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ABSTRACT

We propose an algorithm to generate one multi-focus image
from a set of images acquired at different focus settings. First
images are registered to avoid large misalignments. Each im-
age is tiled with overlapping neighborhoods. Then, for each ;
region the tile that corresponds to the best focus is chosen S .
to construct the multi-focus image. The overlapping tiles are (a) Focus setting at 20cm  (b) Focus setting at 2m

then seamlessly mosaicked. Our approachis presented for iy 1 |mages taken from the same location with different fo-

ages from optical microscopes and hand held consumer cargs settings. Objects at particular distance are focused while

eras, and demonstrates robustness to temporal changes ler are blurred to a degree depending on their distances.
small misalignments. The implementation is computationally

efficient and gives good results. image. Many of these methods are either computationally ex-
|ndex Terms— FOCUS, Seam|ess mosaicking, microscopypensive or Susceptib|e to nOise, acquisition quality, and tem-
consumer cameras poral changes. We simplify this problem in order to estimate

an image as a combination of maximum focus regions using
a computationally efficient scheme. This offers a fast and ro-
1. INTRODUCTION bust solution to represent a 3D structure acquired by multiple

Modern optic systems carry several fundamental limitations29€S with different focus setting in 2D preserving its fine

One of them is the low depth-of-field. Usually, certain Ob_detalls. Our approach is robust to acquisition parameters and

jects at particular distance are focused while other objec mporal cha_nges. S'T‘Ce we blend the Images using pixel (_jata
are blurred to a degree depending on their distances from t m the spatial dom_aln (as oppos_ed t_o fusing the mformatlo_n
camera (see Fig. 1). This problem is encountered in photox{-ﬁ; f’: traﬁ]form dcl)tmam), th? rgs%ultmg Images havc(aj fﬁwe(; %ml_d
raphy and microscopy. In microscopy, scientists use sever Cts. € resulls presented for microscopy and hand he

images of the specimen with different focus parameters in of2ONSUMer cameras demonstrate good quality. .
der to see in detail the whole 3D structure. Meanwhile in Th's Paperis ;tructurgd as fOHOV\./S' We descrlpe prqposed
digital microscopy there are solutions provided such as Corﬁ_\lg_orlthm in se_ctlon 2. First pre-registration algor!thm IS ex-
focal microscope that collects light from only one focal plane_plamed_ In section 21 Then the facus measure 15 pr_esented
and therefore discards all the scattered light from out-of-foculd! SeCt.IOI'l 2.2 _and n seqhon 2:3 construct.|0n of multi-focus
planes. On the other hand, confocal imaging is slower thal{29€ IS Qescrlbgd. Section 3 shows experimental results. We
the optical counterparts, and not suitable in many cases. conclude in section 4.

The imaging properties of an optical system dependonthe 2. MULTI-FOCUS IMAGING ALGORITHM
apqwsnmn paramet.ers (focal length, focus, etc.) gnd on thS'Ve use a series of images with different focus setting in or-
distances to the objects imaged. Most of the previous worl(<j

considereddepth from focugdepth from defocus) problem, er to generate one multi-focus image. Our algorithm ac-

. : epts slightly miss-aligned image sets acquired with hand-
and the wavelet transform [1] and gradient domain [2, 3, 4, 5ﬁeld cameras. This would require a pre-registration step. Dur-

solutions were proposed to estimate focus at each pixel of the . L . .
Ing pre-registration input images are mapped into one com-

This work was supported by the National Science Foundation award NSB10N plane. Onc_e aligned, input imag(_e_s, are diVide_d intq small
ITR-0331697. overlapping regions and for each position one region with the




best focus is estimated. Estimated regions are then seamlessly
mosaicked back together and the result is rendered.

2.1. Pre registration

In order to use our method with hand-held consumer cam-
eras, the input images obtained by manually varying the focus
parameter must be pre-registered. The transformation model
x; = Hz; that we have chosen is a planar homography, where
H € R3*3 and has 8 degrees of freedom. The registratiofrig. 2. Raw (a) and filtered (b) depth maps for radioleria ex-
problem in presence of parallax is very hard by itself ancemple, the z axis shows index of maximum focusTile

therefore we allow only minor perturbations between images. . ]
Although, an homography can only model view changes oflUéncy speptrum, several authors used gradient magnitude to
planar scenes the focus method is robust enough to handd®tain maximum focus measure [3, 5]. It was demonstrated
small deviations from the purely planar scenario. Matchedhat the focus measure operator should respond to high fre-
tie points are used to estimate the parameters of the mod@teéncies of image intensities and be maximal with maximum
by the Normalized Direct Linear Transformation (DLT) al- focus [3], fgrthermore it is possible to recover the PSF from
gorithm [8]. First candidate locations are extracted as unith® edges in the image [9]. Nayar also proposed to use sec-
formly distributed local maximas over condition surface [6].0nd derivative to measure the focus [3] and used Modified
Then for each of these locations the point descriptors are ex-aplacian: V3,7 = + ‘%‘. The proposed measure
tracted. Considering small perturbations among input imagesf focus for each pixel was a sum of Modified Laplacian val-
our choice privileges the descriptors that can be computed eftes in a small window. We are interested in obtaining the
ficiently. We use small circular windows whose intensity con-focus measure for the whole tile and use meadgrsuch

tent is normalized and orientation is aligned with the averagas: F; = mean(V3,T;) - std(V2,T;), wheremean andstd
gradient orientation [7]. Preliminary matches of the tie pointsdenote average and standard deviation, and consequently the
are established identifying the pairs with minimum distancenaximum focus til&’ is identified by:i = arg max;(F;).

in the descriptor space. Afterwards, the inevitable outliers ars 3 Constructing Multi-E |
pruned off using RANSAC-like [8] algorithm. During the re- =~ ons-ruc ing Mulli-Focus mage ] )
finement procedure the algorithm selects the dominant plar® this section the framework for image processing using local
which is then used for mapping. Finally, the mapping is dondnformation is presented. The input images are divided into

(a) Raw depth map (b) Filtered depth map

%1
Ox2

using bi-linear interpolation. small overlapping tiles and then among the tiles that cover
o the same physical area we choose the one with best estimated
2.2. Focus Estimation focus. Selected tiles are then seamlessly mosaicked back to-

Let image be an ideal sharp image and multiple imagesgether using multi resolution spline (MRS) technique [10].
I; are captured by changing the optics settings, whiere  The tile size is an important issue and should be comparable
1,..., K and K is the number of changes in the optics. Thein size with the smallest object to be preserved locally. The
blurring effect in imaged; can be modeled as a convolution minimum size for the tile is constrained by the use of MRS so
of the imagel with an associated depth related Point Spreadhat the image pyramid would still make sense.
Functionf; of the optics:I; = f;(z,y) * I(x,y), wherex de- The algorithm is divided into two steps. In the first step,
notes the two-dimensional convolution. Itis demonstrated [2the map of adjustment parameters for each tile is acquired.
that the estimation of the pixels’s focus is related to studyind’he adjustment parameter is the index of the tile with max-
a small neighborhood around that pixel. We relate this neighimum focus. The map is generated sliding the tile-size win-
borhood to a small til§" used to divide input images and that dow over the stack of input images by a certain “step”. This
will constitute a new resultant image. We then rephrase théstep” parameter is defined a priori and controls the amount
image acquisition model ag;; = fi(z,y) * T'(x,y), where  of overlap which is usually half or quarter of the tile size. The
T denotes the tile from the ideally sharp image. Therefore wgenerated map shows for each tile the image that focuses best
could state the problem as finding the tile that minimizes theéhat area, and therefore can be seen as a rough depth map.
effect of the PSFi = arg min;(T(x,y) — Ti(z,y)). Thus, To guard against possible noise and enforce smoothness the
the result consists only of patches from existing images.  maps are refined using filters such as median and gaussian.
At this point the problem is narrowed down to a selec-The obtained depth map is shown in Fig. 2 where z axis is in-
tion of a tile with the best focus. It was demonstrated that thelex: of the tileT; with maximum focus. The raw and filtered
value of the focus measure increases as the image sharpnéspth maps were obtained from radioleria example (Fig. 6).
or contrast increases [4], therefore the region with the maxi- In the second step, we render the resultant image by mo-
mum focus measure can be detected. Different methods wesaicking consecutive tiles together. This process is done by
proposed in literature in order to analyze focus in a regiontows where each row is constructed by consecutively blend-
Fourier and wavelet [1] transforms were used to analyze freing neighboring tiles. In order to blend tiles we opt for multi-



Result

Laplacians

Fig. 3. Multi-resolution spline process for multiple tiles.

Laplacians are spliced and recomposed into blended image. f_ : | = ]
| ! (a) Equidistant transition  (b) Error minimization transition
S Ll B L I Fig. 5. Comparison of MRS mosaicking with equidistant (a)
. a . b and error minimization (b) transitions. Notice wires in the top

Fig. 4. Transition zones indicated by dashed lines (a) equidisr—niddle of the image and top-left extreme of the flower.

tant and (b) error minimization. image intensities, and for the case of color images the YUV
color space is used. The focus is estimated in the intensity
resolution spline technique [10] known to provide smooth(y) channel and all three YUV channels are then mosaicked
blending yet preserving features located in the overlappingccordingly. Tile sizes in the range of 16 and up to 64 pix-
area. During this procedure, the images to be blended aggs were used. Fig. 6 shows a combination of nine images
first decomposed into a multi-resolution laplacian pyramidof radioleria digitally acquired by light microscope manually
(Fig. 3). The pyramids are then spliced level by level, withchanging the focus setting. As seen, details of all nine images
each level being spliced using a weighted average over atragre captured in the generated multi-focus image (Fig. 6d).
sition zone. Then the blended image is obtained by reversemg_ 7(c) shows a combination of four slightly misaligned fo-
composing the spliced laplacian pyramid. Therefore the splingus images of integrated optical waveguide acquired on Scan-
is matched to the scale of features and images are blend@ghg Electron Micrograph (SEM). The result of wavelet im-
gradually without blurring finer image details. To improve age fusion (Fig. 7(d)) from Matlab Wavelet Toolbox (MATI-
speed using more memory the whole process can be done@ys by Dr. Paul Zeeuw) demonstrates visible artifacts. The
once by assembling laplacians for the whole row or image angriginal images are focused on etched wafer surface behind
then reversing the whole structure. waveguide (Fig. 7(a)) and on tilted waveguide sidewall (b).
The averaging transition zone can be easily defined asRig. 8 shows two images of hydrant with focus at 20cm and
line equidistant to borders of both tiles (Fig. 4(a)). The more2m acquired by a consumer camera positioned on the tripod,
elegant solution is to minimize the negative effect of the tilethere are small temporal changes due to wind. Automatic reg-
size with objects of curved structure by defining the tran4stration of these images returns 191 tie points estimating near
sition zone between tiles as an error minimization problenunit transformation which is automatically ignored.
(Fig. 4(b)). The error surface is defined as absolute value of Additional data-sets and results are accessible from our
the difference of gradients of overlapping tilég, and7;.  web site:http:/vision.ece.ucsb.eduftileframework/
W = |V3,T, — V3,T,| This cost function provides splic-
ing that avoids high difference areas and instead uses areas 4. CONCLUSION AND FUTURE WORK
wher_e grad|e_nts are O.f g_rmlar magmtl_Jdes. The approximatg e hased multi-focus imaging technique is presented and
solution to this minimization problem is recently given by a

X - . ’ “its performance is demonstrated on a variety of images. Re-
computationally efficient graph-cut algorithm [1.1]' We deInesults show appealing visual quality for hand-held cameras and
the graph where each node corrgsponds o a.plxel in the ov licroscopy images. Our implementation is computationally
lapping area between the two tiles. The weight of the edgg

h d di t nodes. is defined b fficient and can be parallelized since tile computations are
(p,q),_ where p and q are adjacent nodes, 15 defined by a CO|ﬁtdependent. Our method is afflicted by temporal and ge-
functionW. Source and sink links are also initialized for left-

: . . . metric distortions between images, although, demonstrates
most and right-most border pixels of overlapping area. Fig.

h th . for MRS icki ith idist etter robustness than pixel-by-pixel methods. Currently we
shows the comparison for mosaicking with equidis anIare investigating the application of this framework for local

and error minimization transition zones. These results Werﬁnage enhancement and high dynamic range compression
generated using images presented in Fig. 1. Acknowledgments: Authors would like to thank Jiyun

3. EXPERIMENTAL RESULTS Byun and Marcelo Davanco for generously providing images
. _ and also reviewers for their valuable comments.
The performance of our algorithm is demonstrated on sev-
eral examples. For natural scenes we use JPEG images ac- 5. REFERENCES
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(a) Focus on etched wafer surface (g} Focus on tilted waveguide side-  (c) Our multi-focus result (d) Wavelet image fusion
hind waveguide, left upper corner  wall, right lower corner

Fig. 7. a-b) Two of the four slightly misaligned images of integrated optical waveguide acquired by Scanning Electron Micro-
graph (SEM). c) Our result. d) The result of wavelet image fusion.

(a) Focus at 20cm, flowers are focused (b) Focus at 2m, hydrant is focused (c) Combined result

Fig. 8. Two images of hydrant with focus setting at 20cm (a) and 2m (b). Consumer camera positioned on the tripod, the images
present small temporal changes due to wind. ¢) Combined resultant image.
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