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Abstract

Purpose: To develop an automated nuclei detection tool that provides reliable and consistently
accurate results for counting cell nuclei.
Methods: We propose a simple yet robust method to analyze large sets of digital micrographs.
The nuclei detector design is based on a Laplacian of Gaussian filter. We use the leave-one-out cross
validation method for estimating the generalization error, which is then used to choose the model
and parameters of the proposed nuclei detector with both fluorescent and dye stained images. We
also evaluate the performance of a nuclei detector by comparing the results with manual counts.
Results: When our nuclei detector is applied to previously unseen images of feline retina, it
correctly counts nuclei with an average error of 3.67%. Our approach accurately identifies the
location of cell bodies. We also test the proposed method with various images and show that it is
applicable to a wide range of image types with nuclei varying in size and staining intensity. The
nuclei detector is developed as an ImageJ plugin and currently available at UCSB’s Center for
Bio-image Informatics website (http://www.bioimage.ucsb.edu/software.html).
Conclusions: The proposed method is simple and reliable. It also has widespread applicability
to a variety of sample preparation and imaging methods. Our approach will be immediately useful
in quantifying the number of cells in large sets of digital micrographs and from high-throughput
imaging.
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1 Introduction

Cell addition and loss are important biological events in development and pathology. As a result,
counts of cells and nuclei from histological sections provide quantitative information central to
studying changes in cells, tissues, and organs. For example, neuron number is a fundamental deter-
minant of brain function (Williams and Rakic [1988]) and the number of photoreceptors is a common
measurement of visual function of retina (Paskowitz et al. [2004], Michon et al. [1991], Lewis et al.
[2002], Sakai et al. [2003], Fisher et al. [2005]). While progress in understanding changes in such
parameters as cell structure or protein expression has been rapid during the past few decades,
methods for determining cell number have remained limited. Determining the numerical density of
cells in sectioned materials is difficult. Indeed, even the most rigorous studies rarely claim precision
greater than ±10% (Williams and Rakic [1988]). Consequently, only marked changes or effects
can be analyzed with confidence. Several solutions to this problem have been proposed, but they
require significant resources in order to complete a morphometric analysis. Moreover, most of these
methods still require manual counting, which is tedious and time consuming, regardless of whether
a 2-D or a 3-D methodology is employed. In carrying out such work, biologists need to sit for long
periods of time performing microscopic sampling and such physical and mental fatigue can impact
the speed and quality of information. Problems that demand greater accuracy and reliability can-
not be resolved with current manual methods.

Image analysis methods have been developed for nucleus detection or segmentation. In the past,
algorithms developed for automatic micrograph analysis have been very task specific and are not
easily extensible to analysis of different types of images such as those generated by immunofluores-
cence. For example, Malpica (Malpica et al. [1997]) used watershed to segment clustered nuclei,
Roysam (Lin et al. [2005]) used watershed with recursive tree-based algorithm to segment nuclei
in the rat hippocampus, Nedzved (Nedzved et al. [2000]) used morphological operators to segment
cells in images with sparse density, Demandolx (Demandolx and Davoust [2001]) used a gray level
thresholding method to segment subcellular structures in Hela cells and Sjostrom (Sjostrom et al.
[1999]) used artificial neural network (ANN) to automatically count cells. Additionally, there is
some commercial software that provide object-counting and feature detection (MetaMorph [2005],
BioQuant [2006]). However, these tools often fail to provide reliable results and require intensive
user interaction in order to obtain user-given initialization or parameter settings for accurate re-
sults. This often discourages biologists from using them. Additionally, these tools were not designed
to analyze immunofluorescent retinal images, which present unique challenges, especially in tissue
like the retina where cells are densely packed (600 cells in 512 x 100 pixels), uneven staining can
cause intensity variations within cell layers, and non-uniform DNA distribution inside the nucleus
can cause intensity variations within individual cells. Therefore, there is a need to develop a new
method for automatically counting nuclei with consistently high accuracy and reliability in large
sets of digital micrographs.
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In this paper, we present methodology for automatically detecting nuclei, and therefore cell bodies,
from a 2-D digital micrograph. The proposed approach provides an accurate, simple, and reliable
method to count cells, nuclei, or other objects in sectioned materials. In order to have a scientific
basis for selecting optimal parameters of the method, we mainly focus on retinal images, and here
on the outer nuclear layer (ONL). Specifically we detect fluorescent photoreceptor nuclei from con-
focal images of control and degenerating feline retina as a result of retinal detachment. To show
that the proposed method can be applied to many types of images without significant effort, we also
tested it with images acquired by transmitted light and epi-fluorescent microscopy. The proposed
nuclei detector has a number of advantages over manual analysis and other currently available or
proposed automatic/semi-automatic methods including objectivity, simplicity and applicability.

2 Methods

2.1 Materials

The basis of our study is a set of immunofluorescence retinal images which have been collected by
confocal imaging for understanding the mechanism underlying the loss and recovery of vision fol-
lowing retinal detachment/reattachment. Photoreceptor cells have received the greatest attention
in these studies since photoreceptor outer segment degeneration and cell death are considered the
primary effect of detachment. Previously it has been shown that the number of photoreceptors
decrease after detachment (Anderson et al. [1983], Lewis et al. [2002]) (See Figure 1). Such degen-
eration of photoreceptors has been measured in various ways in different studies (Li et al. [1985],
Lewis et al. [2002], Michon et al. [1991]): (1) the number of rows of nuclei in the outer nuclear
layer (ONL), (2) area, (3) the thickness of the ONL, and (4) the number of nuclei. The values
of these measurements are usually represented as change over time and then used as an index of
photoreceptor degeneration. It has been verified that the ONL appears to be much more loosely
packed with nuclei than normal as a result of loss of cells following detachment (Lewis et al. [2002],
Fisher et al. [2005]). The ONL thickness or area may not always give an accurate measure of cell
loss. We therefore used these data to compare with results obtained using the newly developed
automated nuclei detector.

The retinal images used for cell counting were acquired from UCSB’s Center for Bio-image infor-
matics database (http://www.bioimage.ucsb.edu). The preparation of the retinas including the
detachment procedure, fixation and sectioning of tissue has been published previously (Lewis et al.
[2002]). The nuclear stain TOPRO (1:1000; Molecular Probes, Eugene OR) was added to 100 µm
thick vibratome sections for 2 hr. After rinsing in phosphate buffer, the sections were mounted
on glass slides using n-propyl gallate in glycerol and viewed on an Olympus FluoView confocal
microscope.
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Figure 1: Photoreceptor death during retinal detachment. Confocal images of normal and detached
retinas stained with the nucleus dye, TOPRO. After a 3 day detachment, the ONL appears to be
thinner than the control attached tissue.

2.2 Nuclear modeling

Filtering is a very general technique of transforming image gray levels so as to enhance certain
features of interest. Template matching is a simple filtering method for detecting a particular
feature in an image. If the appearance of this feature in the image is known accurately, one can
try to detect it with a corresponding template. This template is a subimage that looks just like
the image of the object. A similarity measure is computed which reflects how well the image data
match the template for each possible location.

Figure 2 shows a confocal image of normal feline retina illustrating the nuclear layers of the
retina. In the image, nuclei can be approximated as simple, nearly circular shapes, which we will
call blobs.

An image of nuclei usually shows a slice of the nuclei. The boundary of each nucleus shows up as
strong intensity discontinuities in an image and the intensity distribution of some nuclei are multi-
modal because of inconsistent staining and biological characteristics such as the DNA distribution
(Figure 3 (a) and (b)). However, the intensity distribution can be assumed to be uni-modal under
the appropriate amount of Gaussian blurring. After Gaussian blurring, the profile of a nucleus
becomes a ridge with smooth change of gray level. Therefore, a blob can be modeled as a 3-D
surface generated by rotating a ridge profile around its central axis (Figure 3 (c)). If we model
the nuclei as this blob with some additive Gaussian noise, we can design an optimum linear blob
detector by rotating the second derivative of a Gaussian around its central axis.
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(a) (b)

Figure 2: Observation of nuclei in a confocal image of normal retina. Each nucleus can be approx-
imated as a circular object, a blob. (a) Example confocal image of normal feline retina stained
by TOPRO illustrating the nuclear layers. (b) Higher magnification images of regions of the outer
nuclear layer (ONL) and the inner nuclear layer (INL). Such intensity variation is associated with
the DNA distribution within these cells.
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(a) (b) (c)

Figure 3: Nuclear modeling. (a) Example image of the outer nuclear layer within a feline retina
stained by TOPRO. (b) 3-D surface plot of (a): the height of each point on the 3-D surface
corresponds to the intensity of each pixel in the image (a). Each nucleus is represented by multiple
peaks caused by variation of DNA distribution within a cell, however, it can be modeled as a uni-
modal intensity distribution shown in (c). The model is used as a template to detect cells in an
image.

In our work, we utilize the inverted Laplacian of Gaussian (LoG) as our blob detector. We
model the nuclei as circular objects although these objects mostly resemble ellipsoids. Our object
in using a circular model, a very general shape model, is to achieve a rotation invariance in our
detection. Otherwise it is possible that we are overfitting our design to the training images.

2.3 Nuclei detector design

Once we have a blob detector, the blob centers are detected with the following two steps:

1. Blob detector design. The LoG filter is designed such that the diameter of the filter is
proportional to the average diameter of nuclei in the image. For example, the average size of
cell bodies in the feline retina is 4-6 µm so the diameter of the filter can be set as 5 µm. The
filter size in µm can be easily converted to pixel size by using the metadata embedded in a
given image. The given retinal image is then filtered by the LoG. This operation results in a
smooth continuous image of which the local maxima correspond to blob centers.

2. Search for local maxima. We search the filtered output for local maxima. The minimum
distance between blob centers is used as the search radius for the local maxima, and this
parameter is defined to be proportional to the filter size.

A schematic diagram for a nuclei detector is shown in Figure 4.
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(a)

(b)

Figure 4: Nuclei detector design. (a) Schematic diagram of the nuclei detector: the blob centers
are detected by filtering with the blob detector followed by searching local maxima. (b) Higher
magnification of the outer nuclear layer within the result image in (a)
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2.4 Evaluation of the nuclei detector

The goal of the nuclei detector is to generate counts of nuclei within the tissue layer of interest that
are close to that obtained by manual counting. The manual count value, which is known as ground
truth, is compared with the results of the automatic nuclei detector using various combinations of
parameters. To estimate optimal parameters of the nuclei detector, we evaluate its performance
using error criterion as

E , 1
N
× |ND −GT |

GT
, (1)

where N is the number of images in the training set, ND and GT is the number of nuclei detected
by our nuclei detector and by manual counting, respectively.

Because manual counting is time-consuming, we obtained ground truth for only 41 retinal images
and, due to our small data set, we employ the leave-one-out cross-validation method to evaluate
the detector’s performance. That is, we train the nuclei detector 41 times, each time leaving out
one image from the training data set, and using only the omitted image to compute the error. The
resulting estimates of generalized error are used for choosing the optimal parameters for the nuclei
detector.

Because the proposed nuclei detector uses a LoG filter and searches the local maxima of the filter
output, its performance depends on two factors. First, how well the filter approximates the shape
of a nucleus which is in turn determined by filter size and standard deviation σ. Second, how
well the local maxima are determined, which is dependent on the minimum distance between blob
centers. Since we search the filter output for local maxima, σ does not affect the performance of
the nuclei detector. Thus, we vary two parameters: cell size (cs) in µm and the proportion (p)
of the minimum distance between blob centers and filter size (fs), where fs is defined as cs×
pixel resolution of a given image. The parameter cs is varied by five different values from 4 to 8.
The range of the values is determined by the cell size within the Outer nuclear layer (ONL). The
parameter p varies by ten different values from 0.1 to 1. Thus, we have a total 5×10 combinations,
and 41 runs are conducted for each combination. We find the nuclei detector achieved a maximum
performance at cs = 5µm , p = 0.5. Users simply can apply the optimal parameters to any type of
retinal images without additional training. The summary of test result is shown in Figure 5.

3 Results

The present work is motivated by the development of an automatic detection solution for blob-like
structures in various bio-molecular images. In such contexts, a nuclei detector requiring minimal
user interaction is preferred. For this reason, a proposed nuclei detector should be 1) accurate so
that it can approximate manual counting; 2) simple and computationally efficient: providing reliable
results; 3) applicable to a wide variety of image types with minimal user interaction including
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Figure 5: A summary of test results of 41 images. Blue dots denote manual counting and the error
bar of each blue dot indicates intra-observer variation. Pink dots represent the result of the auto-
mated nuclei detector. The nuclei detector does not systematically overestimate or underestimate
the number of nuclei compared to the manual counts.
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(a) (b)

Figure 6: Example image of a layer map created from a retinal image. (a) Confocal image of
a normal cat retina stained by TOPRO. (b)Layer map of (a). Boundaries of layers are outlined
manually by using a tablet PC.

parameter settings or preprocessing of the given image. To show that our nuclei detector satisfies
these three issues, we applied it to various sets of retinal images (e.g. confocal images of cat
retina and transmitted light microscope images of mouse retina) as well as other images commonly
generated by biologists (e.g. DNA dot blots and fluorescent cell images).

3.1 Accuracy

Application to confocal images of the retina. We presented the results of applying the nuclei
detector to a series of confocal images of control and detached retinas. Here we focused on detecting
nuclei within the outer nuclear layer (ONL) and the inner nuclear layer (INL). 41 digital images of
normal and 3-day detached feline retinas (21 control images and 20 3-day detached retinal images)
were generated with an Olympus FluoView laser scanning confocal microscope from tissue sections
stained with TOPRO. For each image, we manually created a mask to define the boundary of the
ONL and the INL by using a tablet PC (Figure 6). We created a data collection of the extracted
region of the ONL and the INL with corresponding masks for all images. The same collection
was used for manual counting to create ground truth. For the ONL, each image was manually
counted three times independently to measure intra-observer variation. The average variation over
41 images was 1.8 % ranging from 0.2 to 5.35 %.
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(a) (b)

Figure 7: Application of the nuclei detector to a retinal image. (a) Confocal image of a normal
cat retina stained by TOPRO. Detected cell centers are marked with yellow points. (b)Higher
magnification of the part of the image in (a) denoted by the white rectangle. 688 cells are detected
with 0.5% error compared with manual counts (690 cells).

.

We estimated optimal parameters for the nuclei detector through the leave-one-out cross validation
described in Section 2.4. Then we applied the optimized nuclei detector to the data set. To evaluate
the performance of the nuclei detector, the result was compared with the ground truth. The
automated nuclei detector approximated the number determined by manual counting. The average
absolute error of the nuclei detector was 3.67% for the ONL and 8.52% for the INL respectively.
Considering intra-observer variation is 1.8%, the results from our nuclei detector was promising.
Even though we did not have a ground truth of (x,y) coordinates of detected nuclei, the location
of detected nuclei overlayed on the image seemed visually acceptable (See Figure 7 and 8). Note
that the contrast of the image shown in Figure 8 was not high enough to assure visibility so that
variation among the three manual counting results of a given image became relatively high at 3.37%



3.1 Accuracy 11

Figure 8: Application of the nuclei detector to a difficult case: applying the nuclei detector to a
diagonally oriented confocal image of a 3-day detached cat retina stained by TOPRO. The image
was acquired with poor contrast. Detected cell centers are marked with yellow points. 606 cells are
detected with 3.5% error compared with manual counts (628 cells).
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Figure 9: A comparison of manual and nuclei detector counts of the average number photoreceptor
nuclei per mm2 of retina in control and 3 day detached retina. (a)Manual counts. The control
retina had, on average, 37503 nuclei/mm2. After 3 day of detachment, the cell count was reduced
to an average 33590 nuclei/mm2 (p=0.0001). (b)Nuclei detector counts. The control retina had, on
average, 36164 nuclei/mm2. After 3 days of detachment, the cell count was reduced to an average
33417 nuclei/mm2 (p=0.0000007).

Applying cell counting to retinal detachment. The cell count was used to verify the finding
that the number of photoreceptors decrease in response to a retinal detachment. In the feline model,
retinal detachment leads to the death of some photoreceptor cells (Lewis et al. [2002], Fisher et al.
[2005]). Figure 9 shows the average number of photoreceptor nuclei per mm2 of retina in control
eyes and those with 3-day detached retinas using the manual counting method. The control retina
have, on average, 37503 nuclei/mm2. After 3 days of detachment, this number is reduced to an
average of 33590 nuclei/mm2 (p=0.0001). Even though the average number of photoreceptor nuclei
is not exactly the same as the manual count, the nuclei detector captures relative differences in
cell density between normal and 3-day detached cases and reaches the same conclusion as manual
counting (Figure 9). For the INL, manual counts in 3-day detached retinas would not be considered
statistically different from those in normal retinas (p=0.05309 > 0.05) (Figure 10). Thus, both
manual counting and the nuclei detector result in the same conclusion; the number of cells within
the INL does not change in response to retinal detachment. To date cell death in the INL after
detachment has not been reported for this species.
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Figure 10: The average number of nuclei within the INL per mm2 of retina in control and 3 day
detached retina. (a)The graph is created from manual counts. The control retina have, on average,
18659 nuclei/mm2. After 3 days of detachment, the cell count is reduced to an average 17516
nuclei/mm2 (p=0.05309 > 0.05). (b)The graph is created from results of the nuclei detector. The
control retina have, on average, 17501 nuclei/mm2. After 3 days of detachment, the cell count is
reduced to an average 17435 nuclei/mm2 (p=0.9755 > 0.05).
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Application to large field of view images. We applied the nuclei detector to a mosaic con-
sisting of eight overlapping images of 3 day detached cat retina (Figure 11 (a)). These images were
acquired with 5 to 20% overlap in order to align multiple images automatically. To ensure high
quality results containing the maximum amount of original unchanged data blended without blur
and abrupt intensity differences, a modern blending technique was used (Fedorov et al. [2002]). By
using a mosaic, we can count photoreceptor nuclei within a large section of the cat retina without
sampling the tissue. There had previously been a large amount of work to estimate cell numbers
from the average cell density of the region in which counting boxes are distributed (Abercrombie
[1946], Howard et al. [1985], Williams and Rakic [1988]). From this work, it has been determined
that the larger the tissue and steeper the gradients in cell density, the greater the margin of error.
The proposed nuclei detector overcame these potential errors because no assumptions were made
about size, shape or regional difference in cell density. Therefore, it provided not only reliable
results with greater confidence but also greater insight into relationships between cells and tissues.

3.2 Applicability to varying sample preparation

Application to laser scanning confocal images stained with antibodies. We applied our
method to confocal images stained with various antibodies. In particular, images were used where
the antibodies did not identify the nuclei above background levels and the primary purpose of
the images was not to produce information about cell nuclei. Since confocal retinal images are
generated by using fluorescence, only specific regions where fluorescent dye molecules are bound
are visualized. Therefore, the brightness range within the image is very small. If the antibody does
not bind to the ONL, then the ONL usually appears as a dark region where the intensity value of
a pixel is close to zero (Figure 12 (a)). The histogram shown next to the image is a plot of number
of pixels at each of the 256 possible brightness levels. The narrow peak indicates that only a few of
the levels are represented. Since the brightness range within the image is very small, there is not
enough contrast to visualize the structure within the ONL. Therefore, the visibility of the ONL
should be improved by stretching contrast so that the value of pixels are reassigned to cover the
entire available range thus making the nuclei visible. We applied a histogram equalization method
(Russ [1995]) to the image so that individual nuclei within the ONL could be discriminated (Figure
12 (b)). This histogram plotted with the image in the Figure 12 (b) now shows counts of pixels
for gray levels that are spread out across the available brightness scale (Figure 13). The results
showed that the proposed method estimate the location of a cell body even though the antibody
used is not traditionally thought of recognizing and binding to nuclear portions of the cell. In this
context, cell counting does not need to be limited to stains such as TOPRO or DAPI. Furthermore,
our nuclei detector performed better than manual counting especially where the the contrast of
the region is low (Figure 13 (e) and (f)). Since our approach estimates local maxima of the filter
output, the nuclei detector still can identify individual nuclei even if the contrast of the region is
low or the intensity within the region varies dramatically.
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(a)

(b)

Figure 11: Application to large images. (a)A 2.8 mega pixel montage automatically assembled using
eight confocal images of 3 day detached cat retinas stained with TOPRO. Detected cell centers are
marked with red dots. A portion of image (a; boxed) is displayed at higher magnification and
subsequently the boxed area in (b) is shown at higher magnification.
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(a) (b)

Figure 12: Example image of contrast enhancement by a histogram equalization. (a) Example of
single antibody labeled image of synaptic terminals labeled with anti-synaptophysin. (b) Histogram
equalized image shows a full range of black to white values.
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Figure 13: A comparison of images manually counted and counted with the nuclei detector. (a),(c)
and (e) Manually counted images. The nuclei were counted on the printed paper by placing dots
over the nuclei. The paper was scanned to create a digital image. (b),(d) and (f) Nuclei detector.
White dots on the image represent detected nuclei.
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Figure 14: Light micrograph of normal mouse retina. The tissue was embedded in resin sectioned
at 1 µm and stained with Toluidine blue.

Application to bright-field images of retina. We also applied the nuclei detector to images
generated by transmitted light microscopy of normal mouse retina (Figure 14). The filter size was
set to 30 pixels and the minimum distance between blob centers was set to 15 pixels (filter size ×
0.5), which was the same optimal parameter calculated from feline retina. The result showed that
the proposed method can approximate the center of a cell very well even without fine tuning of
parameters.

Application to other images. We tested the proposed method with various images without
tuning parameters. Figure 15 (a) shows an image of cultured cells and demonstrate that nuclei can
be detected with a single filter even though the size of nuclei within the image are all different.
Similarly, Figure 15 (b) consists of various shapes and sizes of blobs. By applying a single filter
with a median size of blob within an image, we could detect all blobs successfully. There were
double detected blobs because their sizes were almost twice as big as the others, however, they can
be easily post processed by a simple morphological operation. Estimating local maxima can detect
some false positive blobs, but they could also be eliminated by tuning the parameters. Additionally,
the nuclei detector still could identify the individual dot even when the image was noisy (See Figure
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15 (c)).

3.3 Practicality

A number of manual counting methods have been developed. While they are accurate, they are
often difficult and tedious to use. The proposed nuclei detector is a simple and automated method.
However, a filter size and the minimum distance between cells must be defined. The default value of
the minimum distance can be set as half of the filter size as was shown before (Section 2.4) and the
filter size can be selected roughly from a given sample image. In biological fields, the information
of cells including cell size is usually well known. Therefore, the added effort is not significant.

4 Discussion

In this paper, we designed a nuclei detector which automatically detects the number of nuclei in
digital micrographs and can thus be used for counting cells. Initially, we evaluated the performance
of the nuclei detector over confocal images of feline retina but found it useful for a wide variety of
preparations. The proposed nuclei detector performed very well with an average error of 3.67%. The
advantages of the proposed method are simplicity and reliability to detect any blob-like structures
such as cells. For example, when using this method to detect cells in retinal tissues, no parameters
need to be set. Moreover, it is computationally efficient so it is applicable to whole tissue instead
of tiling part of the region of interest within a tissue. This eliminates the potential error caused
by tissue sampling. It is especially valuable for tissue with a steep gradient in cell number such as
brain and retina. Additionally, the proposed method can be used on a variety of preparations or
imaging methods, indicating its widespread applicability.

We used a histogram equalization to enhance the visibility of an image. The histogram equalization
method increases the visual contrast for the pixels present, but it does not increase the ability to
discriminate subtle variations in gray scale that are not in the original image. It also magnifies the
brightness difference associated with noise in the original image. Therefore, we need to develop a
new contrast stretching method so that we can increase the contrast while suppressing the brightness
of noise.

Automated measurement on microscope images is becoming an increasingly important tool in
biology. The technique we suggest here, for the automated detecting of nuclei is useful especially
on a larger scale. Moreover, we can extract additional information based on nuclei detection result
including thickness of a layer and the local cell density within the region (e.g. a specific layer
of the retina or brain) (Byun et al. [2006]). We found that quantitative analysis based on nuclei
detection not only corroborated conclusions derived from manual measurements and qualitative
assessment, but also provided significant information about local structural changes during retinal
detachment. This additional information will help to answer the questions such as is thickness of
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(a)

(b)

(c)

Figure 15: Application of the nuclei detector to different types of images. (a)A fluorescent cell
image acquired by an epi-fluorescent microscope: actin (red), β-tubulin (green) and nuclei (blue)
(downloaded from ImageJ [2005]). Six nuclei are detected. (b) Blob image (downloaded from
ImageJ [2005]). 61 blobs were detected with four detected twice and three false positive blobs. (c)
DNA dot blots (downloaded from ImageJ [2005]). All 28 dots were detected.
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the ONL correlated to the density of cells? Is it possible to discriminate cone from rod by looking
at DNA distribution within a nucleus?

The proposed nuclei detector has been implemented as a plug-in for the public domain NIH image
processing and analysis program, ImageJ (v.1.34 developed at the US National Institutes of Health
and available at http://rsb.info.nih.gov/ij/index.html). Nuclei detector with sample images and its
instruction is available at http://www.bioimage.ucsb.edu/software.html.
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