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Abstract

Modeling Eye Tracking Data with Application to Object Detection

by

Karthikeyan Shanmuga Vadivel

This research focuses on enhancing computer vision algorithms using eye tracking

and visual saliency. Recent advances in eye tracking device technology have enabled

large scale collection of eye tracking data, without affecting viewer experience. As

eye tracking data is biased towards high level image and video semantics, it provides

a valuable prior for object detection in images and object extraction in videos. We

specifically explore the following problems in the thesis: 1) eye tracking and saliency

enhanced object detection, 2) eye tracking assisted object extraction in videos, and 3)

role of object co-occurrence and camera focus in visual attention modeling.

Since human attention is biased towards faces and text, in the first work we propose

an approach to isolate face and text regions in images by analyzing eye tracking data

from multiple subjects. Eye tracking data is clustered and region labels are predicted

using a Markov random field model. In the second work, we study object extraction

in videos using eye tracking prior. We propose an algorithm to extract dominant vi-

sual tracks in eye tracking data from multiple subjects by solving a linear assignment

xi



problem. Visual tracks localize object search and we propose a novel mixed graph as-

sociation framework, inferred by binary integer linear programming. In the final work,

we address the problem of predicting where people look in images. We specifically ex-

plore the importance of scene context in the form of object co-occurrence and camera

focus. The proposed model extracts low-, mid- and high-level and scene context fea-

tures and uses a regression framework to predict visual attention map. In all the above

cases, extensive experimental results show that the proposed methods outperform cur-

rent state-of-the-art.
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Chapter 1

Introduction

“We live in a wonderful world that

is full of beauty, charm and

adventure. There is no end to the

adventures we can have if only we

seek them with our eyes open”.

Jawaharlal Nehru

Recently, there has been significant advancement in eye tracking technology. Cur-

rent eye trackers have become affordable, accurate and easy to use. These eye trackers

do not require the head to be constrained in a specific position and can collect the data

in standard viewing postures. This has enabled large scale low-cost availability of such

data from multiple subjects especially in multimedia settings. This information can be
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extremely beneficial to computer vision algorithms and eye tracking guided computer

vision algorithms have become a relevant topic of interest. These hybrid techniques

have two design challenges. The first challenge is to effectively identify useful infor-

mation from the eye tracking data for the task (computer vision problem) one is trying

to solve. Secondly, a guiding mechanism needs to be designed that utilizes this eye

tracking information to further aid the computer vision task at hand. In addition, in this

thesis, we are also interested in predicting eye tracking data given an image. Specifi-

cally, we explore the importance of two factors, camera focus and object co-occurrence

to improve the prediction of where people look in images.

1.1 Motivation

The primary goal of this thesis is to understand the how visual saliency and eye

tracking based input can enhance computer vision algorithms and vice versa. Humans

are adept at visual tasks and tapping into the contextual information utilized by humans

to perform high level tasks can be a valuable tool to develop better computer vision

algorithms. In addition, better high level image semantic understanding can benefit

algorithms modeling human visual attention, which can help in effective prioritization

of information content in images and videos. Figure 1.1 visually illustrates the primary

theme of the thesis.
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Figure 1.1: Block diagram illustrates the primary theme of this thesis. We want to ex-
plore problems where eye tracking data can improve computer vision problems related
to object extraction in images and videos. Additionally, we also want to investigate
the inverse scenario of how object detection can benefit the prediction of eye tracking
data in images.

Human visual attention is typically attracted towards high level semantics in images

and videos. Figure 1.2 shows examples of eye tracking data obtained from a subject

while performing a free viewing task in videos. As the eye tracking data is naturally

biased towards objects, in this thesis we aim to improve computer vision algorithms

related to object detection in images and object extraction in videos as shown in Figure

1.4. Our hybrid eye tracking/saliency based computer vision algorithms achieve sig-
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nificant improvement over state-of-the-art. Eye tracking based contextual information

has become practically feasible owing to recent advancements in eye tracking technol-

ogy. The modern state-of-the-art eye trackers are affordable without compromising the

precision of expensive laboratory eye trackers. Moreover, advancements in sensing and

eye localization algorithms have enabled eye tracking acquisition without constrains on

head movements effectively simulating real world viewing of scenes without affecting

the experience of the viewer. Therefore, it is feasible to obtain eye tracking data from

multiple subjects, especially when we are dealing with popular multimedia content. An

illustration of the eye tracker used in all the experiments in this thesis is shown in Figure

1.3.

Additionally, visual saliency based contextual information only incurs a computa-

tional overhead of computing the saliency maps, however reducing the search space

for object detectors can mitigate some of this additional processing. In order to im-

prove eye tracking prediction using computer vision algorithms, we explore two forms

of contextual information to improve current state-of-the-art visual attention predic-

tion algorithms. First, we investigate the importance of scene context, utilizing object

co-occurrence to improve state-of-the-art visual attention model. We also study how

camera focus affects visual attention. Recently, light field cameras which capture the

entire 3-D light field and camera focus can be altered post image capture, have become

popular and we propose models which utilizes camera focus to identify interesting re-
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Figure 1.2: Figure overlays eye tracking data (shown as green circular dot) from a
subject onto video frames from two different video sequences. We notice that eye
tracking data in this free viewing task is biased towards objects in the scene and atten-
tion shifts from one object to another.

gions in images. Our method improves over state-of-the-art to predict visual attention

which do not explicitly utilize this information.
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Figure 1.3: This image shows the eye tracker setup used in the proposed work. De-
tailed description of the eye tracker setup is discussed in Chapter 2

1.2 Overview of proposed methods

As faces and text regions in images primarily attract visual attention, in Chapter 3,

we aim to predict face and text regions by analysing eye tracking data. Additionally,

we utilize this eye tracking prior to localize the search space for object categories in

images. In this work we introduce a dataset with emphasis on faces and text, however

containing adequate representation from non-faces and non-text as well. We collect
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Figure 1.4: Lists the computer vision algorithms which we aim to improve using
the hybrid eye tracking object detection algorithms. (Left) Text detection in natural
scenes (Center) Dog and Cat detection (Right) Object extraction in videos

eye tracking data from multiple subjects and cluster the fixation component using mean

shift clustering. We extract several inter- and intra-cluster features from these clusters.

The face/text identification problem is modeled as a cluster labeling problem over a

fully connected Markov Random Field. The unary and the pairwise potentials are learnt

using Support Vector Machines. This prior localizes the search space for face and text

regions. In the face detection problem, we focus on dog/cat faces as traditional detectors

fail for these categories. Our hybrid eye tracking object detector outperforms the base

algorithms in detecting faces and text.

In Chapter 4, we extend the the theme of improving object detection using eye track-

ing prior to videos. Specifically we target object extraction from videos and evaluate

the performance gains by utilizing eye tracking priors. This problem presents interest-

ing applications in multimedia annotation and multiple object extraction where recent

advances in technology has laid the foundation to obtain eye tracking data without in-
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terfering with viewer experience. This work primarily consists of two modules

• Extraction of dominant eye tracking patterns from user data

• A novel framework for multiple object extraction

First, we extract dominant consistent eye tracking patterns (visual tracks) from user

data. This provides us with two forms of information, coarse localization of object po-

sition and the number of objects in the video. We utilize a two-step association process

to build visual tracks. In the first step the eye tracking data is clustered using 3-D mean

shift algorithm to get visual tracklets. The visual tracks are formed by associating the

visual tracklets by solving a linear assignment problem. These visual tracks are utilized

in the second module to extracts objects

The second module is is designed to extract multiple objects from a video based

on building a mixed graph which has both directed and undirected edges. The nodes

are represented by candidate bounding boxes derived from objectness, scored using a

combination of objectness, optical flow and eye tracking prior. The graph consists of

directed edges which connect the nodes across successive frames as well as undirected

edges within (intra) a frame. The directed edges model inter-frame bounding box char-

acteristics such as appearance, position, motion and visual track properties, enabling

consistent object tracking across candidate objects. Additionally, the intra-frame costs

ensure overlapping bounding boxes representing the same object is not extracted in
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different paths. The overall path extraction is solved using integer programming in a

mixed graph framework. The final object contours are obtained by a 3-D graph cut

based video segmentation algorithm. The proposed algorithm outperforms prior dom-

inant object extraction state-of-the-art as well as prior work on eye-tracking fixation

based tracking.

In Chapter 5 , we explore the ability of saliency algorithms to improve text detec-

tion in natural scenes. Human attention is naturally biased towards text regions and

we want to investigate the utility of low-level visual attention features which mimic

human attention in localizing text regions in natural scenes. Additionally, text regions

have characteristic visual attention properties and we aim to understand this using our

algorithm. Our approach basically learns a text attention map using a Support Vector

Machine from multiple visual saliency maps which prunes the search space for text

detection. Our algorithm gives priority to regions where text detection typically fails.

This approach improves the precision of state-of-the-art text detector.

The following Chapter 6 sheds light on improving state-of-the-art visual attention

models using scene context information. We explore two forms of contextual infor-

mation, object co-occurrence and camera focus to improve visual attention prediction

from multiple subjects. We extract object co-occurrence maps coupled with camera fo-

cus based information to represent scene context features. A regression based attention

prediction algorithm predicts the final visual attention map. The proposed algorithm
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outperforms state-of-the-art saliency and visual attention algorithms as they do not di-

rectly model these contextual inter-relationships. Finally in Chapter 7, we provide the

conclusions and directions for future research in saliency and eye tracking enhanced

computer vision.
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Chapter 2

Eye tracking review

“The eyes are the amulets of the

mind”.

W.R. Alger

The primary aim of this thesis is to improve computer vision algorithms using eye

tracking data. This chapter reviews current work on eye tracking and describes the

experimental setup used in this dissertation research.

2.0.1 Brief History of eye tracking

Eye tracking is the process of measuring the motion of the eye relative to the head

position. The device designed to measure eye movements is an eye tracker. Eye track-

ers are popular devices in visual system research. Eye trackers have been extensively
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used in psychology, cognitive linguistics and product design. The study of eye move-

ments began in the 1800s. In 1879, Louie Émile Javal observed that during reading

task, eye movements do not involve smooth sweeping of eyes along the text as pre-

viously understood, instead it involves a series of rapid stop and go motion patterns.

This observation led to considerable research on eye movements during reading task

to understand the stop duration, word positions which have consistent eye movement

stops, and the duration of the stops in various scenarios. One of the early intrusive eye

trackers was built by Edmund Huey which uses a contact lens with a hole for pupil.

The aluminum pointer connected to the lens was used to record eye movements. His

primary study was dedicated to the reading task. The first non-intrusive eye tracker

was built by Guy Thomas Buswell, which recorded light rays reflected from the eyes

using a film to calibrate eye movements and his research focused on reading and picture

viewing.

Critical findings in eye tracking research was performed by Alfred Yarbus, where he

identified that task which a subject is performing plays an important role in determining

eye movement patterns. The famous image from Yarbus’s work shown in Figure 2.1

elucidates the importance of top-down task influence in eye movements. He concluded

that human attention is often attracted towards unusual and incomprehensible elements

in images. Also, additional time spent on perception is not used to examine secondary

elements, but to re-examine important details.
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In the 1970s reading research took prominence again and in 1980 Just and Car-

penter proposed that “There is no appreciable lag between what is fixated and what

is processed” which is also called the strong eye-mind hypothesis. This hypothesis is

typically assumed by eye tracking researchers and our work was well, which basically

means when a subject fixates at a scene or an object, she/he also thinks about it only

during the recorded fixation duration. However this assumption is questionable in sit-

uations where covert attention plays a critical role when a subject is observing which

he/she is not looking at using peripheral vision. This situation however disassociates

the relationship between eye movements and cognitive processing.

Due to advancement in processing power of modern computers, the 1980s also

signaled the genesis of eye tracking in human computer interaction. The application

domain was primarily targeted towards physically challenged users. However, recently

eye tracking has been extensively used to evaluate the design of interfaces. This pro-

vides a solid platform to test the ease of use of a computer interface and helps quantify

their intuitiveness. Eye tracking technology has also been a useful tool to evaluate the

utility of websites to communicate information effectively. It is also becoming pop-

ular in human computer interaction (HCI) where scanpaths are utilized to build gaze-

contingent displays, also known as gaze-based interfaces. Online advertising is another

field where eye tracking technology will have a significant impact in the near future.
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Figure 2.1: Study by Yarbus which indicates the importance of the task which the
person is asked to perform on eye movements [102]
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2.1 Eye tracking data basics

Human eye movements show considerable variation in static and dynamic scenes.

In static scenes, eye movements consist of discrete jumps between information gath-

ering stages. In Figure 2.2, which represents reading task in a static scene, we notice

circles representing the information gathering stage and horizontal lines indicating shift

in attention from one word to another. The circles are called fixations and the jumps

from one fixation to another is called a saccade. We seldom observe smooth eye move-

ment patterns in static scenes.

However in dynamic scenes, when a subject is observing a moving object, we notice

smooth eye movement transitions, called smooth pursuit. This is another voluntary

manner in which humans can shift gaze in addition to saccadic movements which is also

prevalent in dynamic scenes. In this situation, smooth pursuit and fixations represent

the information gathering stage from an object and the saccades denote shift in attention

from one object to another in the dynamic scene.

In addition, eye tracking data also consists of micro-saccades. Micro-saccades are

typically observed in prolonged visual fixations. They are small, jerk-like, involuntary

eye movements, similar to miniature versions of voluntary saccades. There is still no

consensus on the role of micro-saccades in visual perception, thought several theories

exist. The study of micro-saccades acts as a diagnostic test for conditions such as

Attention Deficit Hyperactivity Disorder (ADHD).
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We note that the central one or two degrees of the visual angle (the fovea) provide

the bulk of visual information; the input from larger eccentricities (the periphery) is

less informative. Hence, the locations of fixations along a scanpath indicate which

information regions on the stimulus are processed during an eye tracking session. On

average, fixations last for around 200 ms during the reading of linguistic text, and 350

ms during the viewing of a scene. Additionally, preparing a saccade towards a new goal

takes around 200 ms. Research has suggested that there is about 100-250 millisecond

lag in eye movements following visual attention.

Eye tracking studies have shown that human overt visual attention, which eye track-

ers measure, is highly biased towards high level semantics in a scene. Additionally,

among semantic objects, there is conclusive evidence that face and text categories pri-

marily attract visual attention. Visual scanpaths are typically useful for analyzing cog-

nitive intent, interest, and salience. Other biological factors (age, gender, race) affects

the scanpath as well. However, we note that current technologies cannot predict the ex-

act cognitive process given eye movement patterns, for example eye movements over an

object may indicate several emotions, however there is no known technique to extract

this information from eye movements. Therefore, additional verbal cues are sometimes

obtained in eye tracking experiments.
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Figure 2.2: Example eye tracking data on images during a free viewing task. Eye
movement data on images typically consists of alternate fixations and saccades. The
fixations are represented by circles and the saccades are represented by lines. The
fixations indicate information gathering stage from an image region. The saccades in-
dicate attention shifts from one fixation to another. The entire eye movement sequence
is called a visual scanpath.
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2.2 Eye Trackers

Eye trackers are devices that measure eye movements and they fall into the follow-

ing three categories

• Optical tracking

• Eye attached tracking

• Electric potential based tracking

2.2.1 Optical tracking

Optical tracking is the most popular form of current eye tracking technology. This

is a non-contact method where infrared light reflected from the eye is captured by an

optical sensor. Typically the pupil and the first corneal reflection are tracked over time.

In the beginning a known calibration pattern is presented in the screen which helps

localize the exact eye gaze location with good accuracy. Recently more sensitive eye

trackers which monitor the location of retinal blood vessels are also being developed.

Optical tracking technology has required head position to be stable when tracking the

eye movements. Recent developments in calibration and head tracking has enabled free

head movement while localizing eye position. This is a significant step which enables

collection of eye tracking data over long duration without discomfort to the subject.

These remote eye trackers automatically track the head as well as the eye movements
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are becoming commercially available . In addition manufacturing costs of the eye track-

ing devices have drastically reduced in the past few years thereby improving the utility

of these eye trackers in the commercial sector and going beyond being expensive labo-

ratory equipment. Optical eye tracking technology has been used in all the experiments

conducted in this dissertation work.

Head mounted eye trackers and chin rest based eye trackers which require the head

to be stable have been popular in the past decade. Early eye trackers used a sam-

pling rate of at least 30 Hz. Today many video-based optical eye trackers run at even

1000/3000 Hz, which is needed in order to capture the details of the very rapid eye

movement in neurological studies.

2.2.2 Electric potential based tracking

Eyes act as a dipole with the positive pole in the cornea and the negative pole at

the retina. This produces a steady electric field which is measured by placing elec-

trodes around the eyes. Two pairs of contact poles called an electrooculogram (EOG)

are placed around the eye which measures this electric signal. The dipole orientation

changes when the eyes move from the center position to the periphery. As the retina

and the cornea approaches opposite electrodes, there is a change in the measured EOG

potential signal. These changes can be related to eye movements. Typically horizontal

and vertical potentials are measured by separate electrodes. A third EOG component is
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the radial EOG channel, which is the average of the EOG channels referenced to some

posterior scalp electrode. This radial EOG channel is sensitive to the saccadic spike

potentials from the extra-ocular muscles at the onset of saccades, and allows reliable

detection of even miniature saccades. An example EOG based eye tracking setup is

shown in Figure 2.3.

However the primary limitation of EOG is that it cannot accurately predict where

exactly a person is looking at due to noise in electric potential measurements. But, it

can accurately measure saccadic eye movements associated with gaze shifts and blinks.

It consumes low power, is available as a wearable system and is robust to lighting

conditions. In addition, sleep activity can be monitored as it does not require the eyes

to be open while recording the eye activity.

2.2.3 Eye attached tracking

In this technique an attachment to the eye is used and the movement of the attach-

ment is measured which indicates eye movements. Typically specialized contact lenses

which have embedded magnetic field sensor or mirror is used as attachment. However,

eye attached tracking assumes that the contact lens does not slip during eye rotation.
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Figure 2.3: Example of electrooculography based eye tracker [16].
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2.3 Eye tracking setup

In our experiments we use the video based eye tracker Eyelink 1000 as it can accu-

rately track where subjects look in a variety of setups. Specifically we utilize the tower

mounted setup with a chin-rest as it ensures comfortable viewing in a short period of

time coupled with high eye tracking accuracy. The eye tracking setup consists of a host

computer and a display computer. The eye tracker host computer processes the eye

tracking data and automatically computes fixations and saccades in real time at a high

sampling rate of about 1000 samples per second. The host computer is a part of the

Eyelink eye tracker.

The display computer is a device where the visual stimuli is presented to the viewer,

which is typically a computer used by the programmer to design the eye tracking ex-

periments. The host and a display computers are connected using a duplex cable which

can transfer data to and from the host and display computers. The eye tracker also

consists of an infra-red camera which collects an infra-red video which is processed by

the host computer. The host computer detects the pupil and the first corneal reflection

to decipher where a subject is looking in the display screen. To enable this, calibration

is performed every time a subject places his/her head on the chin-rest where a series

of 9 points is shown in the display screen and the pupil and the first corneal reflection

positions are monitored.

The eye tracking experiments are built using an experiment builder software pro-
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Figure 2.4: Illustrates the eye tracker setup using Eyelink 1000 eye tracking device

vided by SR-Research, the company which manufactures Eyelink. The experiment

builder software provides a few basic block based setups for collecting eye tracking

data and it acts a good guiding tool to learn how one can design eye tracking experi-

ments. In addition, to design complex experiments where the data presentation might

be adaptive, psychtoolbox is recommended instead. In addition, SR-Research also pro-

vides a data viewer to visualize the eye tracking data overlaid on the stimulus post data

collection from a subject.
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We now outline briefly the work-flow in an eye tracking experiment. After identi-

fying the hypothesis which we want to test, we collect a visual stimuli database, fol-

lowing which the experiment is designed using the experiment builder software. As

fatigue plays an important role in the chin-rest eye tracker (head is constrained in a spe-

cific position), one must ensure that every data collection session is divided into smaller

sub-sessions and the subjects gets sufficient rest before continuing the experiment. The

eyetracking data for each subject is stored in EDF (Eyelink Data File) format. This is a

highly compressed binary format, intended for use with SR Research Eyelink viewers

and applications. The EDF file can be converted to a text based ASC file by a transla-

tor program known as EDF2ASC. The ASC files may be viewed with any text editor.

Further, we wrote Perl scripts to process the ASC files line by line to extract useful

information which we required for further analysis.

2.4 Eye tracking in proposed research

There has been limited research to tap into the potential of eye trackers in com-

puter vision. However, several eye tracking based research studies have concluded

that high level semantic categories primarily attract visual attention and therefore eye

tracking naturally can provide weak supervision in several computer vision problems

related to object search. In Chapters 2 and 3 of this thesis we design algorithms which
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can outperform state-of-the-art object search algorithms in images and videos utilizing

eye tracking information obtained in a free viewing scenario. We hope the proposed

paradigm eventually bridges the semantic gap between computer vision algorithms re-

lated to object search and human performance.
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Chapter 3

Eye tracking enhanced object

detection in images

“We see the world, not as it is, but

as we are - or, as we are conditioned

to see it”.

Stephen R. Covey

Eye movement studies have confirmed that overt attention is highly biased towards

faces and text regions in images. In this work we explore a novel problem of predicting

face and text regions in images using eye tracking data from multiple subjects. The

problem is challenging as we aim to predict the semantics only from eye tracking data

without utilizing any image information. The proposed algorithm spatially clusters eye
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tracking data obtained in an image into different coherent groups and subsequently

models the likelihood of the clusters containing faces and text using a fully connected

Markov Random Field (MRF). Given the eye tracking data from a test image, the learnt

MRF predicts potential face/head (humans, dogs and cats) and text locations reliably.

Furthermore, the approach can be used to select regions of interest for further analysis

by object detectors for faces and text. The hybrid eye position/object detector approach

achieves better detection performance and reduced computation time compared to using

only the object detection algorithm. We also present a new eye tracking dataset on 300

images selected from ICDAR, Street-view, Flickr and Oxford-IIIT Pet Dataset from 15

subjects.

This Chapter is organized as follows. In Section 3.1 we introduce the problem and

relevant related work. The faces and text eye tracking dataset is presented in Section

3.2. The proposed approach to classify eye tracking data into face and text regions is

described in Section 3.3 followed by the experimental results for eye tracking based

localization in 3.4. The applications to improve state-of-the-art object detection al-

gorithms is illustrated in 3.5. Finally, the summary of the work and future research

directions are discussed in Section 3.6.
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3.1 Introduction

Wearable eye tracking devices are becoming popular [15, 14] and will soon be

mainstream. They provide a platform to collect eye tracking data in a non-intrusive way

when people observe multimedia content, such as web browsing. This additional infor-

mation from multiple subjects can potentially be useful for challenging large scale mul-

timedia annotation problems. Towards this, we propose a technique to obtain image-

level scene semantic priors from eye tracking data, which will reduce the search space

for multimedia annotation tasks.

Figure 3.1: Left to right: 1. Input image. 2. Eye Tracking fixation samples from
multiple subjects overlaid on the image 3. The eye tracking regions identified by the
proposed algorithm as faces (blue) and text (green) 4. The final detection outputs of
face and text detector focusing on the priors provided by eye tracking.

It is known that human visual attention, irrespective of top-down task, is biased to-
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wards faces and text [17]. The first step towards obtaining scene semantic prior from

eye tracking information alone is to build models that predict face and text regions in

images, which is the primary focus of this work. This information is useful to improve

the speed and precision of state-of-the-art detectors for challenging categories such as

text, cats and dogs. We note that the performance of state-of-the-art cat and dog de-

tectors [74] in turn depends on head (face) detection algorithm which can be enhanced

using eye movement information.

Related Work

Humans are able to swiftly process a rich stream of visual data and extract informative

regions suitable for high level cognitive tasks. Therefore, there has been significant

amount of research on human inspired visual attention models [51, 39, 53, 56]. These

approaches typically predict the attention in different regions of an image given low-

level saliency maps and high-level image semantics. In contrast, the proposed problem

in spirit models the converse situation of predicting image semantics from eye move-

ment data.

There have been some recent efforts which model top-down semantics by simul-

taneously utilizing both image and eye movement information. In this regard, Subra-

manian et al. [86] extract high-level information from images and verbal cues, (faces,

face parts and person) and model their interrelationships using eye movement fixations

and saccades across these detections. Mishra et al. [68] propose an active segmentation
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algorithm motivated by finding an enclosing contour around different fixations. The

proposed approach distinguishes itself as it aims to speed up algorithms for high-level

semantics from eye movement data alone. Bulling et al. [16] propose an activity clas-

sification method in office environments (copying text, reading, browsing web, taking

notes, watching video) using eye movement data collected using electrooculography.

As most of these activities follow a standard repetitive pattern, the method in [16] pre-

dicts the activities reliably for each person individually. However, due to variability in

the manner in which different people view images, our approach differs from [16] and

we require data from multiple observers to predict image semantics reliably. Cerf et

al. [18] provide an algorithm to decode the observed image using eye movement scan-

path data. However, their approach models the problem by proposing a metric between

multiple saliency maps obtained from the image and the scanpath data. The saliency

map generation problem again requires processing the entire image and is inherently

different from the proposed approach. We make three contributions in this work

a. We propose an algorithm to localize face and text regions in images using eye track-

ing data alone. The algorithm basically clusters the eye tracking data into meaning-

ful regions using mean-shift clustering. Following which various intra- and inter-

cluster fixation and saccade statistics are computed on these clusters. The final

cluster labels are inferred using a fully connected MRF, by learning the unary and

interaction potentials for faces and text from these statistics.
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b. We demonstrate the ability of these face and text priors to improve the speed and

precision of state-of-the-art text [32] and cat and dog detection [74] algorithms.

c. We also present a new eye tracking dataset, collected on images from various text,

dogs and cats datasets. The dataset consists of 300 images from 15 subjects.

Figure 3.1 outlines the pipeline of the proposed approach.

3.2 Faces and Text Eye Tracking Database

We collected an eye tracking dataset, with primary focus on faces (humans, dogs

and cats) and text using Eyelink 1000 eye tracking device. The image dataset consists

of 300 images collected from ICDAR datasets (text) [61], Street view dataset (text)

[96] and Oxford-IIIT Pet dataset (dogs and cats) [75] and flickr images [53]. The text

images are gathered from two different datasets to ensure considerable variability in

scene context. The flickr images provide sufficient representation for images without

text or faces (including dogs and cats) in both indoor and outdoor scenes. The overall

image dataset consists of 61 dogs, 61 cats, 35 human faces, 246 text lines and 63 images

without any text or faces. Figure 3.2 highlights examples for images from different

categories from the dataset. The images are of dimension 1024×768 and were viewed

by 15 subjects (between ages 21 and 35). The viewers sat 3 feet away from a 27

inch screen and each image was shown for 4 seconds followed by 1 second viewing
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a gray screen. The subjects were informed that it was a free viewing experiment and

instructed to observe regions in images that gather their interest without a priori bias.

Also, eye tracking calibration was performed every 50 images and the entire data was

collected in two sessions (150 images each). This dataset can be downloaded from

http://vision.ece.ucsb.edu

Figure 3.2: Examples of images from our dataset consisting of text, human faces,
dogs, cats and other background objects

Humans eye movement scanpaths typically consists of alternating fixations and sac-

cades. Fixations represent information gathering sequences around an interest region

and saccades indicate transitions between fixations. The eye tracking host computer

samples the gaze information at 1000 Hz and automatically detects fixations and sac-

cades in the data. Therefore, we have around 4000 samples per subject for every image.

The fixation samples typically account for 80% of the entire data. In our analysis we
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only use the fixation samples and henceforth refer to these fixation samples as the eye

tracking samples. The eye tracking device also clusters the fixation samples and iden-

tifies fixation and saccade points. We refer to these points as fixations and saccades

hereafter. The average number of fixations and saccades per image across subjects can

vary from 8 to 19. In our experiments, the first fixation and saccade was removed to

avoid the initial eye position bias due to the transition gray slide in the experimental

setup.

Face Regions: The dataset consists of faces of multiple sizes, varying from about

40×40 to 360×360 pixels. In small face images, subjects look at the face as a whole.

On the other hand, in larger faces there are several saccades across eyes, nose and

mouth regions. As expected, face regions consistently attract attention from viewers.

In addition we notice that the initial saccades are invariably directed towards face re-

gions across subjects. In images consisting of multiple faces, rapid scanpaths moving

across different faces is a common phenomenon. Figure 3.3 illustrates examples fea-

turing some of these effects.

Text Regions: Text regions are present in various styles, fonts, sizes, shapes, lighting

conditions and with occlusions from foreground objects in our image dataset. In text

regions consisting of a single word, the subjects typically fixate around the center of

the word and the different fixations take a nearly elliptical shape. In multiple words,

we observe saccadic scanpaths from one word to another as subjects typically read the
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different words sequentially. Figure 3.3 illustrates some example text regions in our

image dataset.

Figure 3.3: Shows example of faces and text in two scenarios each. The fixations are
marked as red points and saccades as blue lines. Multiple faces in the image where we
consistently observe inter-face saccades (top left).A large single face where several
saccades are observed in the eyes, nose vicinity (top right). Text with four words
where a dense saccadic presence is observed between words (bottom left).A clip from
one of the images showing a single word, whose cluster takes a nearly elliptical shape
(bottom right).

3.3 Faces and Text Localization from Eye Tracking Data

The aim is to identify face and text regions in images by analyzing eye tracking in-

formation from multiple subjects, without utilizing any image features. Eye movements

are organized into fixations and saccades. The information gathering phase is rep-
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resented by the fixations, which typically group around different semantic/interesting

regions as shown in Figure 3.3. Therefore, we first cluster all the fixation regions using

the mean-shift clustering technique [25]. We chose mean-shift clustering as it does not

require the number of clusters and is fairly robust to multiple initializations for the se-

lected bandwidth (50 pixels). The text and face region detection problem is mapped to

a cluster labeling problem. Therefore, we compute inter-cluster and intra-cluster statis-

tics and model the labeling problem using a fully connected Markov Random Field

(MRF).

Let the ithcluster in an image be denoted by Ci. The 2D eye tracking samples

(fixation samples) within the cluster are represented by Ei. The fixations (fixation

points) and saccades in the entire image are denoted by F and S respectively. The

fixations belonging to the ith cluster are denoted by Fi and the saccades originating

from ith and terminating in the jth by Si,j . Finally, the fixations provided by every

individual person k in cluster i is augmented giving F k
i and the corresponding times

(0-4 seconds) representing the beginning of the fixations in cluster i is given by T ki .

The following features are used to represent inter-cluster and intra-cluster properties.

3.3.1 Intra-cluster features

a. Number of fixations and eye tracking samples: |Fi|, |Ei|

b. Standard deviation of each dimension of the eye tracking samples Ei
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c. Shape and orientation of the cluster by ellipse approximation. Let λ1,λ2 and v1,v2

denote the two eigenvalues and eigenvectors respectively of the cluster such that

λ1 > λ2. Shape of the cluster is encoded by λ2
λ1

. The orientation is expressed as

|∠v1|

d. The ratio of the eye tracking sample density in the cluster compared to its back-

ground. Let cluster Ci be approximated by the minimum rectangle Ri containing

all the cluster points. The rectangular region centered around Ri which is twice its

width and length is defined as Di. Hence, the background region, Bi, around Ri is

expressed as Di \Ri. The final feature is computed as |{Ei∈Bi}||{Ei∈Ri}|

e. Number of incoming, outgoing and within-cluster saccades, represented by
∑
∀j 6=i |Sj,i|,∑

∀j 6=i |Si,j| and |Si,i| respectively

f. The number of incoming, outgoing and within-cluster saccades, (from e) where the

saccade angle to the X-axis is less than 30 degrees (almost horizontal)

g. The percentage of incoming, outgoing and within-cluster saccades (from e) which

are almost horizontal

h. Median of the time of first visit to the cluster across multiple subjects: mediank
(
mini

(
T ki
))

i. Median of the number of times each person visits a cluster: mediank(
∣∣F k

i

∣∣)
In total we have 18 intra-cluster features representing each cluster’s intrinsic properties.
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These features essentially aim to capture the eye movement attributes typical of face

and text regions described in Section 3.3. The features indexed a,b,c,d and e in the

above list are important basic features where text and face regions exhibit characteristic

responses. Features f and g are more characteristic of text regions with multiple words

as nearly horizontal inter-word saccades are prevalent. Finally, features h and i are

more relevant to face regions which typically immediately attract viewer attention. In

addition subjects also tend to visit the face multiple times after fixating at other regions

in the image, which is captured by feature i in the aforementioned list.

3.3.2 Inter-cluster features

In addition to intra-cluster features, pairwise inter-cluster features also provide use-

ful information to identify face and text regions. In the presence of multiple faces,

subjects indicate saccadic activity across the different faces. Moreover, in text images

with multiple words, inter-word saccadic activity is quite common. Therefore, the fol-

lowing saccade centric features are computed across clusters.

1. Number of saccades from the ith to jth cluster, |Si,j| and vice versa

2. Number of almost horizontal saccades (where the saccade angle to the X-axis is less

than 30 degrees) from cluster i to j and vice versa

3. Percentage of almost horizontal saccades from cluster i to j and vice versa
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4. The number of saccades, horizontal saccades and percentage of horizontal saccades

from the left cluster to the right cluster

5. Distance between the clusters

In total, we have 13 inter-cluster features to represent saccadic properties across

multiple clusters. Specifically, the inter-cluster features 1,2 and 3 from the list above

are useful indicators of face-face and text-text regions. Also, feature 4 is targeted to

capture text regions as subjects typically read text from left to right.
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Data: Input Images {Ii}, Eye Tracking Samples {E i}, Fixations {F i}, Saccades {Si} ground

truth labels for faces and text {Li}, i ∈ [1...N ]

Result: Face Cluster IDsi, Text Cluster IDsi,i ∈ [1...N ]

Notation : Superscript - image number. Subscripts - cluster IDs

Precomputing Cluster Features:

for i = 1→ N do

Ci = Mean Shift Clustering(E i);

for j = 1→ |Ci| do

Fintraij = Intra-cluster-features(Cij ,F i
j ,Sij) ;

Clabij = Cluster-labels(Li
j , Cij);

for k=j + 1→ |Ci| do
Finterijk = Inter-cluster-features(Cij ,F i

j ,Sij , Cik,F i
k,Sik)

end

end

end

Learning to classify Clusters into Face and Text regions:

for i = 1→ N do

TestIndex = i; TrainIndex = {1, 2, ..., N} \ {i};

[Unary Potentials Face, Unary Potentials Text] =

QDA(FintraTestIndex,FintraTrainIndex, ClabTrainIndex);

[Pairwise Potentials Face, Pairwise Potentials Text]=

QDA(FinterTestIndex,FinterTrainIndex, ClabTrainIndex);

Face Cluster IDsi = MRFface(Unary Pot. Face, Pairwise Pot. Face);

Text Cluster IDsi = MRFtext(Unary Pot. Text, Pairwise Pot. Text);

end

Algorithm 1: Proposed method to detect face and text regions by analyzing eye tracking samples.
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Figure 3.4: Visualizing the text MRF potentials. 1. (Top left) Input image. 2. (Top
right) Eye tracking samples overlay 3. (Bottom Left) Clustered eye tracking fixation
locations from multiple subjects overlaid on the image 3. (Bottom Right) Visualizing
the unary and interaction potentials of the clusters for the text MRF. The unary is
color coded as green, the bright values indicating high unary potentials of a cluster
belonging to text class. The interaction is marked by the blue lines between clusters,
whose thickness is indicative of text-text interaction magnitude.
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3.3.3 Learning Face and Text regions

Utilizing the features in Section 3.3.1 and Section 3.3.2, we propose a probabilistic

model based technique to label the clusters provided by mean-shift algorithm [25] on

the eye tracking samples. The intra- and inter-cluster features are naturally modeled as

a MAP inference problem using a MRF. The different clusters represent the nodes of

the graph. The intra-cluster and inter-cluster features facilitate the learning of unary and

pairwise potentials respectively. In addition, we utilize a fully connected graph to en-

sure long range interactions. Let the posterior probabilities of a quadratic discriminant

analysis (QDA) classifier on intra-cluster features be denoted by p, the unaries are cal-

culated as −log(p). Similarly the pairwise potential is obtained as −log(q), where q is

the posterior learnt from the inter-cluster features using QDA. The problem of inferring

the labels yi of Ci is modeled by an MRF with energy

E =
∑
i∈C

Vi(yi) +
∑

i,j∈C,i 6=j

Vij(yi, yj) (3.1)

where Vi denotes the unary potential of cluster i and Vij denotes the scaled pairwise

potential between clusters i and j with a scaling factor λ. In order to allow overlapping

text and face regions (in watermarked images), cope with limited availability of data

with face-text co-occurrence, and speed up inference, we resort to separately tackle

the face,non-face and text,non-text problems using two distinct MRFs. Finally, as we

are dealing with a binary inference problem on limited number of clusters (< 20), we
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utilize fast exact inference by pre-computing all the possibilities for different number

of nodes. Figure 3.5 indicates how the potentials are learnt from the inter- and intra-

cluster features. Also, Algorithm 1 enumerates the steps involved in learning face and

text clusters from eye tracking data.

The algorithm formally describes that the eye tracking data is clustered using mean-

shift clustering algorithm. For each cluster, intra-cluster features (Fintra) are com-

puted according to Section 3.3.1 and for each pair of clusters, inter-cluster features

(Finter) are computed according to Section 3.3.2. The intra-cluster features help

learning the unary potentials and the inter-cluster features facilitate learning the pair-

wise potentials respectively using Quadratic Discriminant Analysis (QDA) classifiers.

The parameters of the classifiers are learnt on a training set. Finally, the face, text and

background labels of the clusters, from eye tracking data from a test image, are inferred

over the MRF (MRFface, MRFface) by enumerating all possibilities.

3.4 Performance of Face and Text Localization

In this section we analyze the performance of the cluster-level classification of faces

and text regions in images. To enable this, we require cluster labels from ground truth

bounding box annotations. The cluster labels are defined as the the label of the class

(face, text and background) which has the most representation among the cluster sam-
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Figure 3.5: Indicates the process to calculate the unary and the pairwise potentials.
The unary potentials are computed as −log of posterior probabilities obtained from a
quadratic discriminant analysis classifier from intra-cluster features. In similar vein,
the pairwise potentials are obtained from inter-cluster features

ples. Figure 3.6 shows an example of cluster labels obtained from ground truth boxes.

For this experiment we fix the bandwidth of both the face and text MRFs to 50. The

parameter λ which weighs the interaction relative to the unary potentials is fixed as 1
|Ci|

(to roughly give equal weights to unary and pairwise potentials), where Ci is the set

of all clusters in the ith image. In addition, clusters which have less than 1% of the

total number of eye tracking samples are automatically marked as background to avoid

trivial cases. The total number of clusters range from 3 in low entropy images to 17 in

high entropy images.
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Figure 3.6: Left: Input image with the ground truth for face (blue) and text (green).
Center: Clustered eye tracking data overlay on input image. Right: Face (blue) and
text (green) cluster labels propagated from ground truth.

The performance of the cluster detection problem is evaluated using a precision-

recall approach for face and text detection. Precision and recall are defined as follows

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(3.2)

where TP, FP and TN denote true positive, false positive and true negative clusters

respectively in the detection problem. Finally, to get a single measure of the perfor-

mance, F-measure is defined as the harmonic mean between precision and recall. In

order to utilize these cluster labels to enhance text and cat and dog detection algo-

rithms, we require high recall under reasonable precision. This ensures most of the

regions containing faces and text are presented to the detector, which will enhance the

overall performance.

The performance of the face and text detector MRFs are shown in Table 3.1. The

results are evaluated at two levels, cluster and image. The image level metric evalu-

ates the presence of at least one face/text region in an image. The cluster level metric
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Figure 3.7: Examples of good face detections from the proposed algorithm. Red
fixation points correspond to face and blue corresponds to background. (a) In the
presence of salient distracting object (shoe) the face (cat) is reliably detected. (b)
We notice that even in challenging scenarios where multiple faces are present, the
proposed approach detects reliably.

Figure 3.8: Examples of good text detections from the proposed algorithm. Red
fixation points correspond to text and blue corresponds to background. (a) Text line
is reliably detected even in the presence of several other fixations near the region of
interest. (b) Text is detected correctly in the presence of more salient object (person
face).

evaluates the presence of face/text in every cluster. We notice that the recall is high

for both face and text detection sections. However, the precision of the face detector is

also quite high (both cluster and image level), indicating that the proposed algorithm

is confident about the regions which it detects as a face. Figure 3.7 shows some ex-

ample images where the proposed approach localizes faces well. Similarly Figure 3.8

highlights some text cluster detection examples. Figure 3.9 also highlights a few failure
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Figure 3.9: Example scenario where the proposed approach fails to detect face (left)
and a text word (right). The eye tracking samples detected as face in (a) and text in
(b) are shown in red and the samples detected as background (both (a) and (b)) are
indicated in blue.

cases where both the face and text localization fails. The face detector fails as many

subjects do not concentrate on the face in the corner of the image. In addition the

text cluster detection fails as the allocated time (4 seconds) was insufficient to scan the

entire text content.

Precision Recall F-Measure

Face Detection Cluster 0.671 0.954 0.788

Text Detection Cluster 0.748 0.942 0.834

Face Detection Image 0.755 0.989 0.856

Text Detection Image 0.610 0.923 0.735

Table 3.1: Indicates performance of cluster and image level face and text detection
from the eye tracking samples.We notice that the recall (marked in bold) is high sug-
gesting that the proposed approach seldom misses face and text detections in images.
This is achieved at a sufficiently good precision ensuring that this method can be valu-
able to localize ROI to reduce the search space for computationally expensive face and
text detectors.
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3.5 Applications

There have been several efforts to model context [90, 7, 29, 44, 27] in single and

multi-class object detection problems. The proposed faces and text eye tracking priors

can be an extremely useful alternate source of context to improve detection. Therefore,

we investigate the utility of these priors for text detection in natural scenes as well as

cat and dog detection in images which are challenging problems.

3.5.1 Detecting Cats and Dogs

Detecting cats and dogs in images is a difficult task as they have high variability

in appearance and pose coupled with occlusions. However, in these problems, the ani-

mal face/head is the most distinctive part and the state-of-the-art cat and dog detection

algorithm proposed by Parkhi et al. in [74] makes use of this information. The final

detection algorithm consists of two steps, the head/face detection and segmenting the

cat/dog body by learning features from the face. The head detection used deformable

parts model [35] and the body segmentation utilized iterative graph cuts [79, 11] by

learning foreground and background properties . For a detailed review of the approach

we refer the reader to [74].

The proposed eye tracking based face detection prior can significantly reduce the

search space for cat and dog faces/heads in images. As human fixations are typically

focused towards the eyes and nose of the animals, we construct a bounding box around
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the face clusters to localize the cat head. When the cluster is approximated by a rect-

angular bounding box R with width w and length l containing all the eye tracking

samples, an outer bounding box B centered around R of size 2.7l × 2.2w always con-

tained the entire face within the box. Even under this conservative approximation, the

search space for cat/dog faces is reduced to 15.3% of the entire dataset (image area)

using the proposed eye tracking based face detection model.

Figure 3.10: Example cat and dog face (blue box) and body (green box) detections
from the proposed algorithm.

Figure 3.11 shows the Average Precision curves using multiple detection thresh-

olds for the head detection for both cats and dogs. We notice that the head detection

performed only in the rectangular regions B is consistently higher than baseline (in the

entire image). Especially in high recall scenarios (low detection threshold), the average

precision of the proposed approach is significantly greater than the baseline approach

[74]. In the whole body detection problem as well, the proposed approach outperforms

the baseline approach over a larger detection threshold range. In addition, the cat and

dog head detection algorithms are 4.8 and 5.7 times faster respectively as they operate
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Figure 3.11: Plotting Average Precision (AP) of Cat head (top left) Dog head (top
right), Cat Body (bottom left) and Dog Body (bottom right). The proposed (green) and
baseline (red) curves are plotted against the detector threshold of deformable parts
model. The maximum AP of baseline and proposed algorithm is comparable in all
cases, however, the AP of the proposed approach is higher than baseline in high recall
scenarios (low detector threshold) for both the head and body detectors of cats and
dogs. Therefore, on an average the proposed approach is more stable over the detector
threshold parameter than the baseline.

in the reduced search space. Therefore, we achieve dual benefits of better detection

performance with considerable speed-up for dog and cat detection problems. We note

that the time of the proposed algorithm which we use for comparison includes the face

cluster labeling overhead as well. Finally, Figure 3.10 illustrates some dog and cat de-

tection examples and Figure 3.12 presents an example scenario where the proposed cat

face detection approach outperforms baseline as it limits the search ROI.
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Figure 3.12: An example scenario where the head detector of the proposed approach
(b) operating only in the attention region (c) marked in blue outperforms the baseline
cat head detector (a). The baseline detector has a false detection as noticed in (a).
Finally, red points in (c) denotes the cluster identified as face/head from which the
blue attention region is constructed.

3.5.2 Detecting Text

Detecting text in natural scenes is an important problem for automatic navigation,

robotics, mobile search and several other applications. Text detection in natural scenes

is challenging as text is present in a wide variety of styles, fonts and shapes coupled

with geometric distortions, varied lighting conditions and occlusions. Text detection

approaches are divided into texture based and connected component (CC) based ap-

proaches. Texture based approaches typically learn the properties of text and back-

ground texture [23, 108] and classify image regions into text and non-text using sliding

windows. Connected component (CC) based approaches [22, 82] group pixels which

exhibit similar text properties. The grouping happens at multiple levels: character,

word and sentence. This is followed by a geometric filtering technique which removes

false positives. Stroke width transform (SWT) [32] is an elegant connected component
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based approach which groups pixels based on the properties of the potential text stroke

it belongs to. We utilize SWT as the baseline text detection algorithm as it obtained

state-of-the-art results in the text detection datasets [61, 96] from which we obtained

the images.

The first step of SWT is edge detection and the quality of edges primarily deter-

mine the final text detection performance [55]. The presence of several false edges

especially in highly textured objects leads to false detections and therefore we propose

an edge subset selection procedure from text priors obtained by labeling the eye track-

ing samples. A connected component edge map is obtained from the canny edges and

we retain connected components that are sufficiently close to regions labeled as text.

This is implemented by convolving the eye tracking samples using a Gaussian filter of

variance 150 pixels (conservative selection) and obtaining a binary text attention map

in the image plane by selecting regions which are above a threshold (0.02 in our case).

In the following step, connected components of the edges which have an average text

attention > 0.4 are retained for text detection.

The performance of the text detection is validated using standard precision-recall

metrics popular in text detection literature[32]. Table 3.2 quantifies the improvements

due to the proposed approach in precision and F-Measure of the text detector. We no-

tice significant gain in precision and F-Measure, about 37% and 15% respectively,

compared to baseline SWT. Table 3.2 also indicates that we need to process only 34%
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Precision Recall F-Measure Mean Edges

SWT 0.436 0.669 0.530 6723

Our Method 0.599 0.655 0.625 19745

Table 3.2: Comparison of the performance of the proposed text detector with eye
tracking prior and baseline SWT. There is significant gain in the precision (∼37%
compared to baseline) for a small loss in recall (∼2%). This results in improved
overall F-Measure.

Figure 3.13: Examples of images where the proposed text detection approach per-
forms reliably.

of the edges in the dataset which makes the proposed approach 2.82 times faster than

baseline SWT. We note that the time of the proposed algorithm which we use for com-

parison includes the text cluster labeling overhead as well. Figure 3.13 highlights some

example detections from the proposed algorithm. Figure 3.14 compares some results

of the proposed approach to baseline SWT and indicates the utility of the text atten-

tion map to limit the ROI for text detection. In summary, we obtain significantly better

detector precision than baseline SWT in considerably lower detection time.
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Figure 3.14: Two example scenarios ((a)-(c) and (d)-(f)) where SWT results ((a) and
(d)) are outperformed by the proposed approach ((b) and (e)). The attention regions
((c) and (f)) shows the eye tracking samples classified as text in red and the ROI used
by the text detector in blue. Therefore, as the false positive portion in SWT (red boxes
in (a) and (d)) is removed by the generated text attention region, we obtain better
detector precision in these images.

3.6 Discussion, Summary and Future Work

This work is the first attempt at interpreting image semantics from the manner in

which multiple subjects look at these images in a free viewing task. Consequently, we

generate semantic priors by analyzing eye tracking samples without image information.

We focused on two semantic categories, faces and text, and collected a new eye track-

ing dataset. The dataset consists of 300 images with 15 subjects with specific focus

on humans, dogs, cats and text in natural scenes. The eye tracking fixation samples
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are clustered using mean-shift. Intra- and inter-cluster features are computed which

eventually maps to a labeling problem using an MRF. The proposed approach obtains

promising results in classifying face and text regions from background by only analyz-

ing eye tracking samples. This information provides a very useful prior for challenging

problems which require robust face and text detection. Finally the proposed semantic

prior in conjunction with state-of-the-art detectors obtains faster detections and higher

precision results for dog, cat and text detection problems compared to baseline.

The proposed approach also has a few limitations. If the face image almost occupies

the entire screen, multiple clusters at different face parts will be formed and our dataset

does not provide sufficient samples to model this behavior. Furthermore, if the image

has a large number of text lines, the subjects do not have sufficient viewing time to

gather all the information presented. This can be handled by allowing the subject to

control viewing time. Both these issues will be addressed in future extensions of this

work.

In addition, one can explore better localization of face and text regions for the de-

tectors from the eye tracking information. Perhaps one could learn the relationship

between the ground truth bounding boxes and the cluster properties. Additionally, an

edge learning technique from the cluster labels for the text class could improve the

proposed text detection algorithm. Finally, it would be interesting to investigate learn-

ing eye tracking priors for other semantic categories and over video sequences from
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multiple subjects.

55



Chapter 4

Eye tracking assisted object extraction

from videos

“What is important is not what you

hear said, it’s what you observe”.

Michael Connelly

In the previous chapter we observed how eye tracking data from multiple subjects

in a free viewing task can be used to localize specific objects in images. This idea

can be extended to videos where eye tracking data is more efficient in annotating large

number of frames in a relatively smaller duration. Therefore, in this work we propose

an algorithm to extract objects from videos which attract visual attention. As human

attention is naturally biased towards high level objects in visual scenes, this information
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can be valuable to extract salient objects in a scene. The proposed algorithm extracts

dominant visual tracks by a combination of mean-shift and Hungarian algorithm on eye

tracking data from multiple subjects. These visual tracks guide a generic object search

algorithm to get candidate object locations and extent in every frame. Further, we

propose a novel multiple object extraction algorithm by constructing a spatio-temporal

mixed graph over object candidates. The object extraction inference is obtained using

binary linear integer programming. Finally, the object boundaries are refined using

grabcut segmentation algorithm. The proposed technique outperforms state-of-the-art

object segmentation using eye tracking prior and obtains favorable segmentation results

over algorithms which do not utilize eye tracking data.

This work is organized as follows. We motivate the problem and discuss the related

work in Section 4.1. In Section 4.2 we introduce the eye tracking dataset. Our algorithm

to extract visual tracks from eye tracking data in described in Section 4.3. The multiple

object extraction framework is also presented in this section following which in Section

4.4 we demonstrate the results of the proposed approach. Finally the conclusions and

future work are discussed in Sections 4.5 and 4.6 respectively.
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4.1 Introduction

Object extraction in videos is a challenging problem in computer vision. Auto-

mated extraction of objects in a video sequence can benefit several applications related

to video annotation, compression, summarization, search and retrieval. A critical bot-

tleneck in object extraction is defining the importance of objects in a video sequence.

Several works in object extraction from videos have focussed on utilizing motion to

determine the importance of objects in video sequence. These methods typically aim

to extract a dominant object in the scene, where object importance is determined by

motion. In [59] Lee et al. identify important motion segments representing an object

and extrapolate the object of interest throughout the video frames. In [62] Ma et al. ex-

tracted objectness proposals from all video frames and identify the important object by

connecting the proposals using mutual exclusiveness contraints. In recent work in [106]

Zhang et al. proposed a framework to extract objects using objectness [31] and opti-

cal flow proposals and segment the key object by dynamic programming on a directed

acyclic graph. They also indicate a technique to ensure robustness to broken object

segments. All the aforementioned techniques utilize motion to define the importance of

objects and can extract only a single object of interest from a video sequence. However,

motion may not be a good metric to determine importance of objects in videos. For ex-

ample in a video sequence where two subjects are having a conversation, the motion

cues might be misleading. We note that extraction of salient objects in a scene can be
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better understood by visual attention it attracts in a scene. Therefore, in this work we

investigate the utility of eye tracking to extract multiple interesting objects in a scene.

Eye tracking data is biased towards high level semantics in static and dynamic

scenes. Therefore, visual attention can provide a robust prior to assist multiple ob-

ject extraction problem in video sequences. Recent advancements in eye tracking tech-

nology has opened up avenues to collect data without affecting the experience of the

viewer. State-of-the-art eye trackers are affordable [4] and this has enabled large-scale

collection of eye tracking data from multiple subjects. Multimedia content is typically

viewed by a large number of people and collecting eye tracking data from a small frac-

tion of the viewers can provide weak supervision to guide object extraction. Therefore,

given a video sequence and eye tracking data from multiple subjects the objective is to

extract relevant objects of interest which attract visual attention. A visual illustration of

the proposed work is shown in Figure 4.1. Relevant to the proposed approach Mishra

et al. [68] propose a segmentation using fixation approach which segments objects of

interest given a single fixation point. They convert the image to polar coordinate space

and graph cut segmentation in the polar coordinate space corresponds to object contour

in the spatial domain. The approach was further extended using optical flow to segment

a single object around a fixation point in a video sequence. The primary limitation of

[68] is that they use a single fixation point and assume the fixation point is completely

inside the object of interest. However, the assumption can be limiting as there is cali-
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bration error in real eye tracking data especially when we have to extract small objects.

Additionally, [76, 94] have proposed image segmentation algorithms using multiple fix-

ations in order overcome some of the limitations of [68]. Recently, Papadopoulos et al.

[73] explored the interesting problem of weakly annotating objects using eye tracking

data to train object class detectors. The eye tracking annotations are used in the train-

ing phase to localize object bounding boxes which help train a deformable part model

[35] based detector. The final detection performance is considerably lower than perfect

ground truth annotations, however these annotations are obtained in about a sixth of

the time required to hand annotate the bounding boxes which is encouraging. In [81]

we propose an algorithm to extract face and text semantic priors using eye tracking

data from multiple subjects and use this to enhance state-of-the-art object detectors.

The algorithm is designed for images and is targeted for only face and text categories.

Eye tracking based activity and action recognition techniques [92, 67] have also shown

promise. In this work we propose an eye tracking assisted object extraction framework

which is not restricted to specific object categories. The contributions of the proposed

approach are as follows.

• A method to localize visual tracks from eye tracking data by solving a linear

assignment problem, which coarsely corresponds to object locations in video se-

quences

• A novel object extraction framework guided by visual tracks, which extracts mul-
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tiple objects in a spatio-temporal mixed graph by solving a binary integer linear

program

• A novel eye tracking dataset on standard video sequences

Figure 4.1: A simple illustration of the proposed problem. Given a video sequence,
we collect eye tracking data in the sequence from multiple subjects and utilize this
information to extract visually salient objects.

4.2 Eye tracking dataset on videos

We collected an eye tracking dataset on videos using Eyelink 1000 eye tracking

device [3]. The users rest their head on a chin rest and the eye position is sampled

by the eye tracker at 500 samples per second. Eye tracking data typically consists of

fixations and saccades. The information gathering stage is encoded in the fixations

and the saccades represent attention shift from one fixation to another. The eye tracker

also segments the samples as fixations and saccades. The video dataset consists of 20

videos collected from SegTrack [91], GaTech [40] and Chen Xiph.org [21] datasets.

The dataset consists of 1 to 4 dominant objects. The depicted scenes are obtained
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from static and moving cameras with static and moving objects of interest. Figure 4.2

highlights examples video frames from input videos from the dataset. The videos were

viewed by 21 subjects (between ages 21 and 35). The viewers sat 3 feet away from a

27 inch screen. The subjects were informed that it was a free viewing experiment and

the data was collected without any apriori bias. This dataset can be downloaded from

http://vision.ece.ucsb.edu/.

4.3 Proposed approach to extract objects from videos

using eye tracking prior

In the following we will utilize eye tracking data as additional prior to improve ob-

ject extraction from videos. An overview of the proposed approach is shown in Figure

4.3. The top row indicates the eye tracking processing steps to extract dominant visual

tracks from eye tracking data from multiple subjects. The bottom row describes the vi-

sual track guided object extraction and novel multiple object extraction framework on

a mixed graph. Finally the object boundaries are refined by segmentation using bound-

ing box prior. The following sections provide a detailed description of the different

modules which comprise the proposed framework.
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Figure 4.2: Illustrates some example frames from the videos in the eye tracking
dataset collected from Chen Xiph.org, GaTech and SegTrack datasets. We note that
the dataset consists of single and multiple stationary and moving objects with moving
and stationary backgrounds.

4.3.1 Eye tracking data processing to obtain dominant visual tracks

In order to extract dominant visual tracks from eye tracking data, we first introduce

a simple pruning step to remove non-object eye tracking data. Eye tracking data is bi-

ased towards high level semantic objects and as described in Section 4.1 consists of fix-
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Figure 4.3: Block diagram of the proposed approach to extract multiple objects from
videos using eye tracking prior. The top row indicates the eye tracking processing
stage. The bottom row is the multiple object extraction framework guided by the
visual tracks.

ations and saccades. The fixations represent the information gathering stage. Typically

fixations are present in video regions where objects are present. However, saccades

may or may not lie on objects in a video sequence. They lie on objects when the user

is tracking a moving object and are called smooth pursuit (they are classified by the

eye tracker as saccade) . However, saccades do not predominantly lie on any critical

object when the user is shifting attention from one object to another. Therefore, we

want to prune the saccades which indicate attention shift from one object to another.

We utilize optical flow to determine the nature of the saccades and if the saccades lie in
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the direction of optical flow we keep it for further processing otherwise we remove the

saccade. The eye tracker extracts saccadic scanpaths Si which have individual samples

sij, j ∈ {1...N}. Let xij denote the pixel location of sij in the image place. The opti-

cal flow at xij be denoted by O(xij). The saccadic scanpath Si lies in the direction of

optical flow if
∑

j
sij .O(xij)

|sij ||O(xij)| < t. This is illustrated in Figure 4.4.

Figure 4.4: Illustrates that the saccades in the direction of optical flow are probable
object saccades (smooth pursuit) and should be utilized along with the fixations for
object localization. Saccades not in the direction of optical flow indicate attention
shift from one object to another and can be pruned.

These pruned eye tracking samples are more probable to lie on objects in the videos

compared to raw eye tracking samples. In the next stage, we associate these eye track-

ing samples to extract dominant visual tracks which coarsely corresponds to objects of

interest in a video sequence. This is achieved by a two step hierarchical association

process similar to [48]. First, the eye tracking samples are associated in a conservative
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manner using mean shift clustering. This gives us tracklets representing eye tracking

data over small segments of objects through the video sequence. In the next step the

tracklets are associated to eventually represent dominant visual tracks.

Several association models have been proposed for multiple object tracking as re-

viewed in [54]. We use an approach similar to [48, 54] in which the authors jointly

model the tracklet associations with the false alarm hypothesis. Let the individual

tracklets of T be denoted by {T1, T2...TN}. Similarly let the tracks of S be denoted

by {S1, S2...SM}.

Now, the association term is decomposed as

P(S|T ) = P(T |S)P(S)

=
∏
Tk∈T

P(Tk|S)
∏
Sl∈S

P(Sl) (4.1)

Here we assume the likelihoods of the input tracklets are conditionally independent

given S and the tracks {Sl} are independent of each other.

A Bernoulli distribution is used to model the false alarm hypothesis of the tracklet

using the detector precision denoted by β. Therefore, the likelihood of a tracklet is

defined as

P(Tk|S) =


P+(Tk) = β|Tk| if ∃Sl ∈ S, Tk ∈ Sl

P−(Tk) = (1− β)|Tk| if ∀Sl ∈ S, Tk /∈ Sl
(4.2)

where |Tk| is the number of detections in Tk, andP+(Tk) andP−(Tk) are the likelihoods

of Tk being a true detection and a false alarm respectively.
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The tracklet association priors in (4.1) are modeled as Markov Chains.

P(Sl) = Plink(Tk1|Tk0)...Plink(Tkpk |Tkpk−1) (4.3)

where pk refers to the number of tracklets associated to form the track Sk. Basically,

the association prior is a product of transition terms representing linkage probabilities

between tracklets.

We note that Tk cannot belong to more than one Sl. Thus (4.1) is rewritten as the

following by inserting P+(Tk) into its corresponding chain.

P(S|T ) =
∏

∀Sl∈S,Tk /∈Sl

P−(Tk)
∏
Sl∈S

[
P+(Tk0)

Plink(Tk1|Tk0)..Plink(Tkpk |Tkpk−1)P+(Tkpk )

]
(4.4)

As we need to maximize (4.4), first we convert it into a cost function by taking

negative logarithms. The cost described in (4.4) can be optimized by the Hungarian

algorithm over tracklets similar to the one proposed in [48]. Here, a probabilistic cost

is formulated to associate any two tracklets and to denote a tracklet as a false positive.

In brief, to associate n tracklets a n × n cost matrix is built with the non-diagonal

entries denoting the tracklet association costs and the diagonals are the false positive

costs. The optimal tracklet associations and false positive set which minimize the cost

globally is obtained by the Hungarian assignment on this cost matrix. Therefore, the
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joint cost matrix CJ of dimensions n × n to associate any two tracklets Tp and Tq is

expressed as

CJ(p, q) =



lnP−(Tp) if p = q ≤ n

lnPlink(Tq|Tp) + 0.5[lnP+(T
i
p) + lnP+(T

i
q)]

if p, q ≤ n and p 6= q

−∞ otherwise

(4.5)

The optimal tracks are obtained by the Hungarian algorithm on CJ which assigns

every row to a unique column. If a tracklet is assigned to itself, it is a false positive

tracklet and is removed from the dominant visual track list.

4.3.2 Visual track guided object extraction from videos

The visual tracks coarsely localizes interesting objects in a video sequence and

thereby reduces the search space for important objects in the scene. Here, we note that

the importance is determined by visual attention. Specifically visual tracks provide the

following two critical pieces of information

• Number of visually salient objects in the scene

• Coarse spatial localization of the objects of interest

In this section we propose a novel principled framework to extract important objects

of interest guided by the visual tracks. In order to determine object location in images,
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we utilize the objectness measure to obtain objectness proposals. We notice that typical

objectness provides several overlapping bounding boxes around an object of interest.

Each bounding box is assigned an objectness score which indicates the score of the

bounding box representing an object. We refine this score to reflect motion information

by adding an additional term which measure optical flow magnitude contrast within and

outside the bounding box. Let the optical flow magnitude sum within a bounding box i

and frame f be Oif
in and outside it be Oif

out. Then, the optical flow score is measured as

Sifopt = 1 − e−
(O
if
in
−Oifout)

2

σopt . The overall combined objectness and optical flow score for

bounding box i in frame f is a linear combination of individual scores and is given by

Sifcomb = Sifobj + αSifopt.

Now given a set of bounding boxes in every frame, and the number of objects k

(number of visual tracks) we want to extract k distinct objects from the video sequence.

Each box has a unary score indicated by Scomb. In addition we also define pairwise

costs across bounding box pairs in successive frames. This score is determined from

overlap distance and color histogram distance between the two frames. Let bif and bjf+1

represent two bounding boxes in successive frames f and f+1, then the pairwise score

is represented as Sijfpair = Sijfoverlap + βSijfcolor, where Sijfoverlap =
bif∩b

j
f+1

bif∪b
j
f+1

and Sijfcolor =

1 − e
−

(hif−h
j
f+1

)2

σcolor , where hif and hjf+1 are the color histograms of the bounding boxes

in frames f and f + 1. Therefore, the overall combined unary and pairwise score

is represented as Sijfoverall = Sifcomb + S
i(f+1)
comb + γSijfpairwise. The overall temporal cost
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between bounding boxes bif and bjf+1 is Cijf
temp = 1− Sijfoverall.

Figure 4.5: The spatio-temporal graph to extract multiple objects is highlighted here.
The temporal costs shown in blue indicate inter-frame cost to connect a path through
two bounding boxes in successive frames. The intra-frame spatial costs are indicated
in green. They aim to penalize extraction of the same object in multiple paths.

We construct a graph using this cost and the aim is to extract k paths through the

graph which minimize the overall cost as shown in Figure 4.5. As objectness metric

extracts multiple bounding boxes around an object of interest it is possible to extract the

same object in several paths. In order to mitigate this we introduce spatial costs within
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a frame. The spatial cost ensures that the same object is not extracted in multiple paths

through the graph. The spatial cost associated with two bounding boxes bif and bjf

in frame f is Cijf
spatial =

bif∩b
j
f

bif∪b
j
f

. Therefore, the aim is to select paths which minimize

the overall spatio-temporal cost. Let the decision variables for the temporal costs be

denoted by xijf between bounding boxes i in frame f and j in f + 1. Also, let the

decision variables for the spatial costs be denoted by yijf between bounding boxes i and

j in frame f . Assuming the total number of frames is F , the optimization problem can

be formulated as

minimize
xijf ,y

ij
f

∑
i,j,f

Cijf
tempx

ij
f +

∑
i,j,f

Cijf
spatialy

ij
f subject to

∑
i

xijf =
∑
k

xjkf ∀j, f : Conservation of flow constraint

∑
j

xsj0 = k : Flow from source node = k to get k distinct paths

∑
i

xitF = k : Flow to terminal node = k, conservation of flow

∑
i

xijf = 1∀j, f : Two temporal paths to a node cannot be active

yijf = (
∑
k

xikf )(
∑
k

xjkf )∀i, j

Can be linearized as yijf ≥
∑
k

xikf +
∑
k

xjkf − 1

xijf and yijf ∈ {0, 1}

This results in a binary integer linear program as the decision variables are binary

and the constraints and the cost functions are linear. We utilize the GUROBI [42]
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solver to get the optimal solution to the problem which eventually extracts k distinct

paths from the graph.

Finally, the bounding box based object regions are refined using grab cut segmen-

tation. The initial bounding boxes extracted from the graph are iteratively refined in

every frame individually using grabcut segmentation [79].

4.4 Experimental results

In this section we evaluate the performance of object extraction using the proposed

approach. First we evaluate the performance of the visual track extraction module. For

this purpose we annotated important objects in the scene and define an object to be

important if it captures more than 20% of the visual attention from all the observers.

The ground truth important objects are defined by the following algorithm. We assume

to have an exhaustive set of ground truth object annotations in an image. We sort the

annotations by size and select the annotation which has more than 20% of the attention

in the sorted order. Once an object is identified, we remove the object and its attention

from the pool and repeat the process using the subsequent objects. Using this tech-

nique in the proposed dataset we observed 31 objects in total. The proposed approach

extracted 30 objects (visual tracks) with 2 false negatives and 1 false positive.

After extracting the visual tracks representing objects in the video sequence, we
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want to segment the object of interest from the videos. Our graph based object ex-

traction algorithm extracts bounding boxes representing important objects in the scene.

This is processed by the grabcut based refinement technique to obtain a better contour

accurate representation of the object. Our approach is compared with [68] to evaluate

the capability of multiple object extraction using eye tracking prior. As [68] requires

a unique fixation point per object, we extract the median of the visual track in every

frame to provide the fixation point which provides the pivot for the segmentation. Our

approach is evaluated using track level VOC score between the ground truth and ex-

tracted objects. Let the ground truth track be bGT and the proposed approach track

be denoted by bour, then the VOC score is calculated as bGT∩bour
bGT∪bour . A comparison of

our multiple object extraction algorithm with [68] is highlighted in Table 4.1. We no-

tice that the proposed approach outperforms [68], which is the state-of-the-art in eye

tracking assisted object extraction algorithm by a significant margin.

Our algorithm without
Eye Tracking

Data

Visual
Tracks
Only

Active
Segmentation

[68]

Our algorithm
bounding

boxes

Our algorithm
with

grabcut
Average

VOC score 0.21 0.23 0.38 0.37 0.46

Table 4.1: Comparison of the performance of our multiple object extraction algorithm
with active segmentation using fixations [68]. We also selectively compare the perfor-
mance of different sub-blocks of our model. We notice that both the object extraction
module and eye tracking data contribute equally to extract objects which attract visual
attention.

We also want to understand the role of eye tracking and object extraction module
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individually to localize objects in a video. For this purpose we selected bounding boxes

around every visual track by using µ ± 2σ, where µ and σ are the mean and variance

of the visual track in every frame. These bounding boxes represent eye tracking based

bounding boxes ignoring visual information from the video sequence. Additionally, the

multiple object extraction module is individually run on the video sequence without the

eye tracking based localization prior to quantify the performance of the multiple object

extraction framework without utilizing the eye tracking data. However, we utilize the

number of visual tracks to extract k objects from the video sequence. We notice in

Table 4.1 that the proposed approach outperforms individual eye tracking and object

extraction methods. Some example object extraction results using the proposed ap-

proach is shown in Figure 4.6. After applying grabcut, the final multiple object video

segmentation results on a few example videos is shown in Figure 4.7. Finally, we also

illustrate some example results from [68] in Figure 4.8. We notice that their algorithm

is highly sensitive to the location of the fixation and noise in fixation localization can

severely affect their performance.
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Figure 4.6: Shows example results using the proposed approach to extract multiple
objects represented by bounding boxes. We see the proposed approach is able to local-
ize different visually salient objects in the video sequences with reasonable accuracy.
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Figure 4.7: Shows example results from the proposed approach after applying grabcut
based video segmentation to the extracted multiple object bounding boxes. We see the
proposed approach is able to segment multiple objects in the video sequences with
reasonable accuracy.
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Figure 4.8: Shows some segmentation results using [68]. We notice that in the top
row, when the fixation slightly positioned outside the object of interest, [68] breaks
down. In addition, the algorithm suffers from similar issues in the bottom row as well
as not being robust to the presence of the occluding pole.
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4.5 Summary

Human visual attention is significantly biased towards high level semantic objects in

visual scenes. Therefore, this information can be extremely useful to extract important

objects in videos. Recent advances in eye tracking technology has enabled collection

of eye tracking data from several subjects on a large scale. Multimedia applications

can significantly benefit from the availability of such technology. This work proposes a

novel framework for multiple object extraction using eye tracking data. The algorithm

first clusters the eye tracking data using 3D mean shift to obtain visual tracklets, which

are in turn associated to get visual tracks which coarsely localizes objects in a video

sequence. The number of visual tracks indicates the number of visually significant ob-

jects and the extent of the track can be utilized to reduce the search space for objects.

The visual track guided object search provides object proposals in every frame using

objectness measure. Further, this information is used to build a spatio-temporal mixed

graph and we extract paths representing objects from this graph by inference using bi-

nary integer linear programming. The extracted bounding box based objects are refined

using grabcut segmentation to get object contour based segmentation.

The proposed approach outperforms the state-of-the-art object extraction using eye

tracking fixation information. In addition we note that proposed combined framework

which utilized both the object extraction and eye tracking information outperforms the

individual modes of object localization.
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4.6 Future Work

The proposed work is the first attempt to tackle object extraction from videos guided

by eye tracking data. Several other problems in computer vision can benefit from the

presence of eye tracking data. It would be interesting to explore the importance of

eye tracking in image retrieval and activity recognition problems. Also, single subject

eye tracking guided algorithms need further research as they will enable applications

beyond multimedia where it can be combined with wearable technology. With respect

to the proposed approach, in the future it would be interesting to explore the importance

of how the number of eye tracking subjects affects object extraction performance.
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Chapter 5

Saliency enhanced computer vision

“The eye sees only what the mind is

prepared to comprehend.”

Roberston Davies

The previous chapters utilized eye tracking to improve object detection in images

and videos. In this chapter, we utilize saliency maps which mimic human attention

to guide search for text. Humans have a remarkable ability to quickly discern regions

containing text from other noisy regions in images. The primary contribution is to

learn a model to mimic this behavior and aid text detection algorithms. The proposed

approach utilizes multiple low level visual features which signify visually salient re-

gions and learns a model to eventually provide a text attention map which indicates

potential text regions in images. In the next stage, a text detector using stroke width
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transform only focuses on these selective image regions achieving dual benefits of re-

duced computation time and better detection performance. Experimental results on the

ICDAR 2003 text detection dataset demonstrate that the proposed method outperforms

the baseline implementation of stroke width transform, and the generated text atten-

tion maps compare favorably with human fixation maps on text images. This work is

organized as follows. In Section 5.1 we introduce the problem and review the related

literature. A brief background of the text detection algorithm adopted in this work is

presented in Section 5.2. In Section 5.3 we present our algorithm to learn text attention

maps from visual saliency algorithms.In the following Section 5.4 we demonstrate the

results of the proposed approach. Finally the conclusions and future work are discussed

in Section 5.5.

5.1 Introduction

Detecting text in natural scenes is an important problem for automatic navigation,

robotics, mobile search and several other applications. Text detection in natural scenes

is challenging as text is present in a wide variety of styles, fonts and shapes coupled

with geometric distortions, varied lighting conditions and occlusions. Text detection

techniques can be broadly classified into two categories: texture based approaches and

connected component based approaches. Texture based approaches learn the texture
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differences between background and text regions. Image filtering techniques like Dis-

crete Cosine transform [108] and Wavelet transforms [103] and Gabor filters [49] are

commonly employed to represent the texture of text. These approaches typically use

sliding windows and classify local image regions as text or non-text.

The second class of connected component (CC) based approaches are motivated by

grouping pixels which exhibit similar text properties. The grouping happens at multiple

levels : character, word and sentence. This is followed by a geometric filtering tech-

nique which removes false positives. Shivkumara et al. [82] proposed a CC approach

in the Fourier-Laplace domain and geometric filtering using text straightness and edge

density. Chen et al. [22] illustrated a CC based approach using Maximally Stable Ex-

tremal Regions (MSER). The popular Stroke Width Transform (SWT) [32] formulated

by Ephstein et al. is also a CC based approach.

Figure 5.1: Left to right: 1. Input image. 2. Text attention map derived using visual
attention features. 3. The text detection output indicated by the blue rectangle. Best
viewed in color.

SWT is an elegant approach to detect text. However, its performance heavily relies
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on the quality of edges which drive the transform computation. We propose a visual

attention inspired solution to prune the search space of the SWT detector closer to text

edges. In a free viewing task, human visual attention is heavily biased towards text

regions [17] which have specific low level attention properties. Therefore, bottom up

visual attention models which are designed to mimic human attention provide a useful

prior for text detection. Given a set of training images, we compute several low level

visual saliency maps, and train a classifier to understand both correctly and incorrectly

labelled text and non-text regions provided by SWT detector. In a new test image,

we use this classifier to produce a text attention map and SWT based text detection

search is restricted to regions highlighted by this map improving both the speed and

robustness of the detector. An example text detection obtained using our approach is

shown in Figure 5.1.

In [88] Sun et al. also proposed a visual attention based text extraction approach

based on Itti and Koch maps [51]. They used a predefined linear combination of

the intensity, color and orientation channels to derive a map which filters false text

blocks from potential character areas obtained by simple connected component anal-

ysis (CCA). This approach has several drawbacks. First, CCA based text detection is

unreliable in the presence of noisy edges. Further, the weights for different features

cannot be precomputed as in [88] when the number of bottom up features is large and

finally [88] does not provide text attention map which prunes the detector search space.
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Our approach overcomes the limitations of [88] by enhancing the state of the art SWT

detector. The primary contributions of our work are

• Learning a model to derive text attention maps for images from multiple bottom-

up saliency features. These maps compare favorably to human fixations in text

images.

• Utilizing the learnt text attention map to improve the speed and accuracy of the

stroke width transform algorithm.

5.2 Background: Stroke Width Transform

The proposed work aims to improve Stroke Width Transform (SWT) algorithm.

SWT is a CC based approach with four stages, stroke width computation, character

level grouping, geometric filtering and text line grouping. These stages are briefly de-

scribed below.

Stroke Width Computation: Given an image, a corresponding edge map is computed

using Canny edge detector. In addition, a gradient map is also obtained. From every

edge pixel, rays are projected in the direction of the gradient until it encounters another

edge pixel with an opposing gradient which is in the interval [+π
6
,−π

6
] from the original

gradient direction. If this condition is satisfied, pixels traced in this process potentially

belong to the cross section of a stroke and are labelled as stroke pixels with width value
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equal to the euclidean distance between the two edges. If an opposing gradient is not

encountered, the ray is discarded or no stroke value is assigned to the pixels traced in

that process. However, this approach fails in the intersection of multiple strokes like

the junction present in ”T” as opposing gradient is absent in edges belonging to the

junction. To fix this problem, a second iteration is performed along the edge pixels.

Here, the discarded pixels are marked as strokes if more than a significant portion of

these pixels have non-zero stroke width value from the first iteration. Finally, we obtain

a map with potential strokes. To detect both bright and dark strokes, this algorithm is

executed twice, in both the positive and negative gradient direction.

Character level grouping: In this stage similar strokes widths are grouped into charac-

ters using a modified connected component algorithm. This algorithm ensures grouping

of two neighboring pixels if their stroke width ratio is in the range [3, 1
3
].

Geometric filtering: Detected character regions which do not satisfy certain geometric

properties related to aspect ratio, median stroke width and size of the connected com-

ponents are discarded.

Text line grouping: Characters which have similar stroke widths, letter widths, height

and spaces between letters and words are grouped to obtain text lines. A text line must

have minimum three characters to suppress false detections.

For a detailed version of this algorithm we refer to [32]. A visual example de-

scribing the steps in SWT is shown in Figure 5.2 code is not publicly available and we
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implemented our version of the algorithm.

Figure 5.2: Left to right: 1. The input image. 2. Stroke Width Transform Image.
3. Connected components and geometric filtering. 4. Final Detections (blue boxes).
Best viewed in color.

5.3 The Proposed Approach to learn text attention maps

The performance of SWT significantly depends on the quality of edges extracted

from images. Typically, highly textured edges from trees, brick walls and other natural

structures reduce the precision of SWT detector as it is prone to false positive detec-

tions in those regions. To overcome this problem, we develop an edge subset selection

procedure which reliably detects text edges. Given a set of edges E in an image, we

want to select a subset of edges E ′ which improves the SWT detector. Mathematically

we want to obtain

argmax
E ′

qE
′

SWT S.T E ′ ⊆ E (5.1)

where qESWT is a quality measure of SWT detector using edges E .
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Figure 5.3: Example of visual attention features computed in an image.

5.3.1 Learning

The best E ′ would correspond to a subset of edges which belong to text. As hu-

mans are adept at text detection, biologically motivated low level visual attention fea-

tures which mimic human attention provide a useful prior for text boundary detection.

Therefore, to approximate (5.1), we propose a learning based algorithm which esti-

mates a mapping from these multiple low level saliency maps to text regions in an

image for removing distracting edges.

5.3.2 Features

The following low level features are used in our algorithm:

Itti and Koch Saliency map: This early saliency model [51] is motivated by linear filter-
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ing and center surround operations and biologically motivated normalization provides

intensity, color and contrast channels which we use in our model. This approach was

primarily motivated for rapid analysis of visual scenes.

Context Aware Saliency Map: This approach [39] builds a mathematical model to the

principles of human visual attention supported by psychological evidence which in-

cludes local global scale saliency, multi-scale saliency enhancement, immediate con-

text inclusion, center prior and high level factors. This approach extracts salient objects

together with parts of the discourse that surrounds them that can shed light on the mean-

ing of the image.

Steerable pyramid features: The local energy of steerable pyramid filters [84] are cor-

related to visual attention. We use the features extracted from the pyramid subbands in

four orientations and three scales similar to [53]. This combination provides 12 atten-

tion maps.

SUN Saliency map: Saliency Using Natural statistics [107] provides a map utilizing

top-down and bottom-up information. This approach uses self information of visual

features and pointwise mutual information between features and target during target

search process.

We examined the utility of other saliency maps [53, 71, 46, 43, 56] which are ef-

fective in predicting human eye movements in natural images, however their text speci-

ficity was not suitable for our model, primarily attributed to the center bias prominent in
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these saliency maps. In total we have 17 attention maps and an example of the different

extracted features are shown in Figure 5.3.

Given an image, we want to learn a binary map which highlights image regions

which have high probability of text using features signifying visual attention. This map

is called a text attention map, obtained by training a classifier to understand a mapping

from attention features to text regions in images. Given a training set, we use SWT to

extract character regions in all the images. Using the ground truth labels, we obtain

sufficient true and false positive character regions.

Figure 5.4: Block diagram of the training(top) and test (bottom)modules of the visual
attention based learning paradigm.

A subset of pixels from true positive character regions are selected for training the

text class. We also note that non-text class consists of equal number of pixels from false
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positives and true negatives. This procedure ensures the training set for non-text class

consists of sufficient examples where SWT usually provides false positives enabling

the text attention map to correct SWT mistakes. Next, we learn a model to predict these

text and non-text regions using visual attention maps at these selected pixel locations.

Given a new image, this model (classifier) generates a corresponding text attention map

by classifying every pixel as text or non-text and SWT based text detector only concen-

trates on regions classified as text. It offers dual benefits of lower computation time

and higher precision. Further, the edges contained in these text attention maps approx-

imate the edge subset selection problem (5.1). A block diagram of our framework is

illustrated in Figure 5.4.

5.4 Experiments and Results

We perform two separate experiments to validate the effectiveness of the derived

text attention maps. In the first part we compare the text attention maps to eye fixation

data in the MIT eye tracking dataset [53]. In the second experiment, we aim to improve

the detection performance of stroke width transform algorithm.
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5.4.1 Dataset and Setup

The ICDAR 2003 [61] text detection dataset is used to evaluate our algorithm.

The dataset consists of 258 training images and 251 test images with challenging text

present in various fonts, sizes, backgrounds, transparency, non-planar surfaces and re-

flections with word level ground truth annotations. As SWT is originally designed to

capture text line groups, words in a sentence are combined to obtain text line level

annotations for training and testing. During training, we utilize SWT and obtain true

and false positive character regions. Next, all the training maps are resized such that

the largest dimension consists of 200 pixels while maintaining the original aspect ra-

tio. From every resized map, we randomly sample 12% of true positive locations for

the text class and 7.4% of false positives and 0.3% of true negatives for non-text class.

This gives about 40000 training samples per class (equal false positives and true neg-

atives for non-text class). After training a model according to Section 5.3, for every

test image (after resizing it in the same manner) we classify each pixel and obtain a

text attention map by thresholding every pixel whose posterior probability of belonging

to text class> 0.35. This conservative threshold ensures most of the text regions are

preserved in the map allowing some false non-text regions too. In the following stage,

the SWT algorithm operates only on these regions for text detection. In practice we

obtain a connected component canny edge map and every connected component which

has more than 80% attention edges is selected for SWT based text detection.
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Algorithms 2 and 3 provide a step-by-step rundown of our training and test setup.

We briefly explain the steps involved in the algorithms. In the training phase, for each

training image, we compute the SWT (SW i) detections and obtains the true positives

(T Psubi ) , false positives (FPsubi ) and true negative (T N sub
i ) detections. This enables

learning a positive training set (train+) from the true positives and negative training set

(train−) from false positives and true negatives. A classifier (C) is trained using this set.

In the test phase, for each test image I, the text attention value is computed per pixel

using the learnt classifier C. The attention map (A) guides the selection of the edges

for SWT.

5.4.2 Comparison to Human Fixations

The proposed approach to obtain text attention maps was motivated to mimic the

manner in which humans viewed text images. To test that theory, we collected a set of

text images from MIT eye tracking dataset [53] and compared the text attention map

generated by our algorithm to the Gaussian smoothed human fixation map. Figure 5.5

illustrates a few example images with their corresponding human and text attention

map. We notice that our text attention maps significantly correlate well with human

attention maps for the specific class of text images.
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Figure 5.5: Left column shows the input image, center column corresponds to human
fixation map and the right column illustrates the proposed text attention map. The text
attention maps are similar to human fixation map on text centric images. Note that eye
fixations only includes foveal or central vision and peripheral vision is not captured.
Therefore, as row 1 and 3 only have a single word, eye tracking results are biased
towards the center of the word and therefore does not entirely overlap with our text
attention map. Moreover, the text attention maps reliably localize the text regions.
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Data: Input Images {Ii} and binary ground truth labels {Li}, i ∈ [1, N ]

Result: Classifier Model C

initialization tp=0.12, fp=0.074, fn=0.003;

for i=1→ N do

Fi = features(Ii);

SW i = Stroke Width Image(Ii);

Ti = Binary Mask(SW i): Binary mask of character regions;

T P i=Fi(Ti
⊙
Li): True Positives;

FP i=Fi(Ti
⊙

(1− Li)): False Positives;

T N i=Fi((1− Ti)
⊙

(1− Li)): True Negatives;

T Psubi = Rand. Subset(T P i) S.T |T Psubi | = b(|T P i|tp)c;

FPsubi = Rand. Subset(FP i) S.T |FPsubi | = b(|FP i|fp)c;

T N sub
i = Rand. Subset(T N i) S.T |T N sub

i | = b(|T N i|fn)c;

end

train+ =
⋃
i T P

sub
i ;

train− = (
⋃
iFP

sub
i ) ∪ (

⋃
i T N

sub
i );

C = Classifier(train+,train−);
Algorithm 2: Training algorithm
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Data: Test Image I, Edgemap E , Classifier C, Connected Component Edges CE

Result: Text Attention Map A, Attention Edges E ′ Detections D

initialization E ′ = ∅;

F = features(I); posterior = C(F);

for i,j ∈ [row,col] do

A(i, j) =


1 posterior> 0.35

0 else

end

for each c ∈ CE do

if
∑
p∈P c(p)A(p)
|c| > 0.8 then

E ′ = E ′ ∪ c

end

end

D = SWT(E ′) : Stroke Width Transform on E ′
Algorithm 3: Testing algorithm

95



5.4.3 Text Detection Results

The output of text detection algorithm are a set of rectangles denoting text lines.

These rectangles are matched to the ground truth rectangles representing text lines. A

match score m, between two rectangles is determined as the intersection area divided

by the union area. This quantity is 1 for identical rectangles and 0 for non-overlapping

ones. For a given rectangle t the best matching rectangle mb in a set of rectangles T

is defined by mb(t, T ) = max{m(t, t′)|t′ ∈ T }. This leads us to the definitions of

Precision and Recall as Precision =
∑
te∈E mb(te,G)
|E| and Recall =

∑
tg∈Gmb(tg ,E)
|G| . Here, G

and E are the sets of ground truth and estimated rectangles respectively. The precision

and recall are combined to a single quantity called f measure which is defined as f =

1
α

Precision+
1−α
Recall

. Typically α is set to 0.5.

Precision Recall f Measure Median Edges

SWT 0.613 0.721 0.664 12723

Our Method 0.720 0.727 0.724 19745

Table 5.1: Comparison of the performance of our algorithm and SWT

First, in the training phase we used three classifiers: SVM with Radial Basis Func-

tion(RBF) Kernel [19], Lib-linear SVM [33] and Linear Discriminant Analysis based

classifier (LDA) [8]. SVM with RBF kernel was able to learn a better model to predict

text regions on a validation set, than the linear classifiers as it obtained 86.3% accuracy
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Figure 5.6: Example detections (blue boxes) in images from ICDAR dataset. Best
viewed in color.

compared to 78.3% and 77.1% by Lib-linear SVM and LDA respectively. This valida-

tion is a significant step as it provides evidence that bottom up visual attention based

features can be used to understand text regions in images. Further, in the test stage,

SVM with RBF kernel is used to compare our approach to SWT.

In the test phase, the proposed approach using SVM+RBF kernel obtains signifi-

cantly better precision than baseline SWT and therefore f measure of our algorithm

outperforms baseline SWT by 9.04% as indicated in Table 5.1. The text attention map

is also able to remove a significant portion of false positive edges (about 55% from
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Figure 5.7: Illustrates two example scenarios where our algorithm (left) outperforms
SWT (center). The text attention maps (right) clearly ignores regions where SWT
detects false positives. The detections are shown in blue rectangles. Best viewed in
color.

Figure 5.8: An example image (left) where the proposed algorithm fails and the
corresponding attention map (right). In this image the background is very similar
to text region, hence, the text attention map fails to localize the text region. The
missed detections are shown in red rectangles and the false positive detections in blue
rectangles. Best viewed in color.
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Table 1) and our text attention coupled with SWT is 30% faster than baseline SWT.

Figure 5.6 shows some example detections obtained from our algorithm. We are able

to reject textured regions such as trees and bricks and is able to reliably detect text

even in the presence of reflection and background clutter. Figure 5.7 highlights some

visual examples where our method provides better detection results than SWT. The de-

rived attention maps for these images indicate that edges corresponding to low contrast

background regions (especially bricks) are ignored by the text attention maps leading to

improved detection accuracy. Finally, Figure 5.8 shows an example where our approach

fails to detect the text region in the image. The attention map in Figure 5.8 ignores the

text region as it blends in with the surrounding background which caused the missed

detection.

5.5 Summary

We have proposed a novel learning based framework to obtain text attention maps

for images. These text attention maps prune the search space for SWT based detection.

The overall pipeline significantly improves the precision of the SWT detector and also

reduces the computation time. However, in regions where the text blends with the back-

ground our approach fails to detect the text. In addition, our attention maps resemble

human attention maps in text images without multiple distractor elements. In the future
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one can explore the possibility of adapting a learnt visual attention model to provide

text attention maps instead of learning it ab initio from saliency maps.
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Chapter 6

Role of scene and camera context in

visual attention modeling

”Attention is the rarest and purest

form of generosity.”

Simone Weil

The previous chapters utilized eye tracking and saliency which mimic human at-

tention to improve object detection algorithms. In this chapter, we tackle the inverse

problem of developing better algorithms to predict where people look using advance-

ments in object detection and other computer vision techniques. We first analyse the

manner in which visual attention changes when camera focus changes. In order to

understand this we utilize an image gradient based approach to detect in-focus and out-
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of-focus regions in images. The analysis lays emphasis on the consistency of fixations

across images when camera focus changes. We also propose a visual attention model

to predict regions which humans typically fixate on. The model utilizes several low,

mid, high and scene context features and utilizes a regression algorithm to predict the

saliency in a test image. This model outperforms other state-of-the-art saliency and

visual attention models in this light field eye tracking dataset. Further, we analyze the

performance of the model when object annotation is manually given. Finally, we also

discuss an application of the proposed visual attention model to identify the “best im-

age” from a set of 2D images representing the light field image of a scene by defining

a focus based visual attention metric. We also present a new eye tracking dataset on

images captured using a light field camera. This dataset provides insight to the manner

in which human visual attention is dependent on region of focus in an image and image

semantics. This dataset was collected on 250 images from 21 subjects per image.

This work is organized as follows. In Section 6.1 we introduce the problem and

review the related literature. In Section 6.2 we introduce the eye tracking dataset on

images with varying camera focus. This is followed by the analysis of the eye move-

ment regions in Section 6.3 In Section 6.4 we present our algorithm to learn visual

attention maps by utilizing scene context features. In the subsequent Section 6.5 dis-

cusses the results of the visual attention maps learnt in our dataset and compares it to

state-of-the-art. Finally, the summary and future work are discussed in Section 6.6.
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6.1 Introduction and related work

There has been significant progress in light field camera technology in the past few

years. This has resulted in wide availability of commercial light field cameras and it

is an attractive alternative to traditional 2D imaging. Light field cameras are able to

capture the intensity values for each ray direction thereby implicitly represents the 3D

scene geometry. The growing popularity of light field cameras has led to several recent

research efforts tailored for light field images in object recognition [65], depth estima-

tion [99], segmentation [100], video acquisition [89], denoising and super-resolution

[69]. Several such algorithms can greatly benefit from a localizing technique which

identifies interesting regions by mimicking the manner in which humans process large

streams of visual data. This visual attention model will make the algorithms robust and

also enable them to allocate resources efficiently. Therefore, in this work we introduce

a novel eye tracking dataset collected from multiple 2D images of a light field image

captured using Lytro camera [38]. The camera focus region varies across the 2D images

and this causes a significant change in the manner in which humans view the images.

The example in Figure 6.1 clearly highlights the importance of camera focus in visual

attention modeling. We notice a dramatic shift in attention when the foreground text is

brought in focus compared to the background person.

Understanding the manner in which humans process visual stimuli is an interesting

problem [17, 81]. Several research efforts in computer vision [66, 37, 56, 6, 20, 87,
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Figure 6.1: Left-Right. Top-Bottom (1) Image with background person in focus (2)
Top 10% attention regions in the image from eye tracking data (3) Image with fore-
ground text in focus (4) Top 10% attention regions in (3). We notice a significant shift
in attention across two images of the same scene

97, 36, 95, 80, 77, 70], graphics [53], multimedia [63, 105], video compression [41,

50, 28] and robotics [83] have shown improved performance using visual attention

models. Early visual attention models [51, 78] were pure bottom-up approaches. They
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used several low-level image features such as color, texture and orientation in order

to determine regions of interest in natural images. However top-down factors such a

faces and text primarily attract visual attention [17]. In addition, image objects have

shown to be better predictors of human fixations compared to bottom up saliency [30].

A model which utilizes this information to obtain improved human attention maps was

proposed in [53]. The authors combine object detectors for car, person and face with

low-level saliency maps and learn an support vector machine (SVM) [26] to predict

human attention regions. The primary limitation of [53] is that it neglects object co-

occurrence and scene context based analysis.

Recent research using controlled experiments [45, 64] highlight the importance of

object co-occurrence and context for visual search tasks. These works indicate that

other objects in a scene can provide a distracting(sometimes positive) effect for visual

search of a specific object using reaction time studies. In addition context utilizing ob-

ject co-occurrence plays a critical role in object recognition [72]. In a similar perspec-

tive, modeling object co-occurrence for a free viewing task helps in creating a better

organization of interesting regions in a scene and our recent work in [56] introduces

scene context features and uses a regression algorithm to identify interesting regions in

images. The proposed visual attention model is inspired by [56] with additional scene

context information relevant to camera focus. A detailed overview of various saliency

algorithms and its applications are presented in [9] and a comparison of state-of-the-art
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saliency benchmarks is presented in [10].

It is known that the efficacy of higher level contextual features to predict attention

regions in images significantly depends on the reliability of object detectors. We have

witnessed significant progress in object detection algorithms [35, 98, 58], however bar-

ring some non-deformable categories, reliability is poor for several object classes such

as cats and dogs. In order to understand the gains of ideal object detectors, the proposed

algorithm is also tested on human annotations of important objects in the scene. The

primary contributions of this work are

• A model to predict attention regions in these images by utilizing low, mid, high

and scene context features based on camera focus

• Evaluating the performance of our model using human annotations simulating

ideal object detection scenario

• Predicting the best 2D still image from a light field image of a scene using a focus

based attention metric

• A new eye tracking dataset on light field images captured using Lytro camera

106



6.2 Eye Tracking Dataset on Light Field images

We collected an eye tracking dataset, with Lytro images using Eyelink 1000 eye

tracking device [3]. The dataset consists of 250 2D images from 105 Lytro images and

from each light field image multiple 2D images were obtained by focusing at different

depths corresponding to various objects in the scene. About 45% of the images were

obtained from publicly available database [5]. We captured the ramining images our

Lytro camera to get adequate images of both indoor and outdoor scenes. The dataset

has good representation of common objects in natural images such as faces, person,

text, car, dogs and cats. Figure 6.3 highlights some example images from the dataset.

The images were re-sized to 1024×768 pixels which is required by the eye tracker and

viewed by 21 subjects (between ages 16 and 35). The viewers sat 2.5 feet from a 27

inch screen and each image are shown for 3 seconds followed by 1 second viewing

the gray screen. The subjects are instructed that it was a free viewing experiment and

observe regions in images gather their interest without any prior bias. Also, eye tracking

calibration is performed every 50 images (randomized order for each subject) and the

entire data is collected in two sessions (125 images each).

Humans eye movement scanpaths typically consists of alternating fixations and sac-

cades. Fixations represent information gathering sequence around an interest region

and saccades represent transitions between fixations. The eye tracking host computer

samples the gaze information at 1000 Hz and automatically detects fixations and sac-
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Figure 6.2: Plot of focus change with attention change. We notice that there is no-
ticeable correlation (shown by red line) between visual attention change and change
in camera focus. The correlation is represented by the best line fir to this data which
has a slope of 0.27.

cades in the data. The eye tracking device also clusters the fixation samples and iden-

tifies fixation and saccade points. We use these fixation and saccade points to create

the ground truth visual attention maps. The number of fixations and saccade points

per image can vary from 6 to 15. In our experiments, the first fixation and saccade is

removed to avoid the initial eye position bias directed by the transition gray slide in the

experimental setup. The final human visual attention ground truth map is obtained by

filtering the fixations using a Gaussian filter.
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6.3 Analysis of eye tracking dataset

In this section we aim to understand the properties of eye movements across cam-

era focus. We identify in-focus and out-of-focus regions in an image using an approach

similar to [34]. Let L be a Lytro image and {Ii} represent the 2D images from L.

For image Ii, the gradient image Gi is computed and is divided into non-overlapping

sub-windows (we used 10× 10) and the image gradient magnitude (Gabs
i ) and standard

deviation (Gstd
i ) is computed on these sub-windows. The measure of focus in each im-

age pixel is square root of the product of the gradient magnitude and standard deviation

as shown below.

Fi(p) =
√
Gmag
i (p)Gstd

i (p)∀p ∈ pixels (6.1)

In some applications we require a binary threshold of whether the region is in-focus

or out-of-focus. This can be easily accomplished by thresholding the focus map Fi(p)

and create a binary focus map. Figure 6.4 shows some example binary focus maps

generated using the proposed algorithm.

6.3.1 Visual attention variability with camera focus

The first study understands the importance of how change in camera focus affects

visual attention. For each lytro image Li, we calculate the average focus change by
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computing the focus Fj for each image Ij, j ∈ 1...M using Equation 6.1. If there are

M 2D images representing a lytro image, there are M(M−1)
2

unique image pairs where

we measure focus change and the average focus change metric FCi for Li is computed

as

FCi =

∑M−1
j=1

∑M
k=j+1 2||F (i)− F (j)||2

M(M − 1)
(6.2)

The visual attention change from the ground truth masks is computed in a similar

manner. Let Gi represent the ground truth visual attention map for an image. The

average visual attention change metric V Ci for Li is computed as follows

V Ci =

∑M−1
j=1

∑M
k=j+1 2||G(i)−G(j)||2

M(M − 1)
(6.3)

The focus change (FC) is plotted against visual attention change (V C) in Figure 6.2

and we notice a correlation of 0.27 between focus change and visual attention change

which is significant. This analysis shows that standalone camera focus alters visual

attention and higher change in focus has some correlation to greater attention change. In

the following analysis we go beyond focus based analysis by accounting for objects in

the scene and understand how in-focus and out-of-focus objects affect visual attention.
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Figure 6.3: Examples of images from our dataset consisting of faces, text, people,
animals and car etc. at different focus depths.
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Figure 6.4: Two 2D images from a Lytro image and the corresponding binary focus
maps to their right.
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6.3.2 Object oriented focus based attention analysis

The dataset also includes manual annotations of important objects in each scene. In

total we have annotated 16 different objects in the scene. Some commonly occurring

categories are further divided according to their size as small or large as visual attention

properties depend significantly on the size of these objects. In total we have 23 different

annotated object types and a few examples are shown in Figure 6.5. They include

face, eyes, nose, mouth, person, text, animal, toy, flower, vehicle, electronics, plant

and building and categories such as face, text, animal, toy, flower, vehicle and text are

divided into small and large as they commonly occur in a variety of sizes. First, we find

that about 86% of all the visual attention maps obtained from fixations fall in the regions

annotated as objects. This highlights the primary role that high level semantics play in

modeling human visual attention. Also, the binary focus masks computed according to

Equation 6.1 are used to categorize in-focus and out-of-focus objects based on simple

majority vote. The visual attention density for each category is calculated and shown in

Figure 6.6 over focused and out-of-focus objects. We notice that camera focus plays a

critical role in determining the attention density captured by an object. Typically, small

objects have higher attention density than large objects as the density is averaged over

the number of pixels in the objects. Several important high attention density categories

such as small faces, text and animals which have sufficient representation in our dataset

experience about a two fold increase in visual attention when the objects are brought
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in-focus. In addition, the corresponding large text and animals have about 20% increase

in visual attention, however large faces have a more significant gain in visual attention

when they are in focus, about 60%, compared to out-of-focus large faces. This analysis

clearly portrays that camera focus is a significant factor in determining how humans

perceive images.

Figure 6.5: Examples manual object annotations

Figure 6.6: Attention density in 23 manually annotated objects in-focus (blue) and
out-of-focus (green). Objects in focus consistently have higher attention density than
out-of-focus objects
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6.3.3 Initial fixation statistics over camera focus

The previous section analyzes visual attention maps obtained from all fixations are

distributed across different object categories. In addition, it would be interesting to

study the effect of camera focus on initial fixations when a subject observes an image.

Typically the initial fixations are biased towards the most important concept or object

in the scene, and therefore we expect the importance of an object in a scene to be

enhanced when they are in focus and correspondingly expect earlier initial fixations

compared to when they are out of focus. Figure 6.7 highlights this trend in our dataset,

where the average number of fixations before the first fixation to an object is computed

over all the images. First, we notice that larger objects are fixated earlier than their

smaller counterparts. For the most commonly occurring objects such as faces, text

and animals in our dataset, on an average we observe the first fixation is delayed by

about 2 fixations for the small objects compared to the corresponding large objects. In

addition, we observe focus plays a significant role in determining the average fixation

number of the first fixation consistently for all objects. Especially for small objects,

we notice around 1.5 fixations delay when out-of-focus. However, in large objects the

first fixation is not significantly affected by camera focus for several categories with

faces being an exception. Previous studies [81, 17] have shown that initial fixations

are biased towards faces, however results in our dataset show the time to first fixation

to faces is not considerably lower than other categories. This can be attributed to the
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fact that several images in our dataset consist of multiple face images and though the

initial fixations are biased towards one of the faces, the average time for the first fixation

to any face is high due to the presence of other faces/people. This leads to increased

average number of fixations before the first fixation to a face.

Figure 6.7: Average initial fixation time in 23 manually annotated objects in-focus
(blue) and out-of-focus (red). Objects in focus consistently have lower average time
to first fixation compared to out-of-focus objects

6.3.4 Visual attention consistency across camera focus

The previous sections highlighted the manner in which camera focus changes the

way in which we observe objects in natural scenes. However, there is considerable

consistency as well in the way in which observers look at images of the same scene

which only differ by region of focus. The performance of visual attention consistency

is presented using ROC curves, which are computed as follows. For each image we

have a ground truth map and a predicted saliency map from an image from differ-
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ent focus computed as described in Section 6.4. This saliency map is thresholded at

k=1,3,5,10,15,20,25 and 30 percent to obtain binary saliency maps. The percentage of

ground truth map contained within each binary saliency map is the performance mea-

sure of how attention maps from different focus predicts the ground truth. It is well

known that average fixations of other subjects are a good predictor of a new observer’s

fixations. Therefore, the consistency of fixations across multiple foci is compared to

the consistency of fixations among multiple subjects in the same image. This curve

which measures consistency of fixations among multiple subjects is called the human

ROC curve. Figure 6.8 compares the performance of the human ROC curve to focus

ROC curve and we notice a drop of about 10% in the focus ROC curve.

We also highlight examples of cases where visual attention is consistent across

camera focus and cases in which focus drastically changes visual attention in Figure

6.9. The plots of the individual ROC curves of the examples shown in Figure 6.9 are

shown in Figure 6.10. A significant drop and gain in visual attention consistency in the

respective images is noticed compared to the mean scenario in these examples.
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Figure 6.8: Visual attention consistency across multiple focus images (Focus ROC
curve) . It is shown in reference to the human ROC curve which measures the consis-
tency among fixations in the same image across multiple subjects.
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Figure 6.9: Row 1 and 2 shows examples of cases where camera focus significantly
alters visual attention. We notice categories such as text can have a significant change
in the manner in which we view images if their focus attributes change. Rows 3 and 4
highlights examples where camera focus does not significantly alter visual attention.
In row 3, the out of focus faces also attract significant attention. In row 4, there is
only one salient object in the center of the image and therefore attracts considerable
attention irrespective of camera focus.
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Figure 6.10: The plot shows the consistency of visual attention in the images shown
in Fig 6.9
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6.4 Visual attention model for light field images

In this section, we propose an algorithm to predict salient regions in an image us-

ing image features. Our saliency algorithm learns a regression model from features

extracted at multiple levels in an image. In addition to the low, mid and high level

features used in [53], the proposed technique also uses scene context features which

model the interaction between these features. The following sections explain the pro-

posed feature extraction and learning steps.

6.4.1 Feature extraction

Low level features

Our model utilizes the following low level features due to their importance in bot-

tom up saliency.

Itti and Koch saliency: Early saliency model provides intensity, color and orientation

channels [51] motivated by linear filtering and center surround operation, suitable for

bottom up visual attention modeling.

Steerable pyramid filters: These filter responses correlate well with visual attention and

therefore local energy of steerable pyramid filters [84] in three scales and four orienta-

tions are used.

Torralba Saliency: Provides a holistic representation of a scene [71] using coarsely lo-
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calized spectral information.

Signature Saliency: Provides a saliency map [46] which spatially approximates image

foreground using the theoretical framework of sparse signal mixing.

Graph Based Visual Saliency: Jointly models activation map creation and feature ex-

traction in a unified manner by defining edge weights using dissimilarity and saliency

[43].

Mid level features

Horizon detection is performed using using gist descriptor [71]. It is especially

important in outdoor scenes where salient objects are present near the ground plane .

High level features

High level objects such as faces and text have high visual saliency. We utilize

automatic object detectors for face [93], person [35], car [35] and text [104] in our

model. Also, from our analysis in Section 6.3, we notice that camera focus plays a

major role in determining visual attention for high level objects as shown in Figure

6.9. We notice that objects in focus consistently have higher attention density than

out-of-focus objects according to Figure 6.6. Therefore, the focus regions in an image

are computed according to Equation 6.1 and each detected object is identified as in-

focus or out-of-focus, based on whether a majority of the pixels are in or out-of-focus
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respectively. Therefore the number of high-level features is doubled from 4 to 8 in the

proposed algorithm.

Scene Context features

In addition to high level features, we utilize features which model the pairwise

interaction between multiple high level features inspired by our previous work in [56].

High level features typically model attention gain in the locality of semantic objects.

However, presence of interesting objects in a scene also incurs attention loss in other

objects in a scene. This attention loss scene context features can be described using

a cause-effect mechanism. Let there be N possible objects in a scene and fSCij (x, y)

denote the scene context feature between object i and j at position(x, y). The scene

context vector models the attention loss in the scene incurred on the pixels of object

i (effect) due to presence of object j (cause). Now let the total number of objects

corresponding to label i in the scene be denoted by Ni and the number of object i′s in

position (x, y) be ni(x, y). Let the image be denoted as I, the scene context vectors are

defined as

fSCij (x, y) =


Nj − nj(x, y) if ni(x, y) > 0

0 if ni(x, y) = 0

(6.4)

Figure 6.11 presents an example of scene context features where N = 3. Object 3

is not present in the image and therefore fSCij = 0 if i = 3 or j = 3. Next, fSC11 informs
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the regions where object 1 is present about another object 1 detection. Further, fSC21

indicates the pixels of object 2 the presence of two object 1 detections.

Figure 6.11: An example high level object layout with N=3 and the corresponding 9
scene context feature maps

Typically, the number of distinct objects which can occur in an image is large and

modeling the cause-effect relationship between every pair of objects is necessary. How-

ever, it is not possible to obtain such large number of pairwise interactions in practical

eye tracking datasets. Therefore, to reduce the dimensionality of the scene context fea-

tures, we utilize an approximation technique proposed in [56] which clusters the cause

and effect features separately that have similar properties.

Cause effect clustering: Our aim is to model the factors affecting cause and effect of

per pixel attention loss (attention density loss) which will be predicted by the learning

124



(a) Car (b) Face

(c) Car and Face

Figure 6.12: (a) Has only one salient object (small car) and (b) has one salient object
(large). However (c) has both the salient objects. We observe the large face signifi-
cantly draws attention (green overlay) away from the small car in (c). Best viewed in
color.
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algorithm. In order to gain insight to factors affecting cause and effect of attention loss,

consider an example in Figure 6.12 which shows individual images of a small car (left),

large face (center) and an image where they co-occur (right) with the corresponding

attention map overlays in green. The attention sum of the two large faces in (b) and (c)

are 0.7 and 0.6 and densities (normalized) are 6 and 5 respectively. The attention sum

of the two cars in (a) and (c) are 0.1 and 0.05 and densities (normalized) are 20 and 8

respectively. The attention density in the large face remains relatively unchanged due to

the presence of the small car, but the presence of the large face significantly contributes

to attention loss in the small car as its density is almost halved. This illustrates the

requirement to cluster the attention loss cause and effect features with different metrics

as presented in Algorithm 4. The algorithm describes the computation of the attention

sum (sA) and density (dA) for all high level objects. The cause clusters (C) and effect

clusters (E) are derived from the attention sum and density features respectively. Ob-

jects which cause a large attention shift are typically objects which have a large overall

attention sum contained within them(typically objects which occupy a large portion of

viewing area, eg. large face in Figure 6.12). Also, the objects which take the greatest

impact or effect have high concentration or attention density (small prominent objects,

eg. small car in Figure 6.12).
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Data: {Ii} - Input Training Images. {Ai} - Attention maps.

{Hjk
i } - Binary high level maps denoting the kth occurrence of high level object

index j in image index i

N−number of training images, M−number of high-level objects

i ∈ [1, N ] and j ∈ [1,M ]

Result: C - Cause Clusters, E - Effect Clusters.

Initialization: nj = 0∀j ∈ [1,M ] (counter)

dA = ∅ (Attention density vectors) sA = ∅ (Attention sum vectors);

for i=1→ N do

for j=1→ M do

for k=1→ |Hj∗
i | do

nj = nj + 1;

sA(nj) =
∑

p∈P Ai(p)
⊙
Hjk
i (p);

dA(nj) =
∑
p∈P Ai(p)

⊙
Hjki (p)∑

p∈P H
jk
i (p)

;

end

end

end

C = kmeans(sA); E = kmeans(dA);

Algorithm 4: Training algorithm
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Center Prior

Typically images contain the object of interest in the center. Therefore, we utilize a

center prior map [53].

6.4.2 Learning

The features are pre-computed in all the images and a partial least squares (PLS)

regression [101] model is used to predict where subjects look in new images. The PLS

regression algorithm is selected as it obtained better prediction results than other tech-

niques such as linear regression [24], random forest regression [12] and lib-linear SVM

[33] in [56] for visual attention modeling. The entire dataset is divided into training and

test sets in a 15-fold cross validation setting. From each image in the training dataset,

we randomly pick equal number of pixels from the top 20% and bottom 80% attention

regions (to have adequate representation for high attention regions) to create a pixel

level training subset. A PLS-regression model is learnt from this subset and pixel wise

attention density in new images are predicted using this regression model.
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6.5 Experiments and Results

6.5.1 Setup

For every image, low level saliency features and high level object detections are

computed as described in Section 6.4.1. Object size plays a significant role in de-

termining attention density per pixel. Therefore, objects are distinguished as small or

large by a size threshold (2500 pixels in our attention maps). Hence, the number of

distinct objects double from 8 to 16. Further, we obtain 9 scene context features similar

to the procedure described in [56]. To sum up, we have 30 low-level features, 1 mid-

level feature, center prior, 16 high level features and 9 scene context features totaling

57 features. These features are used to obtain the predicted saliency map using PLS

regression algorithm as described in 6.4.2.

6.5.2 Visual Attention modeling

We present a comparison of the performance of various saliency algorithms with

the proposed approach. Performance of saliency algorithms is presented using ROC

curves, which are computed as follows. All visual attention algorithms generate a

saliency map with a predicted pixel-level saliency. This saliency map is thresholded

at k =1,3,5,10,15,20,25 and 30 percent to obtain binary saliency maps. The percentage

of human fixations contained within each binary map is the performance measure.
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A comparison of performance of the proposed approach using PLS regression [101]

with Judd et al. [53], GBVS [43], Itti and Koch saliency [51], Torralba saliency [71],

Signature saliency [46] , Center prior (DistCenter), SUN Saliency [107] and chance

is shown in Figure 6.13. Our algorithm outperforms other saliency algorithms by a

significant margin. Judd et al. [53] also utilizes high level objects (car, person and face)

but does not model focus based object attention and learns only a single weight for every

object irrespective of the size of the object and scene statistics. Hence, on an average

the proposed approach obtains 3.4% gain over [53]. Figure 6.14 shows some examples

of light field images with the corresponding visual attention maps from the proposed

approach. We notice that the proposed approach is a good predictor of ground truth

visual attention and has the inherent ability to transform the predicted visual attention

when camera focus changes. Among algorithms which do not employ object detectors,

we notice that GBVS gives the best performance followed by signature saliency. We

additionally evaluated the performance of AIM [13] and Spectral Residual [47] saliency

algorithms but their performance was lower than the compared approaches in Figure

6.13.

130



Figure 6.13: Comparison of the performance of the proposed approach with other
state-of-the-art visual attention and saliency algorithms using ROC curves. Our ap-
proach outerforms other algorithms by a significant margin. However, we still notice
considerable gap between machine and human performance.
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Figure 6.14: Each row contains ground truth attention map (Blue overlay) with a
focus setting followed by corresponding predicted visual attention map (Red overlay).
The results are shown on two Lytro images (rows) each under two focus settings
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6.5.3 Ideal Object Detection Scenario

From the previous section we notice that object detectors play a major role in im-

proving visual attention prediction. In addition in Section 6.3.2 we observed that a sig-

nificant portion of fixations were present in important objects in a scene. Therefore, we

are interested in evaluating the upper bound performance when object detectors are per-

fect using our proposed model. We have annotated thirteen different object categories

face, text, animal, flower, building, etc as shown in Figure 6.5. In total, we have 23

high-level size based features and we have 46 focus based object features. In addition

we have 16 scene context features (4 cause and effect clusters each, gives 4×4 scene

context features) as well. In total we have 98 features including low, mid and high-level

features. A comparison of the performance of annotated objects with automated object

detectors is shown in Figure 6.17. We notice that we get about 8% improvement in

performance using annotated objects on an average, however in order to bridge the gap

with human performance, more research on higher level semantic context is necessary.

The regression weights of different objects, which highlight the importance of each

feature to predict the saliency of a pixel is shown in Figure 6.16. This comparison is

feasible as we normalize each feature vector using the its mean µ and standard deviation

σ as x ∼ x−µ
σ

and bring all the features to a comparable common platform. We notice

that the regression weights are reminiscent of the average visual attention density shown

in Figure 6.6 and therefore the regression weights are indicative of the attention density
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in an object.

In addition the scene context features weights are illustrated in Figure 6.15. These

weights are expected to capture attention loss in an object due to the presence of other

surrounding objects in the scene. We notice that compared to the average value of

regression weight for non-scene context feature which typically has an additive effect,

scene context feature weights are negative corroborating our intuition in designing the

feature.

Figure 6.15: Weights of scene context features compared to average non-context feature
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Figure 6.16: Regression weights of different objects in in-focus and out-of-focus
object categories. We notice this plot is similar to the average attention density plot in
Figure 6.6

Figure 6.17: Performance of manual annotations compared to automated detectors.
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Judd et al.[10] Proposed approach Random

Accuracy 72.8 75.3 40.0

Table 6.1: Comparison of the performance of Judd et al. [10] with the proposed
approach to predict the best 2D image from a Lytro image

6.5.4 Classifying best image using focus based attention

We present a practical application for the proposed visual attention model in this

section. The primary rationale behind bringing a region in focus is to bring the viewer’s

attention to the scene situation. Therefore, given a set of 2D images from a light field

image we define the best image as the one which has the largest attention concentrated

in the region of focus. This approach can also be viewed as a mechanism for semantic

auto-focus. An example to identify the best image on two Lytro images is shown in

Figure 6.18. Formally, given a set of images {Ii} from a Lytro image L, with the

ground truth map attention map Gi, with binary focus map Fi defined according to

Equation 6.1, the best image is defined as follows

Best-Image(L) = argmax
i

∑
p∈pixels

Fi(p)Gi(p) (6.5)

The problem here is to predict the best image using the learnt visual attention maps

and calculate the percentage of correct identification. Table 6.1 shows that the pro-

posed approach identifies the best image with 75.2% accuracy and the best competing

approach [53] in Table 6.1. identifies the best image 72.8% in the 105 Lytro images.
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Figure 6.18 shows two examples where the best 2D image is indicated from a Lytro

image based on ground truth visual attention in the focused region.

6.6 Summary and future directions

We introduce a new eye tracking dataset for light field images captured using Lytro

camera. The eye tracking data was collected on 2D images by changing the focus re-

gions and 2-4 distinct focus regions are observed for each Lytro image. We analyse

the collected eye tracking data and observe that camera focus and object localization

are significant factors in the manner in which humans view images. A visual attention

model is learnt utilizing low, mid, high and scene context information with emphasis on

in-focus and out-of-focus objects. The proposed model outperforms other state-of-the-

art visual saliency models in our eye tracking dataset. We also analyze the performance

of the proposed model using human annotated objects for thirteen categories. A sig-

nificant gain in performance is noticed but we also realize the requirement of higher

level contextual information to bridge the gap with human performance. Finally, a

new problem of predicting the best 2D image from a Lytro image by defining a focus

based visual attention metric is introduced. We notice our technique outperforms [53]

to identify the best still image from a Lytro image.

The performance of current visual attention models have significantly improved by
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Figure 6.18: Left column indicates the input image. The center column indicates the
visual attention map and the right column indicates the region in focus. An analysis
of row 1 and 2 indicates that the image in row 1 has higher visual attention in the
focused region than image in row 2. In addition we notice that image in row 3 has
higher attention in the focused region than image in row 4. Therefore, input image in
row 1 and row 3 are preferable to row 2 and row 4 respectively as they capture larger
visual attention in the region of focus.
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the utilization of semantic information from visual scenes. Therefore, advancement in

computer vision algorithms will naturally improve the robustness of higher level se-

mantic information mining from images which will improve the prediction of visual

attention map. Additionally, we can explore different paradigms to tackle the visual

attention prediction problem. The proposed visual attention maps require prediction of

pixel level attention from image features. However, the visual attention map is gener-

ated from human fixation map from multiple subjects. Therefore, it would be interest-

ing to explore more algorithms to directly predict the human fixation map, from high

level semantics, instead of the smoothed visual attention map.
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Chapter 7

Conclusions and Future Work

“Through our eyes, the universe is

perceiving itself. Through our ears,

the universe is listening to its

harmonies. We are the witnesses

through which the universe becomes

conscious of its glory, of its

magnificence.”

Alan Wilson Watts

In this thesis we explore how eye tracking can be utilized to improve computer vi-

sion algorithms for images and videos and how advancement in higher level semantic

understanding helps predict the eye tracking based salient regions in images. There
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has been significant advancement in state-of-the-art eye tracking technology and recent

eye trackers have become affordable, easy to use and more accurate. It has become

practically feasible to collect eye tracking data when subjects are consuming multime-

dia content from digital displays such as computer monitors, tablets etc. without any

constraints on head position, and availability of this additional data can greatly benefit

computer vision and multimedia algorithms. Also, human attention is naturally biased

towards high level semantic objects in images and videos, therefore, object extraction

and annotation algorithms can utilize this additional information to improve the perfor-

mance of state-of-the-art.

We explore four problems in this thesis relevant to this theme. In the third chap-

ter, we explore how object detection in images can benefit from the availability of eye

tracking data. We learn face and text eye tracking priors by only analyzing eye track-

ing data which reduces the search space for state-of-the-art faces and text detectors.

This ensures significant gain in precision at negligible loss in recall. In addition, the

proposed approach is the first effort to predict image categories from eye tracking data

alone. We are able to predict face and text regions by only analysing eye tracking data

from multiple subjects. In the following fourth chapter, we extend the object detection

idea to object extraction in videos. Here, we utilize a more generic framework, not re-

stricted to face and text categories. Typically, object segmentation algorithms in video

focus on extracting moving objects, however motion might not be the only criterion
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which captures the importance of an object in a scene. We believe visual attention is

a better indicator of saliency of an object in a video sequence and the proposed ap-

proach aims to extract objects which capture a significant portion of visual attention

in a scene. The proposed approach utilizes a two step process similar to the previous

chapter, where we extract visual tracks representing visually salient objects in the scene

which eventually guides an object search algorithm. The object search algorithm com-

bines objectness measure in a novel multiple object extraction framework on a mixed

graph optimized using integer programming. The proposed algorithm extracts more

meaningful objects compared to algorithms without eye tracking prior and outperforms

state-of-the-art which use eye tracking fixation prior.

In the fifth chapter we propose a saliency based algorithm which reduces the search

space for text detectors. The algorithm learns a text attention map using a support vector

machine, from multiple saliency algorithms especially focusing on regions where text

detection algorithm fails. This saliency guided search approach improves over state-of-

the-art, however as expected its performance gain is lower than what one would expect

using eye tracking data as in chapter 3. In the sixth chapter we address the problem of

predicting where people look, represented as visual attention map in images for light

field images. We specifically investigate the role of two contextual factors, camera fo-

cus and object co-occurrence to predict the visual attention map. The state-of-the-art

algorithms combined low, mid and high-level features using a linear support vector ma-
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chine to predict the visual attention map. In addition to these features, we propose novel

scene context features which combines object co-occurrence and camera focus based

features and use a regression algorithm to predict the visual attention map. The pro-

posed algorithm outperforms state-of-the-art saliency and visual attention algorithms.

In addition, we also introduce a novel application to predict the best image from a set

of Lytro light field images based on how visual attention overlaps with focus.

7.1 Future Work

As eye tracking enabled computer vision is in a fairly nascent stage, there are a

plethora of open problems in this field. Most of the problems in this thesis require

eye tracking data from multiple subjects, where practical applications such as viewing

multimedia benefit from. Recently there has been significant advancement in wearable

technology. In scenarios where eye trackers will be coupled with smart glasses, eye

tracking data from only a single user is available. Therefore, augmenting the viewing

area with useful information stemming from eye tracking data would have several prac-

tical applications. Therefore, developing algorithms which only require a single user’s

eye tracking data for scene understanding has immense potential applications. Addi-

tionally, related to visual attention modeling, in many cases obtaining a single person’s

eye tracking data is easier. Therefore, one can explore the feasibility of predicting the
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visual attention map from a single user’s attention map by adapting the single user’s

attention map using the image information.

Eye tracking is a convenient way to provide weak supervision and it would be inter-

esting to investigate the utility of eye tracking data in other computer vision algorithms

such as video based activity recognition and image retrieval. Various activity patterns

might have signature eye movements and can help improve the performance of state-of-

the-art. Also, eye tracking data can pick up critical aspects of the image which retrieval

algorithms can primarily focus on.

We also suggest some improvements to the proposed techniques which can widen

its applicability. The algorithm proposed in chapter 3 is designed to mitigate the false

positives coupled with negligible loss in false negatives. In several computer vision

applications such as face detection in surveillance feeds, where traditional detection

algorithms will fail due to the quality of the video stream, eye tracking data can be used

to improve recall by reducing the false negative rate. The design of such algorithms

should also ensure minimal loss in precision. The proposed methods require the eye

tracking data to be present both in the training and the test phases. It will be interesting

to explore problems in a relatively restricted setting such as surveillance videos, where

eye tracking data is available only in the training phase. The interaction between the

eye tracking data and computer vision application can be learnt which can potentially

improve the results in the test phase. Finally, it would be interesting to investigate the
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utility of other high level semantic factors which affect visual attention and eventually

bridge the gap between human attention and predicted visual attention maps.
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