considered similar to the benign file. When we manu-

ally analyzed the false negatives in malware detection, we found that the majority of

them were a case of patched system binary. For example, we found instances of TDSS

rootkit that embeds its code into a small existing .rsrc section of Windows driver files,

such as netbt.sys. We also found false positive cases of benign input files, which were
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not present in the benign dataset, but its infected version was present in the malware

dataset. These problems are also generic to file-similarity based detection techniques.

One countermeasure can be flagging the input file as suspicious, if it is very similar to

a system file, but not exactly the same file. However, if the training dataset contains

a version of the infected file, or the benign file, detection is more likely to provide

true-positive results.

4.5 Summary

In this chapter we described two systems that uses image similarity descriptors on

malware binaries: SigMal for malware detection and SARVAM for malware retrieval.

SigMal can operate on both packed and unpacked samples, avoiding the resource inten-

sive unpacking process. Our experiments showed that SigMal outperforms all existing

static malware detection methods in terms of precision. Large-scale experiments on

1.2 Million recent samples, both packed and unpacked, observed over three months

demonstrated that our method can detect 50% of the recent incoming samples with

above 99% precision. SARVAM, a system for content-based Search And RetrieVAl

of Malware finds similar malware based on image similarity. On a database of more

than 4 million malware, the average query time for SARVAM to find a match is 3 sec-

onds. Our experiments showed that out of 212,000 samples that were uploaded, nearly

60% of the samples were variants of existing samples. Both our systems showed that

using image similarity descriptors on malware is feasible for practical and large scale

malware analysis.
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Chapter 5

Sparsity based Malware Analysis

5.1 Introduction

In Chapter 3 and Chapter 4, we explored the possibility of representing malware

binaries as digital images and using image similarity descriptors to analyze malware.

In this chapter we generalize the 2D image based malware analysis approach to a 1D

signal based approach by expanding malware as a sparse linear combination of other

malware samples. We explore Sparse Representation based Classification (SRC) meth-

ods to classify malware variants into families and present SATTVA: SpArsiTy inspired

classificaTion of malware VAriants. SRC methods have been previously applied to

problems where samples belonging to a class have small variations in them, for ex-

ample, face recognition [111], iris recognition [82], background subtraction [37], and

tracking [70].

Exploiting the fact that most malware variants have small differences in their struc-

ture, we model a new/unknown malware sample as a sparse linear combination of other
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malware in the training set. The class with the least residual error is assigned to the

unknown malware. Fig. 5.1 shows one such example of two malware variants of the

recently exposed Regin malware [16], which has been described as one of the most so-

phisticated malware discovered in recent times, and termed on par with Stuxnet, Flame

and other advanced malware. In Fig. 5.1, variants are represented as byte plots where

every byte is represented as a number. Reports further observe that variants of Regin

malware were used for diverse tasks such as cyber-espionage and secret surveillance

against countries, companies and individuals. Although this example shows a case of

simple mutation, this phenomenon is also true for variants created using executable

packers, which are more common nowadays.

The rest of the chapter is organized as follows. Sec. 5.2 details the formulation of

the sparse representation based classification framework. Sec. 5.3 details the experi-

ments on various datasets. The limitations and summary are discussed in Sec. 5.4.

5.2 Malware Classification based on Sparse Represen-

tations

5.2.1 Approach

Given a dataset of N labeled malware belonging to L different malware families

with P malware per family, the task is to identify the family of an unknown malware

u. Similar to [72], we represent a malware as a numerical vector x of range [0, 255],

where every entry of x is a byte value of the malware. However unlike [72], we do not

convert this vector to an image matrix. Since each malware sample can have a different
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(b) Variant 2

Figure 5.1: Byte plots of the recently exposed Regin malware variants [16]. Variant (b)

is created by making small change to Variant (a). They differ only in 7 bytes out of

13,284 bytes (0.0527 %).

code-length, we normalize all vectors to a maximum length (M ) by zero-padding.

The entire dataset can now be represented as an M × N matrix A, where every

column represents a malware. Further, for every family k (k = 1, 2, ..., L), we define

an M × P matrix Ak = [xk1,xk2, ...xkP ] where xk{.} represents a malware sample

belonging to family k. Now, A can be expressed as a concatenation of block-matrices

Ak:

A = [A1A2..AL] ∈ RM×N (5.1)

Let u ∈ RM be an unknown malware whose family is to be determined, with
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the assumption that u belongs to one of the families in the dataset. Since variants in a

family have small differences, they will all be in the same linear span 1. Then, following

[111], we represent u as a sparse linear combination of the training samples as:

u =
L∑
i=1

P∑
j=1

αijxij = Aα (5.2)

where α = [α1,1, ..., αL,P ]
T represents the N × 1 sparse coefficient vector (N = LP ).

α will have non-zero values only for samples that are from the same family as u. The

sparsest solution to (5.2) can be obtained using Basis Pursuit [82] by solving the fol-

lowing l1-norm minimization problem:

α̂ = argmin
α′∈RN

‖α′‖1 subject to u = Aα′ (5.3)

where ‖.‖1 is the l1 norm.
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Figure 5.2: Overall Approach: Malware samples are represented as numerical vectors,

projected to lower dimensions and then modeled using the Sparse Representation based

Classification (SRC) framework

Estimating the family of u is done by computing residuals for every family in the

training set and then selecting the family that has minimum residue. Let Πk be the
1Linear span means that any linear combination of a vector will be in the same subspace
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(a) Malimg Dataset
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(b) Malheur Dataset

Figure 5.3: Experimental Results on (a) Malimg Dataset and (b) Malheur Dataset with

features using Random Projections (RP) and GIST, and classification algorithm using

Sparse Representation based Classification (SRC) and Nearest Neighbor (NN).

characteristic function that selects the coefficients from α̂ that are only associated with

family k. Then the residual function rk can be expressed as:

rk(u) = ‖u−AΠk(α̂)‖2 (5.4)

c = argmin
k

rk(u) (5.5)

where c is the index of the estimated family associated with u.
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5.2.2 Random Projections

When a malware binary is represented as a numerical vector by considering every

byte, the dimensions of that vector can be very high. For example, a 1 MB malware has

around 1 Million bytes and this could make the calculations computationally expensive.

Hence, we project the vectors to lower dimensions using Random Projections (RP).

This also removes dependency on any particular feature extraction method. Previous

works have demonstrated that SRC is effective in lower-dimensional random projec-

tions as well, see [42, 111, 82]. Let R ∈ RD×M be the matrix that projects u from

signal space M to w of lower dimensional space D (D << M ):

w = Ru = RAα (5.6)

The entries of R are drawn from a zero mean normal distribution. The above system of

equations is underdetermined and sparse solutions can be obtained by reduced l1-norm

minimization:

α̂ = argmin
α′∈RN

‖α′‖1 subject to w = RAα′ (5.7)

The overall approach is shown in Fig.5.2.

5.2.3 Modeling Variants

When a new variant is created from existing an malware by making small changes,

both variants share some common parts. The new variant is modelled as:

u′ = u + eu = Aα + eu (5.8)
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where u′ is the corrupted vector representing the new variant and eu is the error vector.

This can be reduced to matrix form using block matrices:

u′ = [A, IM ]

 α

eu

 = Bu su (5.9)

where Bu = [A, IM ] is a M × (N +M) matrix and IM is an M ×M Identity matrix

and su = [α, eu]
T . This ensures that the system of equations (5.9) is always under-

determined and sparse solutions can be obtained. In lower dimensions, this reduces

to:

α̂ = argmin
α′∈RN

‖α′‖1 subject to w′ = Bw sw

rk(w
′) = ‖w′ −Bw swΠk(α̂)‖2

c = argmin
k

rk(w
′) (5.10)

where w′ = w + ew, Bw = [RAα, ID] is a D × (N + D) matrix, ID is a D × D

Identity matrix and sw = [α, ew]
T We will use (5.10) to identify the malware family of

an unknown test sample.

5.3 Experiments

We test our technique on two public malware datasets: Malimg Dataset [72] and

Malheur Dataset [86]. On both datasets, we select equal number of samples to reduce

any bias towards a particular family [65]. The data is converted to numerical form

and represented as a matrix as defined in (5.1) and then projected to lower dimensions

using Random Projections (RP). For comparison, we use GIST features [77], which
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have been previously applied for malware classification [72]. We use the SRC frame-

work (5.10) to identify the malware family of a test sample and compare with Nearest

Neighbors (NN) classification that was previously used in [72]. We vary the dimen-

sions from {48, 96, 192, 256, 384, 512}, which are consistent for both RP and GIST. In

our experiments, we chose 80% of a dataset for training and 20% for testing.

5.3.1 Classification

Results on Malimg Dataset: The Malimg dataset contains 25 malware families with

9,342 samples, which we obtained from the authors of [72]. The dataset has a mixture

of both packed and unpacked malware and the number of samples per family varies

from 80 to 2,949. In our experiments, we select 80 samples per family (the minimum

number present in all families). The size of the largest malware (M ) was 840,960 bytes

and all samples were zero padded to this size. The results are shown in Fig. 5.3a. First,

we see that the classification accuracy increases as the dimensionality increased from

48 to 512. Beyond 512, there was no significant change in accuracy for both GIST and

RP. The best accuracy of 92.83% was obtained for RP with SRC as the classifier. At the

same dimension, the lowest accuracy was for RP with NN as the classifier (84.45%).

The accuracies for GIST for both classifiers were almost the same, in the middle range

(88-89%).

Results on Malheur Dataset: The Malheur dataset consists of 3,131 malware binaries

from 24 malware families, which we obtained from the authors of [86]. The mal-

ware binaries were labeled such that a majority amongst six different antivirus products

shared similar labels. The number of samples per family varied between 20 and 300.

We chose 20 samples from all families in our experiments. For this dataset, the value
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of M was 3,364,864. The classification results are shown in Fig. 5.3b. Here too, the

best accuracy of 98.55% was obtained for RP at 512 dimensions with SRC as classifier.

However, unlike the Malimg dataset, RP with NN as classifier also had a high accuracy

of 96.06%. This shows that the random projections of the variants in Malheur dataset

are closely packed in lower dimensions. On the other hand, the accuracies for GIST

features were around 93% for both classifiers.

5.3.2 Comparison with Other Features

We have already looked into related works using statistical features in Chapter 2

(Sec. 2.1.3). Common statistical features are based on n-grams [58, 52, 53], n-perms [54,

62], hashes [60, 107] and image similarity [72, 76, 75, 55]. In contrast to these meth-

ods, we compute random projections on malware represented as digital signals. This

results in compact features for malware classification. Although random projections

have been previously used in [50, 40], these methods require dynamic analysis which

is time consuming.

We compare our proposed approach with other relevant malware similarity features:

ssdeep [60], GIST [72] and n-grams [58]. For n-grams, we chose n = 2 and computed

a 216 dimensional feature vector. The results are shown in Tab. 5.1. For both datasets,

our proposed approach outperformed ssdeep, GIST and n-grams based features.

Table 5.1: Comparison with Other Features
Dataset ssdeepGISTn-grams RP

Malimg Dataset 67.63 89.08 91.75 92.83
Malheur Dataset 81.6 94.21 94.26 98.55
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5.3.3 Rejecting Outliers

In order to reject test samples that do not belong to any family in a dataset, the

Sparsity Coefficient Index (SCI) of a coefficient vector α ∈ RN is defined as:

SCI(α) =

L.max‖Πi(α)‖1
‖α‖1

− 1

L− 1
(5.11)

The value of SCI varies between 0 and 1, 1 being the test sample can be represented as

a linear combination of one family and 0 being the test sample is spread across all the

families. It is common to have a threshold τ ∈ (0, 1) and reject outliers that are below

τ .

For the Malimg Dataset, we vary τ for a fixed dimension (D = 512) as shown

in Fig. 5.4a. At τ = 0.1, the accuracy is 92.5% with no samples rejected. Accuracy

of 100% is achieved when τ = 0.5, at which 25% of the samples are rejected from

the dataset. Similarly, for the Malheur dataset, we computed the accuracies and the

percentage of samples dropped while varying τ . In Fig. 5.4b, we see that accuracy of

100% is reached when τ = 0.6, but with only 5% of samples rejected.

5.3.4 Approximate l1-norm

So far, we have used Basis Pursuit (BP) [38] for l1-norm minimization and to re-

cover the sparse coefficients. However, BP is computationally expensive and is not

suitable for large scale data. Here, we compare the computation time and accuracy ob-

tained using BP with an approximate l1-norm minimization method, Orthogonal Match-

ing Pursuit (OMP) [104]. OMP is a greedy algorithm that works by iteratively selecting

a subset of columns from the training data matrix that are almost orthogonal. We repeat

the experiments on both datasets using OMP and report the time taken to identify the
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families of all samples in the test set. The results are shown in Tab. 5.2. We see that

for both datasets, the computation time decreased by a factor of 18 (Malimg) and 30

(Malheur) respectively, at the cost of slight decrease in classification accuracy. This

makes OMP suitable for large scale malware classification.

Table 5.2: Basis Pursuit (BP) vs Orthogonal Matching Pursuit (OMP)
Dataset BP AccuracyOMP AccuracyBP Comp. Time (s)OMP Comp. Time (s)

Malimg Dataset 92.83 89.25 420 24
Malheur Dataset 98.55 97.39 180 6

5.3.5 Analysis on Large Scale Data

We evaluated our technique on two diverse large scale datasets. On both datasets,

we randomly selected 20% of the data for testing and used Orthogonal Matching Pursuit

to find the sparse coefficients. The results on both datasets show that our technique is

applicable in large scale scenarios.

Results on Offensive Computing Dataset: We downloaded more than 1.4 Million

malware from the Open Malware sharing platform [12] (formerly known as Offensive

Computing). The samples were fed to different Antivirus software for labeling and

the software that had minimum number of unknown labels was selected. This resulted

in 2,124 malware families and we randomly selected 20 samples from each family to

obtain a dataset of 42,480 samples (20 was the minimum number of samples present

in some families). The size of the largest malware was 9.3 MB. We repeated the ex-

periments using OMP and obtained an average classification accuracy of 66.34%. The

overall testing time was approximately 4 hours on a standard desktop machine. This

time can further be reduced by using parallelization techniques. Out of 2,124 fami-
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lies, 927 families had an accuracy of 100%. The average SCI value for these families

was 0.97, with most values being 1. This shows that SCI can be used as a confidence

measure during testing. At an SCI threshold of 0.6, 24.78% of the test samples were

rejected and the classification accuracy was 77.08%.

Results on Anubis Dataset: Next, we evaluated our technique on another large scale

dataset that we obtained from the authors of Anubis [26]. The Anubis dataset had

36,784 samples divided into 209 clusters, with 176 samples per cluster. The clusters

were labeled according to the behavioral pattern of a malware upon dynamic analy-

sis [26]. This dataset is different from the Offensive Computing dataset in two aspects.

First, the number of samples in a family/cluster is higher. Second, the labeling of clus-

ters is based on dynamic analysis. This means there is a possibility that two samples

that have very different structure but similar behavior can be assigned the same cluster,

and our technique will not work on such samples. For this dataset, the maximum size

of the malware was 8.1 MB. On repeating the experiment, we obtained an average clas-

sification accuracy of 57.36%. This is much lower than the accuracy obtained for the

Offensive Computing dataset, which had more number of classes (by a factor of 10).

This perhaps shows that our method is better applicable to malware datasets that have

finer labels. The overall testing time was approximately 3 hours on a standard desktop.

For this dataset, 27 clusters had an accuracy of 100% and 50 clusters had an accuracy

of more than 90%. On setting the SCI threshold to 0.6, 34.64% of the test samples were

rejected and we obtained an accuracy of 77.12%.
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5.4 Summary

Our approach works well mainly on malware variants that have similar structure.

However, we observe that most variants are those that are structurally similar (for exam-

ple, Regin variants in Fig. 5.1). This is also evident from our large scale experiments.

In this chapter we proposed a novel method to identify families of malware variants

using a combination of Sparse Representation based Classification (SRC) and Random

Projections (RP). Experiments on two standard malware datasets, as well as large scale

data showed promising results. We believe that our approach, that is based on repre-

senting malware binaries as numerical signals, will open the scope of malware analysis

to broader fields.
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(a) Malimg Dataset
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(b) Malheur Dataset

Figure 5.4: Rejecting outliers based on Sparsity Coefficient Index (SCI). Higher the

value of SCI, higher the classification accuracy. Both datasets achieve 100% accuracies

at an SCI value of 0.6. For the Mallheur dataset, only 5% of samples are rejected to

achieve this accuracy. However, for the Malimg dataset, nearly 32% of samples are

rejected for the same.
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Chapter 6

Extensions to Data Type Classification

6.1 Introduction

In this chapter we extend our previous approaches to the problem of data type clas-

sification: to determine the type of data from a block of data. This is an important

problem in data forensics tasks such as data recovery from corrupted file systems, un-

derstanding process memory dumps, reverse engineering and others. We adopt a two

stage meta learning framework to identify data types (Sec. 6.3). In the first stage, sta-

tistical and content based features are computed. Using a classifier, class probability

vectors are computed for every feature. In the second stage, the class probability fea-

tures are stacked to form a new feature vector which is fed to another classifier for

the final classification. These types of stacking and blending of feature predictions and

models are used in practical machine learning problems and competitions [59, 103, 13].

Further, we use this approach to identify families of malware variants after they are

compressed. In this chapter we present MAYAM: Meta leArning based data tYpe And
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compressed Malware classification. There has been an increase in attacks by using

compressed malware [14, 8, 7, 15]. However, even after malware variants are com-

pressed, there are similarities in their structure. We demonstrate the efficacy of our

approach with extensive experiments.

The rest of the chapter is organized as follows. The related works in data type

classification and malware classification are briefed in Sec. 6.2. Sec. 6.3 details the meta

learning based classification framework. Sec. 6.5 details the experiments on various

datasets. The summary is presented in Sec. 6.6.

6.2 Related Work on Data Type Classification

File type classification is the determination of the type of a file by examining the

content of blocks of data in the absence of file type specific information such as headers

and magic numbers. Examples of file types include doc, ppt, pdf, jpeg and others. File

fragment classification or data type classification is the determination of the ”data type”

of a particular block of data in the absence of any information such as headers and magic

numbers. Examples of data types include txt, bmp,csv, gzip, lzma and others. A file

can have many blocks of data that are of different data types. Sometimes the file type

and data type can be the same in the case of files such as bmp and csv. There are several

previous works on file and data type classification [69, 97, 35, 45, 23, 47, 88, 39, 22,

48, 46, 28, 89, 83]. We will briefly review some of the relevant works on content based

file type and data type classification below.

In one of the first works in file type classification, Mcdaniel and Heydari [69] used

byte frequency analysis, byte frequency cross correlation to determine the file type.
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They also analyzed the header and trailer of a file and showed that fingerprints based

on the header and trailer had better performance than the fingerprints based on byte

frequency and their correlation. However, the header and trailer may not be always

available and an analysis that does not take header and trailer into account is more reli-

able. Stolofo et. al [97] developed fingerprints for different file types called Fileprints

using 1-grams. S. Garfinkel et. al [47] used features based on 1-grams and 2-grams to

classify file types. From a corpus of more than 1 Million files, they selected random

subsets for their experiments. On 24 different types, they were able to obtain an aver-

age classification accuracy of 49%. In [39], Conti et. al used statistical quantities such

as mean, entropy, chi squared distance and Hamming weight to obtain a 4 dimensional

vector. Using a k-Nearest Neighbor classifier, they classified 14 file fragments and ob-

tained an average accuracy of 64.2%. N. Beebe et. al [28] proposed a technique called

Scaeandan which used concatenated n-grams (1-grams and 2-grams) and use SVM for

classifying file types. A total of 40+ file types were used and they obtained an average

classification accuracy of 73.4%. A careful analysis of their results showed that cer-

tain file fragment types obtained very high accuracies and were comparable with other

previously proposed methods. These types include csv, ps, gif, sql, html, css and plain

text. However, there were also a number of fragment types which obtained very low

accuracies such as ppt, xlsx, docx, pps, pptx, wmv, and pdf.

We had previously reviewed past works in malware classification in Chapter 2(Sec. 2.2).

The common statistical and content based features are based on n-grams [58, 53],

hashes [60, 107], image similarity [72] or signal similarity [74]. There are no previ-

ous works in classification of compressed malware.
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Figure 6.1: Block Schematic of Stacked Generalization

6.3 Classification based on Meta Learning

Meta Learning is a two staged classification framework. In the first stage, a dataset

is divided into disjoint sets or folds. At every iteration, one fold is treated as the testing

set and other folds are treated as the training set. Features are extracted and passed

through one or many classifiers. These are called base (level-0) features and classifiers.

The output of the first stage is prediction labels or probabilities. In the second stage,

a meta (level-1) learner uses the output from the first stage to boost the prediction

accuracy. For a good survey on meta learning, readers are referred to [29].

Stacked Generalization [110, 109, 31, 30] is a meta learning based technique that

stacks the prediction outputs from the base level to form a new feature vector, which is

then fed to a meta learner. This approach has shown promising results in many diverse

machine learning applications [99, 98, 100, 94, 71, 112, 13]. A block schematic of
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stacked generalization is shown in Fig. 6.1.

The steps involved in our approach are:

1. Divide the data into k folds, with k − 1 folds being the training and k-th fold

being the testing set.

2. Compute the features Fi on all the samples.

3. Using a base classifier, obtain the prediction probabilities for the features Fi of

the testing set.

4. Repeat the above steps by varying the testing set and training set for different

fold

5. Stack the prediction probabilites from different Fi to form the meta feature

6. Compute the final prediction by using meta features on meta classifier.

6.4 Features

We extract two types of features- statistical features and content based features.

Statistical features are known to work well on classifying data types while content

based features shave shown promising results on classifying malware families.

Statistical Features

2-grams features: Let bg denote the bigram count of every consecutive byte pair.

The total number of possible combinations is 216 = 65, 436. Since the dimensionality

is high, we project bg to lower dimensions D using Random Projections. Let R be a
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pseudo-random matrix of dimensions Dx65, 436. We define F1 = R.bg, where F2 is

now a D-dimensional feature vector. In our experiments, we choose D = 512. Beyond

this value, there was no significant difference in performance. Both these statistical

features are normalized.

1-grams features: Let F2 denote the histogram count or 1-grams of every byte in a

binary or file fragment. The dimensionality of F2 is 256.

Content based Features

For content based features, we use GIST descriptors [77], which have been previ-

ously applied for malware classification [72]. The binary content is first represented

as a gray-scale image and then re-sized to a square image. This image is then passed

through various sub-bands of different scale and orientation from which filtered images

are obtained. The filtered images are then divided into sub-blocks and the average value

of each sub-block is computed. The final descriptor is a concatenation of all the average

values. Let F3 denote the GIST feature vector whose dimension is 320.

6.5 Experiments

We use the stacking framework (Sec. 6.3) to classify data types and compressed

malware. In the first stage, we divide the data into 10-folds and use Random Forests [32]

as the base level classifier. In the second stage, we stack the prediction probabilities

from the first stage to form a new feature vector. This is then fed to a Linear Support

Vector Machine (SVM) [34] with stochastic gradient descent optimization for the final

classification. All experiments are performed using 10-fold cross validation.
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Table 6.1: Classification of USMA File Fragment Dataset

Data Type Conti et al. [39]Fmeta
bitmap 82.5 97.7

compress bzip2 text 30.6 81.1
compress compress text 58.8 79.9

crypt aes256 text 38.6 45
deflate png 42.4 59.6

exe linux elf text 82.3 98.2
exe windows pe text 72.1 96.4

jpg 44.1 81.6
lzw gif 66.1 80.1
music 45.5 88.9

random pseudo 37.5 33
text 98.7 97.7

zip base64 100 100
zip uuencode 100 100

6.5.1 Classification of Data Types

The USMA File Fragment Dataset consists of 14 data types which we obtained

from the authors of [39]. There are 14,000 file fragments in total, with 1,000 fragments

for each data type. The classification results are shown in Tab. 6.1. For comparison, we

report the results from [39]. Our proposed method outperformed for 10 data types and

equaled Conti et al.’s method for 2 data types while the difference in accuracy is small

for other 2 data types.

6.5.2 Classification of Compressed Malware

In this experiment, we compress the Malheur dataset [86] and Malimg dataset [72]

using the following compression methods: gzip, xz and bzip2. After compression, we

also use the following archival techniques: tgz, txz, tbz2, zip and zip with password
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Table 6.2: Classification of Malheur Dataset after compression

Compression Type F1 F2 F3 Fmeta
nil 98.1897.9598.4699.23

gzip 77.7787.1692.39 96.8
xz 67.2367.4289.1491.12

bzip2 50.9170.0786.1493.23
zip 76.1487.3592.8196.96

zip-pwd 46.1244.6279.1482.05
tgz 71.9685.0991.3396.56
txz 42.7643.7880.8382.49

tbzip2 85.6270.3648.8392.46

(zip-pwd).

Results on Malheur Dataset: The Malheur reference dataset consists of 3,131 mal-

ware binaries from 24 malware families, which we obtained from the authors of [86].

The malware binaries were labeled such that a majority amongst 6 different antivirus

products shared similar labels. We compressed this dataset using 8 different compres-

sion and archival techniques. The classification results are shown in Tab. 6.2. Our

proposed method outperforms the classification accuracies of individual features in all

cases. Other than (zip-pwd and txz, the accuracies for other 6 compression techniques

are very high.

Results on Malimg Dataset: The Malimg dataset contains 25 malware families with

9,342 samples [72]. The dataset has a mixture of both packed and unpacked malware.

This dataset was using 8 different compression and archival techniques, and the classi-

fication results are shown in Tab. 6.3. Our proposed method outperforms the classifi-

cation accuracies of individual features in all cases. Similar to Malheur dataset, apart

from (zip-pwd and txz, the accuracies for other 6 compression techniques are very high.
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Table 6.3: Classification of Malimg Dataset after compression

Compression Type F1 F2 F3 Fmeta
nil 84.3797.0098.2499.59

gzip 43.4473.7987.1295.01
xz 70.2 73.4186.7290.65

bzip2 57.8868.2476.4091.06
zip 71.3974.9586.7791.41

zip-pwd 50.8951.0467.6874.79
tgz 59.3770.0683.9291.57
txz 47.5851.5969.5875.03

tbzip2 57.4768.2075.8690.95

Table 6.4: Classification of Malimg Dataset after compression with extra Benign class

Compression Type F1 F2 F3 Fmeta
gzip 69.2474.3886.2292.53
xz 72.9175.3687.5491.35

bzip2 61.4970.1076.7891.18
zip 72.8876.8987.5192.25

zip-pwd 56.3056.0669.5875.04
tgz 62.3370.8182.6890.88
txz 54.9457.7970.7674.75

tbzip2 61.3370.2676.6590.89
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Addition of Benign Class

In this experiment we added an extra benign set of 2,000 benign software (Windows

System executables) to the Malimg dataset to see if our method can still distinguish

between malware and benign. The results are shown in Tab. 6.4 and the addition of

benign class did not affect our approach.
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6.6 Summary

In this chapter we proposed a novel approach to classify data types and compressed

malware using a two stage meta learning approach. Experiments on various datasets

showed promising results. Some future research directions are adding more features

and classifiers in the base level to obtain a richer feature description for the meta level.
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Chapter 7

Conclusions and Future Work

In this thesis we explored orthogonal yet complementary methods to analyze malware

motivated by Signal and Image Processing. Malware samples are represented as images

or signals. Image and signal based features are extracted to characterize malware. With

extensive experiments, we demonstrated the efficacy of our methods on malware clas-

sification, detection and retrieval. Finally, we extend our approaches beyond malware,

to the field of data forensics and data type classification. We believe that our techniques

will open the scope of signal and image based methods to broader fields in computer

security.

In Chapter 3 we treat malware as 2D grayscale images and use image similarity

descriptors to characterize a malware. This was based on the observation that malware

variants of the same malware family were similar in structure and visual appearance.

Since malware authors use similar techniques in creating variants of malware belong-

ing to different operating systems, our method does not need to be re-developed for

a particular platform. Our approach is fast since there is no need for disassembly or
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execution of the malware. Hence it is faster than most static analysis and dynamic anal-

ysis based techniques. Since the structure of packed malware variants do not change

after packing, our method is able to find similarity among packed malware variants

where static analysis approaches like control flow graph analysis fail. Malware authors

use similar obfuscation techniques when creating malware variants of non-Windows

based Operating Systems Linux, Android and OS X. Hence our method need not be

re-developed for a particular Operating System while traditional static and dyanamic

analysis based techniques need to be re-developed.

In Chapter 4 we demonstrate the feasibility of image similarity to malware detec-

tion and retrieval. We presented SigMal, a framework for fast signal processing based

malware triage and showed how our approach outperformed other static and statisti-

cal features. We developed an online malware search and retrieval system, SARVAM,

where one can upload a malware and retrieve similar malware from a database of over

7 million. Since 2012, we have received more than 440,000 samples of which nearly

60% were variants of malware in our database.

In Chapter 5 we treat malware as 1D signals. Since variants from the same malware

family have small changes, we modeled a malware variant as a sparse linear combina-

tion of other variants from the same family. Further, we reduced the dimensions of the

malware signals using Random Projections and showed that lower dimensional projec-

tions also preserved the similarity among variants. Our experimental results on various

datasets showed that this generalized approach had better classification performance

than the image based method.

In Chapter 6 we extended our previous approaches to data type classification and

compressed malware similarity. Instead of using a single feature, we used many fea-
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tures and stacked the prediction scores to form a meta level feature, which we use for

classification. We showed how this two level meta learning based approach can be used

for data type and compressed malware classification.

7.0.1 Future Directions

Extensions to other signal similarity metrics

While we represented malware as images and signals, a natural complement is to treat

the malware binaries as audio-like one dimensional signals and leverage automated au-

dio descriptors. Audio descriptors have shown great success in matching songs under

conditions of limited length, low quality recording and high noise. Commercial appli-

cations such as Shazam (for identifying songs currently playing) and YouTube (to find

uploaded songs subject to copyright) are well known examples. Similar to visual fea-

tures, there are several audio features designed to extract key information from audio

signals such as spectral flatness, MFCC (mel-frequency cepstrum coefficients), chroma

features and more. Each capture a distinct feature of sound, and have varying applica-

tions such as exact match vs similar sounding, depending on respective strengths and

weaknesses. As a preliminary experiment we tried chroma features on standard mal-

ware datasets , which yielded a classification accuracy of more than 90%. We believe

that other audio features will show promising results.

Section based bag of malware signatures

Our main focus in this thesis has been computing malware signature on the whole

executbale. However, a malware executable comprises many sections. In SigMal we

saw that concatenation of features based on the whole executable and code sections

outperformed the features computed on the full binary. Computing image similarity
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descriptors and/or random projections on all the sections will have a richer description.

These can then be represented as bag of malware signatures which can then be used to

better characterize malware.

Exact location of malware

Using the error model in the sparse representation based malware classification frame-

work, we can determine the exact positions in which the malware variant differs from

another variant. This approach can also be used to find the exact source from which

a malware variant evolves. Patched malware that attaches to benign software can be

identified using this method.

Meta Learning of Static Features

Using statistical and content based features followed by meta learning, we saw how

compressed malware could be classified. One could also use other static based fea-

tures based on disassembly of code along with statistical and content based features

for even better performance. In Chapter 6 all our experiments showed that meta level

classification was always better than individual feature prediction. Stacking of feature

predictions from several static and statistical features should outperform all the individ-

ual predictions.
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