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ABSTRACT

In this research we propose a combined cell matching and
image alignment method for tracking cells based on their nu-
clear locations in 3D fluorescent Confocal Laser Scanning
Microscopy (CLSM) image sequences. We then apply it to
study the cell division pattern in the developing sepal of the
small plant Arabidopsis thaliana. The method is based on ge-
ometric hashing and inherits its invariance to rotation, transla-
tion and scale. The method consists of three steps. In the first
step the centroids of nuclei are detected using a previously
developed cell detection algorithm, reducing the CLSM vol-
umes to 3D point clouds, wherein every point represents a nu-
clear centroid with an associated confidence level. In the sec-
ond step centroids between images are matched in two phases.
First geometric hashing is used to find an initial set of centroid
matches, then using the initial matches a dense matching is
obtained through a novel iterative point matching algorithm.
In the last step centroid matches are used to estimate transfor-
mations and register all input images to a common frame. Our
algorithm has successfully aligned 12 volumes encompassing
72 hours data set and matched 258 nuclear lifelines.

1. INTRODUCTION

To better understand plant development at a cellular level, bi-
ologists would need to track development from a single cell to
a complex multi-cellular organism. Currently, this is limited
to tracking several cells throughout some stages of develop-
ment. The process of development in Arabidopsis thaliana
is of special interest because of its short life cycle. Specif-
ically, the sepal is a useful model system for examining the
role of growth and cell division in patterning of the organ
because it is accessible for imaging and manipulation. The
outer epidermis of the sepal contains a characteristic pattern
of giant cells, which stretch a fifth of the length of the sepal,
interspersed between smaller cells. This pattern of different
cell sizes is tightly intertwined with cell division and growth:
it arises from variation in the times when cells stop dividing
and enter a specialized endoreduplication cell cycle [1, 2].
Recent research focuses on computational modeling of
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cells and their patterns in the developing plant by simulat-
ing the developmental processes under different conditions
[1]. Such modeling provides a new way of understanding
the complex interaction networks underlying the development
and maintenance of a plant. However, in order to validate
these models, quantification of real data provided by imag-
ing techniques is essential. In particular, live 3D fluorescent
imaging is being used. In 3D fluorescent microscopy the sepal
is periodically imaged by positioning the plant under the mi-
croscope. Individual cells are then tracked through the 3D
fluorescent imaging data set and cell behavior is compared to
computational models.

Cell tracking through 4D data sets is currently still often a
manual process, in which cells between images are matched
one by one [3]. Considering that every image can contain
hundreds of cells, this is an extremely time consuming and
arduous task prone to errors and inconsistencies.

For this reason we introduce a novel automatic cell match-
ing method based on image analysis. The method uses local
geometry to match cells, and does not require a pre-aligned
data set, which is required for other cell lineage tracing meth-
ods [4]. Automating the cell matching process will allow
plant biologists to employ a so called “high throughput biol-
ogy” methodology for future experiments. This means that a
very large amount of experiments could be performed in par-
allel to obtain information on cell development much faster.

2. DATA SET DESCRIPTION

The experimental data set consists of twelve 3D fluorescent
microscopy images of a single Arabidopsis thaliana sepal de-
veloping over 72 hours. The time between every image is 6
hours. Figure 1 shows the first, middle and last image of the
data set. The points projected over the image volumes repre-
sent the centroids detected by the nuclei detection algorithm.
A confidence of detection from 0 to 1 is assigned to each cen-
troid, visually color-coded from blue to yellow, respectively.
As the sepal grows, cells generally move outward and cell
divisions take place, meaning that nuclei move non-linearly,
and new nuclei appear. The image dimensions, voxel sizes



and number of detected nuclei for all images also vary be-
tween 512 x 512 x 48 to 512 x 512 x 94 voxels, 0.3 x 0.3 x 1
to 0.6 x 0.6 x 1 microns and 175 to 909 centroids, respec-
tively. The image resolution decreases as time progresses to
keep the entirety of the growing sepal in view. Frame 8 is
missing from the data set, meaning that there is a 12 hour in-
terval between frames 7 and 9. The number of nuclei does
not increase monotonically because parts of other sepals are
in the edges of the images, and some nuclei located outside of
the area of interest are detected by the detection algorithm.

3. METHODOLOGY

At first, the centroids of cells are detected using a previ-
ously developed and validated cell detection algorithm [5].
The centroid detection reduces CLSM volumes to 3D point
clouds, wherein every point represents a nuclear centroid with
an associated confidence level. Centroid positions are then
converted from pixels to microns in order to normalize for
resolution.

The matching algorithm starts by finding an initial set of
matches between two images using geometric hashing. Then
an iterative matching algorithm is used to obtain a dense
matching. The resulting centroid matches are then used to
transform all CLSM volumes to a common frame.

The algorithm was implemented and tested in Mathemat-
ica [6] and is being converted to Matlab for execution on the
cluster resources.

3.1. Initial Matching

To find an initial set of matches a technique called geometric
hashing is used [7]. Geometric hashing is a rotation, trans-
lation, and scale invariant method for finding an object A in
an input data set B, both represented by discrete points. The
method is adapted for the purpose of matching two centroid
images, and consists of a preprocessing phase, wherein the
positions of a small group of neighboring centroids are de-
scribed by a local basis for every centroid in every frame,
followed by a recognition phase, wherein the initial matches
between every two consecutive frames are identified. In the
preprocessing phase for every frame a symmetric N x N dis-
tance matrix D is created where the (7, j) element D;; rep-
resents the Euclidean distance between centroids c; and c;,
where 7,7 = 1,..., N with N the number of centroids in the
frame. Then for every centroid ¢; a subset of centroids .5;
is created. A centroid c; belongs to subset S; when the dis-
tance between centroids ¢; and c; is smaller than 4 times an
image dependent threshold d, where d is the average nearest
neighbor distance for all centroids in a frame.

N
1
¢ € S if Dij < 4d with d = > min(D;) (1)
i=1

The threshold of 4d was found to define an appropriately
small area without having to explicitly set a threshold in mi-
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crons. The following 3 steps are then performed for every
subset S;: (1) The centroids in S; are sorted by increasing
distance to centroid ¢;. (2) Centroid positions S(; 1), S(;,2)
and S(; 3) in the sorted subset are selected as a basis triplet to
form a local basis, described by origin O and axes vectors X,
Y and Z in the following way:

S,y +5G,2) +56.,3)

0= 3
=56y~ 56 i
||S(i,2) - S(i,l)H (2)
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(3) The centroid positions in the subset are then mapped to the
local basis by subtracting the origin and then multiplication
with the basis axes vectors

Hiwy = (S —0) - (XY, 2)" . 3)
where H; 1) and S(; ) are the mapped and subset positions,
respectively, with k indicating the index of a specific posi-
tion in the subset. The list of mapped centroids H; is called
the hash table. When all hash tables have been formed, the
preprocessing phase is complete.

Next is the recognition phase. First, overlapping hash ta-
ble positions are identified between every frame A and fol-
lowing frame B. Hash positions H é’k) and H 5,,)) match if
the distance between them is smaller than threshold d/2

A : A
(H(M),Hg’p)) matchif || H{ ) — HE | < d/2 (4

where? = 1,...,Nyand j = 1,..., Ng with Ny and Np
the number of hash tables in frames A and B, respectively,
and k£ and p indicate a specific position index. The match-
ing threshold d/2 was found to define an appropriately small
matching threshold. After all overlaps have been identified,
every hash table in frame A will have a number of overlaps
with every hash table in frame B. To identify which hash table
combinations are correct, all hash table matches are indexed
according to their corresponding centroid matches. Correct
centroid matches are usually detected by several hash table
combinations. Therefore, matches between hash tables with
overlapping centroid matches are joined in one group. This
will usually result in one larger group which has mostly cor-
rect matches and some smaller groups. Initially only one-to-
one matching is accepted, so when one or more centroids are
matched to one or more centroids in a following frame, only
the match with the most occurrences in the group is accepted.
The matches in the largest resulting group are called the initial
matches for every frame.

3.2. Dense Matching

The iterative dense matching step uses the initial matches to
obtain a complete matching between two frames. It starts



(a) Image 1

(b) Image 7

(c) Image 13

Fig. 1: The first, the seventh and the last image of the 3D CLSM data set rendered in BioView3D. The sepal changes significantly
over the duration of the data set. The dots projected over the image volumes represent the detected centroids. Each centroid is
assigned a confidence value between 0 and 1 visually color-coded from blue to yellow.

Fig. 2: Images 6 (black) and 7 (red) with their centroid
matches displayed as blue lines. A 3D affine transformation
is used to place both images in the same volume.

by selecting a centroid subset for every matched centroid in
a frame as in Equation (1) and selecting its basis triplet as
the centroid itself and its two nearest matched centroids. The
matched centroids in the following frame are then used to de-
scribe a corresponding subset, of which we can assume the
hash table it forms describes the same part of the sepal in two
frames.

After all hash tables have been formed, matches between
corresponding hash tables are found as in Equation (4). All
hash table matches are then indexed according to their corre-
sponding centroid matches and joined in one group. Initially
only one-to-one matching is accepted. The resulting list of
centroid matches is used for the next dense matching itera-
tion until the set of matches no longer changes. Finally, one
last iteration is performed that allows one-to-two matching,
to account for cell division. The result can be seen in Figure
2. The fact that this method reinforces correct matches based
on local geometry also means that incorrect matches from a
previous iteration are likely to be corrected.
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3.3. Image Registration

The last step in our method is to register all images to make vi-
sual inspection of the data possible. First the centroid matches
between images are connected to generate a lifeline that de-
scribes the behaviour of every matched nucleus, i.e. when it
divided and where its daughter cells go.

To preserve as much information as possible, all images
are transformed to the highest resolution available in the data
set, but registered to the last frame, as it encompasses the
biggest area. To keep the registration as natural as possible
a transformation that, aside from the resolution scaling, only
allows for rotation and translation is chosen. The rotation is
centered around the lifeline of a central nucleus in the last
frame to avoid a ’jittery’ visualization over time. When the
chosen lifeline consists of multiple daughter cells, the aver-
aged location of all daughter cells is used as the anchor point
a. All images then make the anchor point its origin, and the
resolution scaling is applied. A rotation is computed for ev-
ery frame from last to first using singular value decomposition
(SVD). Formally, starting from the before last frame N — 1,
fortr=N—-1...1

n T
_ J J
M = g (mi — ai) Ry (miJrl — aHl)
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Where M is an accumulation matrix, n is the number of
matches between images N; and N1, m] is the position
of match j in frame 4, U, S and V are a 3 x 3 rotation and
scaling matrices, and R is the rotation used for the regis-
tration. No rotation is applied to frame N. The complete
transformation for every CLSM volume then consists of ro-
tation R, the anchor point translation and the voxel scaling.



(a) All lifelines projected to image 13.

(b) Selected branching lifelines.

(c) Magnified lifelines.

Fig. 3: The final volume with overlayed lifelines projected to the last time frame. (a) All temporal lifeline projections. It can
be seen that all projections are moving outward. (b) Some representative lifelines. Divisions can be seen as the projection

branching outward. (c) Magnification of some lifelines.

After the transformation, the lifelines for all nuclei can then
be projected in the volumes in different colors. Figure 3
shows three images with a few selected lifelines projected
on the volume of the last image, all projected lifelines and
a few lifelines zoomed in. It clearly shows that nuclei move
outward and many divisions take place.

4. DISCUSSION

In this paper we present a novel cell matching and image
registration algorithm, for the purpose of automating the cell
tracking process in 3D CLSM microscopy images of the sepal
of Arabidopsis thaliana. The cell matching algorithm con-
sists of two steps: Initial matching and dense matching. The
dense matching step iteratively matches all centroids between
consecutive frames using the initial matches as the first iter-
ation. The dense matching algorithm is able to correct most
mismatches assuming that the initial matches are mostly cor-
rect, though this depends on the similarity of local geometry
between two consecutive frames. This also determines the
outcome of image registration, as it uses a lifeline based an-
chor point, which is subjective to the matching quality. The
final registered 4D image along with cell lifelines for the de-
scribed data set is accessible via web-based Bisque system [8]
and can be downloaded and volume rendered in bioView3D
[9]. Additional movies of the 3D rendering of the final re-
sult are also available on our website http://vision.
ece.ucsb.edu/~fedorov/arabidopsis/.The algo-
rithm could still be improved with an additional refinement
step to correct wrongly matched centroids using a global cost
function. We are working on extensive validation with new
data sets and manually provided ground truth.
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