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Abstract

We propose a human action recognition algorithm by
capturing a compact signature of shape dynamics from
multi-view videos. First, we compute R transforms and
its temporal velocity on action silhouettes from multiple
views to generate a robust low level representation of shape.
The spatio-temporal shape dynamics across all the views is
then captured by fusion of eigen and multiset partial least
squares modes. This provides us a lightweight signature
which is classified using a probabilistic subspace similarity
technique by learning inter-action and intra-action models.
Quantitative and qualitative results of our algorithm are re-
ported on MuHAVi a publicly available multi-camera multi-
action dataset.

1. Introduction

Video cameras have become ubiquitous in all walks of
life in the last decade. Several applications such as content-
based video annotation and video summarization require
recognition of actions occurring in videos. Action recog-
nition also directly impacts surveillance and security. In
this regard, researchers are focusing their attention on multi-
view action recognition as fixed views are insufficient to
discriminate large classes of actions. In addition, multi-
view action recognition provides robustness to self and par-
tial occlusions.

Several techniques have been proposed to tackle multi-
view action recognition. Weinland et al. [1] proposed lo-
cation and rotation invariant Fourier descriptors in cylindri-
cal co-ordinates and compared two actions based on their
3D visual hull information. Yan et al. [2] proposed an

Figure 1. Flow diagram of our action recognition system

arbitrary view action recognition system using 4D action
feature model. Farhadi et al. [3] computed invariant fea-
tures between two views for action discrimination. Simi-
larly, Souvenir and Babbs [4] learned the viewpoint man-
ifold of primitive actions to obtain a view-point invariant
low dimensional representation of actions. Graphical model
based methods [6, 5] are also popular for multi-view action
recognition.

All these methods have limitations in terms of practi-
cal application. Most of the above mentioned techniques
involve the construction of 3D visual hulls from multiple
views. However, in realistic scenarios of uncalibrated cam-
era networks without good multi-camera synchronization,
the 3D visual hull construction is often unreliable. Ad-
ditionally, these methods assume that the entire video se-
quence from all the cameras has to be transmitted to a cen-
tral server. This practice incurs significant communication
bandwidth consumption especially in multi-camera scenar-
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ios. To overcome these problems, we propose a multi-view
action recognition algorithm which works well in uncal-
ibrated and unsynchronized networks, has low computa-
tional complexity and requires low communication band-
width.

Shape and its deformation are important cues for human
action recognition. Also, shape deformation implicitly cap-
tures motion information. Therefore we first compute frame
level shape description of action silhouettes using R trans-
form similar to the works of [7, 4]. In addition, shape defor-
mation is captured usingR transform temporal velocities.

From the frame level shape description we want to ob-
tain a compact shape dynamics signature for the entire ac-
tion sequence. Recently Ali et al. [8] proposed an eigen-
mode based representation for optical flow features which
captures the primary variations of a single-view action se-
quence. We leverage this approach to build a compact
multi-view action signature which incorporates both the in-
trinsic variations in individual views and co-occuring pat-
terns across different views.

We capture the intrinsic variation of the shape dynam-
ics in every view using the primary eigenmode. The dy-
namics across multiple views is represented by a novel
descriptor based on multiset partial least squares(M-PLS)
modes. These mode based features are computed both on
theR transform andR transform temporal velocity. Subse-
quently, we obtain a compact signature for the entire multi-
view video sequence. Next, as we typically observe that
inter-action and intra-action signatures vary with different
patterns, we build probabilistic models to understand these
variations. Therefore, we adopt a probabilistic subspace
similarity based classification technique which learns inter-
action and intra-action subspace densities to predict the ac-
tion label. The overall flow diagram of our approach is
shown in Figure 1.

The following are the primary contributions of our work:

• Frame level shape deformation description using R
transform andR transform temporal velocity.

• A novel compact multi-view signature to characterize
shape dynamics across multiple views using eigen and
M-PLS modes ofR transform andR transform veloc-
ities.

• Learning inter-action and intra-action models and clas-
sifying a new action using a probabilistic similarity
measure.

In addition, the R transform descriptor is 180 dimen-
sional and transmitting this feature to a centralized server
instead of the entire frame significantly reduces communi-
cation bandwidth.

Figure 2. Example R Transforms of Punch and Kick actions for
two camera views

2. Shape dynamics representation

2.1. R Transform

The R transform is a shape descriptor [7, 4] which con-
verts a silhouette image into a compact 1D signal by using
2D radon transform. The 2D radon transform is the line
integral of a line parameterized by (ρ, θ) in the polar coor-
dinates. For an image frame I(x, y, t) at time t of a video
clip V the radon transform, r(ρ, θ) is defined as

r(ρ, θ, t) =
∑
x

∑
y

I(x, y, t)δ(x cos θ + y sin θ − ρ) (1)

where δ is the Dirac delta function.
The R transform is calculated as the sum of squared

radon transform values for all lines corresponding to the
same angle θ

R(θ, t) =
∑
ρ

r2(ρ, θ, t) (2)

The R transform is translation invariant and is robust to
noisy silhouettes. However, to make it achieve some de-
gree of scale invariance we use the normalizedR transform
in our experiments which is expressed as

R′(θ, t) =
R(θ, t)

maxθ(R(θ, t))
(3)

We note that Figure 2 illustrates an example of R trans-
forms of Punch and Kick actions for two different camera
views.

2.2. R transform velocity

R transform provides us a salient representation of
shape, but to characterize shape deformations from silhou-
ettes we propose a novel feature using the velocity of theR
transform. This is mathematically represented as

V (θ, t) =
dR′(θ, t)

dt
(4)



3. Mode based Shape dynamics signature
R transforms and its velocity are frame based feature de-

scriptors. In this section, we obtain a signature for the entire
multi-view activity sequence using these features. Mode
based signatures for single view action recognition was first
proposed by [8]. But, single view provides insufficient in-
formation to recognize a large class of actions. Hence, we
propose an approach which develops a mode based action
signature across multiple views. Our signature is obtained
by fusing the eigen modes and M-PLS modes across differ-
ent views.

3.1. Eigen mode

Principal component analysis (PCA) is a well known
technique for determining an optimal basis for data recon-
struction. Let {uk(x, ti)}, i = 1, ...,M represent a se-
quence of features (R transform or R transform veloci-
ties) of a video sequence computed in each frame i in the
kth view. A data matrix Uk(x) for view k is obtained as
[uk(x, t1)...uk(x, tM )]. PCA extracts time independent or-
thonormal basis φik, i = 1, 2, ...M vectors also known as
eigen modes along the directions of maximum data varia-
tion. The top eigen mode for the kth view, φmk is vector φk
that maximizes the following function

φmk = arg max
φk

φTkCUkUk
φk

subject to φTk φk = 1
(5)

where CUkUk
is the covariance matrix of Uk(x). The ef-

fectiveness of eigen modes for action recognition is illus-
trated in [8].

3.2. Multiset Partial Least squares (M-PLS) mode

In our approach we want to obtain a multi-view signa-
ture of the video sequence. The eigen modes capture the
primary shape dynamics in a single view. However, the cor-
relation of the shape dynamics across multiple views is ig-
nored. So we extract a novel set of shape dynamics modes
which jointly maximize the covariance across all the views.
Hence we use a multiset partial least squares method simi-
lar to [9]. Let the multi-view video sequence of N views be
represented as Uk(x), k = 1, 2, ..., N . We want to compute
projection vectors {φmk } for every view k which maximizes
the sum of covariances in the lower dimensional embed-
ding. This can be mathematically written as

{φmk } = arg max
{φk}

∑
k

∑
k′ 6=k

φTkCUkUk′φk′

subject to
∑
k

φTk φk = 1
(6)

where CUkUk′ is the cross-covariance between Uk(x) and
Uk′(x). Hence, {φmk } in the form [ φm1

T φm2
T ... φmN

T ]T

is obtained by computing the eigenmode of C.

C =


0 CU1U2

... CU1UN

CU2U1
0 ... CU2UN

. . . .
CUNU1 CUNU2 ... 0

 (7)

3.3. Overall shape signature of actions

For a video sequence, we compute its shape dynamics
signature by fusing(concatenating) the eigenmodes and M-
PLS modes of the frame levelR transform andR transform
velocity descriptions, across all views. For a single view we
have two eigenmodes and two M-PLS modes giving a 720
dimensional feature asR transform and its velocity are each
180 dimensional vectors. Therefore, the overall feature size
for k views is a 720k dimensional vector.

4. Probabilistic subspace similarity based clas-
sifier

We observe that the signature described in the previ-
ous section has high intra-action similarity from Figure 3.
Hence, we use a classifier which leverages this by model-
ing intra-action and inter-action variations. We also note
that as number of views increases, the signature dimension
becomes large. To overcome the curse of dimensionality,
a subspace based density estimation technique is preferred.
We also observe that in typical action recognition datasets,
the number of training actions in every class is relatively
low. Therefore, directly modeling every action class genera-
tively is ineffective. But, inter-action and intra-action mod-
eling creates a lot of training samples for both the classes
and the probabilistic modeling becomes feasible.

We use the probabilistic subspace similarity learning
proposed by Moghaddam et al. [10, 11] to learn intra-action
and inter-action models. Given two action signatures, s1

and s2 we compute the difference between the signatures
v = s1 − s2 to train these models. This probabilistic sub-
space based density of v ∈ RN divides the vector space
RN into two complementary subspaces. The target den-
sity is decomposed into two parts: density in the principal
subspace F and its orthogonal complement space F̄. The
density in the principal subspace is obtained using the first
M principal components y = {yi}i=1...M . The complete
optimal high-dimensional density estimate for class Ω (inter
or intra action) can be expressed as a product of two inde-
pendent marginal gaussian densities

P (v|Ω) =

exp

(
− 1

2

∑M
i=1

yi
2

λi

)
(2π)

M
2

∏M
i=1 λi

1/2


 exp

(
− ε

2(v)
2ρ

)
(2πρ)(N−M)/2


= PF (v)P̂F̄ (v|ρ) (8)



Figure 3. Left: signatures of Punch action corresponding to two
different actors Right: signature of RunStop and Punch action by
the same actor

Figure 4. The four views of WaveArms action used in our experi-
ments

where PF (v) is the true marginal density in F, and
P̂F̄ (v|ρ) is the marginal density in the orthogonal comple-
ment space F̄. Here, ε2(v) is the PCA residual and {λi} are
the top eigenvalues of the covariance matrix of v. The op-
timal value of ρ is obtained by minimizing the divergence
between the original probability density function and the
approximation in (8). The optimal ρ is the average of the
eigenvalues of F̄.

ρ =
1

N −M

N∑
i=M+1

λi (9)

Given a new test signature ste, every training signature
is compared to the test signature by computing the proba-
bilities of v = ste − str belonging to same action (Ωs) and
different action models (Ωd) by using Bayes rule. Here, we
assume the priors for both the classes are equal.

P (Ωs|v) =
P (v|Ωs)P (Ωs)

P (v|Ωs)P (Ωs) + P (v|Ωd)P (Ωd)
(10)

The final class label is inferred by the training signature
match which maximizes the score in equation 10.

5. Experiments
We present the evaluation of the proposed ac-

tion recognition algorithm on the publicly available
MuHAVi(Multicamera Human Action Video) dataset. We
compare our method to [13] which uses bag of words(BoW)
feature model on top of spatio-temporal interest point de-
scriptors (STIP) [12] for multi-view action recognition.

5.1. Dataset

The MuHAVi dataset [14] consists of 17 action classes
performed by 7 different actors. Among the current pub-
licly available multi-view action datasets, MuHAVi con-
tains the largest number of actions. The actions are
WalkTurnBack, RunStop, Punch, Kick, ShotGunCollapse,
PullHeavyObject, PickupThrowObject, WalkFall, LookIn-
Car, CrawlOnKnees, WaveArms, DrawGraffiti, JumpOv-
erFence, DrunkWalk, ClimbLadder, SmashObject and
JumpOverGap. The actions were recorded by 8 different
cameras, four sides and four corners of a rectangular plat-
form. In our experiments we have used 4 of these camera
views(V1, V3, V4 and V6) as shown in Figure 4. We note
that the cameras have synchronization errors and calibration
information is currently not available.

5.2. Results

In our analysis we used about 4 hours of action videos at
25 fps. We first preprocess the frames to obtain (noisy) sil-
houettes bounding the actor of interest. Then, we compute
the R transform and obtain the entire action signature for
all the actions by the 7 actors. These signatures are used to
learn inter-action and intra-action models using the proba-
bilistic learning technique described in Section 4.

We perform the testing in a “leave-one-actor-out” set-
ting where, the probabilistic classifier was trained using all
the videos except the actor corresponding to the test videos.
In the training phase of this cross-validation technique, we
can obtain at most 510 training samples to model intra-
class variations. Hence, we use 510 samples for intra-class
variations, and the inter-class variations are modeled us-
ing 510 randomly selected training samples. We note that
the principal subspace is modeled in our classifier using 60
eigen-vectors. In this setting, we obtain a mean accuracy of
88.23% using our method and the confusion matrix across
all the actions is shown in Figure 5.

We observe there is significant confusion between
“Punch” and “SmashObject” actions. Both of these actions
involve rapid hand movement justifying the misclassifica-
tion. In addition, Figure 6 illustrates the recognition perfor-
mance of our algorithm by changing the principal subspace
dimension of our classifier. We observe that our results are
quite consistent with change in size of the principal sub-
space with the best performance for 60 and 70 eigenvectors.
We also note that our method outperforms [13] which uses
Spatio-Temporal Interest Points (STIP) [12] for multi-view
action recognition. This method constructs BoW of STIP
features for every action. These BoWs are classified using
Support Vector Machines and it obtains an average accuracy
of 69.2% for “leave-one-actor-out” cross-validation. Figure
7 compares the performance of our proposed approach with
[13] for every individual action.



Figure 5. Confusion matrix for all the actions in MuHAVi dataset.

Figure 6. Action recognition accuracy of our method vs principal
subspace dimension.

Figure 7. Comparison of performance of our method with [13] for
every action.

6. Conclusions

In this work, we proposed a novel algorithm which en-
codes the static shape description and temporal shape dy-
namics to create a multi-view action signature. We modeled
the inter-action and intra-action variations of this signature
using a probabilistic subspace similarity-based classifier.
Using this approach we performed impressively (88.2%) on
MuHAVi, a complex multi-view action dataset which in-
cludes 17 actions.
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