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ABSTRACT
A common challenge when dealing with heterogenous tasks

such as face expression analysis, face and object recognition is high
dimensionality and extreme appearance variations within each class.
To handle such scenarios, we formulate a supervised Non-negative
Matrix Factorization (NMF) based subspace learning technique
that simultaneously preserves the intra-class regression information
(local) and enhances inter-class discrimination (global) in the low di-
mensional embedding. Our method leverages the multi-dimensional
image labels that quantify the within class regression to learn the
subspaces for recognition. In addition, our formulation includes a
novel multi-output regression based NMF algorithm.

Index Terms— Intra class regression, Subspace Analysis, Face
recognition across pose

1. INTRODUCTION
In many applications of computer vision and pattern recognition, im-
ages can be considered as points in a high-dimensional space. How-
ever, a specific pattern of interest, within this unnecessary high di-
mensional data, can reside in a low-dimensional subspace. Subspace
analysis aims in discovering this representation by expressing the
data as a (linear or nonlinear) combination of a small number of un-
derlying signals.

Fig. 1. Encoding coefficient subspace corresponding to a single basis ob-
tained from our framework (top) and NMF (bottom) depicting the pan angle
(-90 to +90) regression within each class (different color cluster) and the sep-
aration between each of the classes in the Pointing’04 dataset. (Image best
viewed in color.)

In this paper we work with the basic idea of subspace analysis,
mainly matrix factorization. However, in our method we incorpo-
rate the label information to learn a lower dimensional embedding

that represents both intra-class regression and inter-class discrimina-
tion. Especially when dealing with problems such as face recogni-
tion across pose, not only do we need to understand the differences
between different people but also study the variation of a particular
face across multiple pose labels. Figure 1 shows a low dimensional
embedding corresponding to a particular basis, of images from the
Pointing’04 dataset. As can be noticed, unlike original NMF (bot-
tom), our embedding (top) clearly reflects the internal trend within a
class, while maintaining good separation between classes. Further-
more, we handle multi-dimensional pose (regression) labels. More-
over, learning low dimensional embedding while preserving multi-
dimensional regression information (here on referred as multi-label
regression) is rarely studied in the literature.

Most of the prevalent subspace reduction techniques target re-
gression or classification individually. Primarily these techniques are
statistically, geometrically or intuitively motivated. Principal com-
ponent analysis (PCA), Linear discriminant analysis (LDA) [1] aim
in finding projections that are statistically significant for preserving
maximum information content. Manifold learning algorithms [2] are
geometrically motivated non-linear reduction methods; recently, [3]
proposed a supervised manifold embedding extention. The other
class of algorithms are motivated to obtain features which capture
intuitive parts of objects. In this regard, non-negative matrix factor-
ization (NMF) [4], and localized non-negative matrix factorization
(LNMF) [5] are unsupervised parts based subspace reduction tech-
niques.

A fundamental limitation of the above mentioned approaches
is that they do not learn the variations within each data class which
can create a better low-dimensional representation. Recently, re-
gression based non-negative matrix factorization (RNMF) [6] aims
to obtain subspaces which highlight the regression information in
the low dimensional embedding. Our approach, which understands
multi-dimensional intra-class regression patterns, is motivated by
RNMF. First, we extend RNMF to handle multiple outputs called
Multi-output RNMF, followed by the proposed classification tech-
nique called Local multi-label Regression Global Discrimination
(LRGD) based subspace analysis.

Therefore, our contributions are two fold:

• A new supervised NMF for classification (LRGD), that learns
a salient representation of the internal regression structure
within the different classes of the data while simultaneously
performing inter-class discrimination. This modification di-
rects the encoding coefficients to reflect the local trend of the
regression as well as classification labels.

• A novel multi-output regression framework using NMF
(MRNMF), by distributing the different regression trends



among different set of bases and simultaneously reconstruct-
ing the input data.

2. MULTI-OUTPUT REGRESSION BASED
NON-NEGATIVE MATRIX FACTORIZATION (MRNMF)

Most regression approaches, such as support vector regression
(SVR) [7], can only deal with single dimensional outputs. Extend-
ing them to handle multidimensional outputs is nontrivial and is
rarely studied. In this section we propose an extension to RNMF
that can handle multi-dimensional outputs. Our technique simul-
taneously aims to reconstruct the data and learn different sets of
bases corresponding to different regression labels. A similar idea
was proposed in [8] where the distinguishing information relevant
for every class was captured in separate set of bases.

We work with the basic non-negative matrix factorization frame-
work where the input data matrix (V) is represented as a product of
the basis matrix (W) and a coefficient matrix (H). Here, the aim
is to learn W and H such that V ≈ WH, all the matrices are
non-negative. The individual high dimensional data points (vi), ba-
sis images (wi) and coefficients or low dimensional representations
(hi) are represented in the columns of V, W and H matrices re-
spectively. We use this framework to model multi-output regressions
due to the efficacy of RNMF in single output parts based regression
analysis [6].

In our approach, we divide the basis W for capturing separate
regressions as

W =
[
W1 | . |Wk | . |Wn

]
(1)

Since every column wi has a one-to-one correspondence with ith

row of H, we divide H as
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where hi is a column of H, while hki is a block vector corresponding
to the kth regression pattern .

Let every input vi have a corresponding output vector denoted
by yi =[y1i ...y

k
i ...y

n
i ], where n is the number of regression labels.

Now the regression information for the kth output variable of vi, yki
is reflected in the bases set Wk as in (1). Hence, the regression cost
for output yki is imposed on the corresponding coefficients Hk. The
lower dimensional embedding hi of vi is divided into subsections as
shown in (2). The multi-output regression cost SRmo can therefore
be written as

SRmo = min
∑
k

∑
i,j

f(yki , y
k
j )(h

k
i − hkj )

T (hki − hkj )∑
i,j f(y

k
i , y

k
j )

. (3)

where f(yki , y
k
j ) = exp(

−|yki −y
k
j |

tk
), tk depends on the range of the

labels, so as the distance between data increases in the dependent
variable space, the weight decreases accordingly. This constraint
aims to keep hki and hkj close to each other if the corresponding
yki and ykj are close and vice versa. Similar to [6], the constrained
divergence cost function now becomes

D(V||WH) = min

[∑
i,j

(
vij log

vij
rij
− vij + rij

)

+ αSRmo + βSO

]
(4)

where the orthogonality constraint SO =
∑
i,j uij , U =

WTW. The updates for W and H accounting for multi-dimensional
outputs is obtained as

wkl ←
wkl

∑
j vkj

hlj∑
k′ wkk′hk′j∑

j hlj + β
∑
j wkj

, (5)

If element hkl belongs to the pth output and denoting f(ypi , y
p
j ) as

fpij , then the update rule for hkl is obtained as
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where
b = 1− 4α∑

i,j f
p
ij

∑
k′

(hkk′f
p
k′l). (7)

These iterative update rules are obtained by building an auxiliary
function from the cost function and optimizing it similar to [6].

3. EXPERIMENTS AND RESULTS
We test the proposed MRNMF algorithm with a synthetic dataset
and a face expression dataset.

3.1. Synthetic Data
Dataset: We begin our analysis on a synthetic data-set as illustrated
in Figure 2, as a proof of concept. The dataset consists of 200 im-
ages, where each image is of size 200×200 pixels. Every image
I consists of four distinct square parts pi, i ∈ {1, 2, 3, 4}, locally
varying in intensity with a specific regression pattern. Each image
has a two-dimensional label y = (y1, y2), where y1∈ {1...200},
y2∈ {1....200}. The following are the variations formulated for
each square block in I(y1, y2).

1) Ip1(y1, y2) = y1 2) Ip2(y1, y2) = 100−|y1− 100|
3) Ip3(y1, y2) = |y2 − 100| 4) Ip4(y1, y2) = 200− y2
where noise is added with uniform distribution as U(0, 2µ) in all

images, and a constant intensity pattern surrounds the four parts (teal
color in Figure 2). For example, p1 refers to the red block which
increases with label y1. We randomly select 200 combinations of
(y1, y2), the training images are the corresponding I(y1, y2).

Performance: The main focus of this synthetic experiment is to
understand and isolate the different regression patterns in the data.
Here we have compared MRNMF with RNMF. We use two basis
images per regression pattern for MRNMF, thus using four bases for
both MRNMF and RNMF. As RNMF cannot handle multidimen-
sional output labels, we performed RNMF on each output dimension
independently. As seen in Figure 2, MRNMF is able to segregate
each regression pattern into individual basis images, while RNMF
fails to do so, as it is handling each dimension independent of the
other.

3.2. Expression Analysis
Dataset: In order to test the above described system we use the pub-
licly available JAFFE (Japanese Female Facial Expressions) dataset
[9]. This particular dataset includes 213 grayscale images, each
256×256 pixels in size. The JAFFE data set includes facial images
of 10 different female models, each assuming seven distinct poses.
The images containing neutral poses and fear were not used in this
study. We partition the data into 10 random sets, where 120 are se-
lected for training and 60 for testing. The aim of this experiment is



Fig. 2. a) Example of synthetic data for I(y1, y2) where y1∈ {1...200}, y2∈ {1....200}. b) Four bases obtained by MRNMF. c) Four bases obtained by
RNMF. Images best viewed in color

to predict the different coefficients associated with each test image
using MRNMF. The expression coefficients range from 1 to 5.

Results: Our focus is to estimate the 5 dimensional expression
output (happy, sad, surprise, anger, disgust) given a particular face
image. In order to compute the expression output for a given test
image, we first project the training and the test data onto the basis
images in W and obtain H̃train, H̃test, respectively. These encod-
ing coefficients are sorted according to the regression outputs k, as
shown in (2). The kth output dimension is then determined by per-
forming kernel regression on the corresponding H̃k

train. Since we
are isolating the encoding coefficients according to the regression
pattern, we are able to analyze the variation within every expression
separately and calculate the expression label more accurately. Other
methods including RNMF do not give us this flexibility.

We compare our method with PCA, RNMF, SVR, LNMF and
NMF. Since RNMF and SVR can only handle single-output regres-
sion problem, we decoupled the multi-output regression problem to
isolated single output runs. As we can see in the Figure 3 MRNMF
outperforms all the other methods. We intuitively expect MRNMF
to perform better than NMF, LNMF and PCA as these are unsuper-
vised learners. The performance of RNMF, as expected, is lower as it
considers each output dimension separately as opposed to MRNMF.
In addition MRNMF outperforms SVR which achieves an average
error of 0.76 (Figure 3 does not contain SVR since we have no con-
trol on the number of bases). We also note that while all methods
performed well for simple expressions like ‘surprise’, our method
achieved better prediction on complex expressions like ‘anger’ and
‘disgust’.
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Fig. 3. Average recognition error for the JAFFE dataset when number of
bases are varied. (Image best viewed in color.)

4. LOCAL MULTI-LABEL REGRESSION GLOBAL
DISCRIMINATION (LRGD) BASED SUBSPACE ANALYSIS

This section details on how regression information can be leveraged
for classification problems. Traditional supervised subspace analysis
techniques for classification such as [1, 10] are based on maximizing
between class separation and within class compactness. However, in
our algorithm we learn the intrinsic variation within each class while

maximizing the inter-class separation. For example, in face recogni-
tion across different poses, we take advantage of the face pose label
(pan,tilt) information to obtain a meaningful subspace. Furthermore,
using a discriminative constraint, the class labels can be used to en-
sure strong separation between classes.

In order to capture the intra-class regression with respect to the
multidimensional variable, we use a formulation similar to MRNMF,
where the regression labels within each class drive encoding coeffi-
cients. We define the indices of [vj ] to be j (j ∈ {1, 2...nt}). Let
l be the number of classes and the indices belonging to the class i
be denoted by the set Ci, i ∈ {1, 2...l}. The within-class regression
preserving cost SWRmo to be minimized is denoted by

SWRmo =

min

∑
d

∑
k

∑
i,j∈Cd

f(yki , y
k
j )(h

k
i − hkj )

T (hki − hkj )∑
d

∑
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f(yki , y
k
j )

. (8)

where f(yki , y
k
j ) is defined in Section 2 with parameter tk.

Since hj has a one-to-one correspondence with vj the between
class separation is as follows:

SB = max
1

ndif

∑
d

∑
i,j 6∈Cd

(hi − hj)
T (hi − hi) (9)

where ndif is the number of data point pairs (vi,vj) not belonging
to the same class.

Therefore, the final cost function is a constrained divergence for-
mulation which is expressed as

D(V||WH) = min

[∑
i,j

(
vij log

vij
xij
− vij + xij

)

+ αSWRmo − βSB + γSO

]
(10)

where WH = X = [xij ], SO is similar to (4) and constants
α, β, γ > 0. The update rule for W is same as in (5). As every
hkl is associated with a particular output label (p) and class (r) , the
update for H can be written as
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and
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λpkl =
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fkij
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nt − |Cr|
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where f(ypi , y
p
j ) is denoted as fpij , nt is the number of training

samples, |Cr| is the cardinality of class r, ndif as defined above, and
α > 0, β > 0. For a > 0 we are guaranteed non-negative update
rules. The convergence proof is similar to that in [6].

5. EXPERIMENTS AND RESULTS

We tested the efficacy of LRGD on popular face and object recogni-
tion datasets. A brief description of the datasets follows.

Pointing’04 Dataset: The Pointing’04 dataset [11] consists of
15 sets of images. Each set contains two series of 93 images of the
same person at different poses. The pose, or head orientation is de-
termined by 2 angles (pan,tilt), which varies from −90◦ to +90◦.
We preprocess the dataset by using Viola-Jones [12] frontal and pro-
file face detectors to isolate the faces. Our evaluation procedure uses
675 training images (45 from every class) and 724 testing images.
The pan and tilt angles are used as the two dimensional regression
labels for this scenario.

CMU-PIE Dataset: The CMU-PIE dataset [13] consists of
face images of 68 subjects with 43 different illumination conditions
across 13 poses. All extracted face images are aligned and normal-
ized to size of 32×24 pixels. We select faces of 59 subjects, for
every subject we randomly select 6 illuminations for each of the 9
pan angles (excluding c31 c25 c07 c09). Out of these 54 images
per subject we randomly select 36 faces for training and the rest for
testing. The pan-angles are used as regression labels.

ETH 80 Dataset: This dataset [14] contains 80 objects from 8
categories. There are 10 objects per category; each object is repre-
sented by 41 images from viewpoints spaced equally over the upper
viewing hemisphere. Every image is quantified by a pan and tilt an-
gle depending on its viewpoint. We use all views from the first 7
objects for training and all views from the remaining 3 objects for
testing, in each class.

Performance: Our focus is to perform face and object recog-
nition invariant to pose changes. We compare our method (LRGD)
with PCA, NMF, LNMF, FNMF [10], MFA [15] and LSDA [16].
PCA, NMF and LNMF are unsupervised approaches. The rest are
supervised approaches which utilize class label information. In par-
ticular MFA and LSDA understand the intra-class structure in a data-
driven manner. In all these approaches, after projecting the test and
train data to the lower dimension by learning a basis we use the k-
nearest neighbor classifier. Table 1 shows the classification accu-
racy for the different methods across various number of basis com-
ponents.

We observe that LRGD outperforms all the other methods by a
significant amount, especially with unaligned images with extreme
pan and tilt variations (Pointing’04). We can see that understanding
the pose regression of each individual face not only helps in project-
ing the new data in the right class but also place it well on the latent
regression curve learnt in that particular class. In addition, we an-
alyzed the encoding coefficients, and notice that the original NMF
(Figure 1 (bottom)) hardly conveys information regarding the local
regression patterns within classes and the separation between classes
is inadequate. However, Figure 1 (top), the LRGD encoding coef-
ficient for the Pointing’04, reflects the regression pattern of the pan
angle within each class, along with sufficient inter-class distance.

Acknowledgements : Our research was supported by NSF
award III-0808772, MacArthur Foundation and public health service
grant NIMH 1 R01 MH070539-01. We also thank Michael Stephens
for his contribution in the implementation of the algorithm.

Methods Dataset
Pointing ’04 CMU-PIE ETH80

PCA 75.2 82.4 77
NMF 76.3 83.1 78.8

LNMF 72.5 83.3 79.3
FNMF 72.9 83.5 79.7
MFA 81.4 86.3 81.5
LSDA 81.8 84.5 81.7
LRGD 84.8 88.5 82.3

Table 1. Classification accuracy (%) of different algorithms on three
datasets, Pointing’04, CMU-PIE and ETH-80.

6. CONCLUSIONS AND FUTURE WORK
We have presented a novel matrix factorization method (LRGD) for
classification using intra-class regression information. We have also
extended the previous RNMF algorithm to handle multi-dimensional
output labels (MRNMF). Experimental results on synthetic and
JAFFE dataset show superior performance of MRNMF in terms
of prediction accuracy and visual perception. The quantitative and
visual results of LRGD presented on several databases show that
understanding the local regression pattern along with discrimination
can prove extremely effective for classification problems.
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