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ABSTRACT
We propose an algorithm to process images using their lo-
cal information. Each image is tiled with overlapping neigh-
borhoods. Then, each region is enhancement independently.
The overlapping tiles are then seamlessly mosaicked to con-
struct the multi-focus image. Our approach is presented for
images from optical and fluorescent microscopy and demon-
strates better local contrast preservation in comparison with
traditional global approaches (histogram stretching or equal-
ization).

1. INTRODUCTION

tilde˜ tilde The dynamic range of modern systems employed
for bio-medical imagery is usually higher than the dynamic
range of standard screen display devices used. This discrep-
ancy leads to the problem in the tone mapping from the ac-
quired high dynamic range (HDR) into the lower dynamic
range (LDR) of print or screen. The usual approach is to lin-
early map intensity values into the new dynamic range. In
confocal microscopy problems in tone mapping arise when
there are areas with different fluorescent responses and cer-
tain regions might not be visible or suffer from a severe loss
of contrast. Another problem is uneven illumination which
is very common in light microscopy. Different solutions for
these problems were proposed and can be classified into two
groups: (1) global - spatially invariant mappings, and (2) lo-
cal - spatially variant operators [1]. Several commonly used
global mappings such as histogram equalization usually re-
sult in loss of local contrast and saturation. Spatially variant
operators define regions that are independently enhanced and
their quality depends mostly on region outlining.

Our method combines both these approaches by applying
mapping on small portions of the image. The input image is
divided into small overlapping tiles and then each tile is indi-
vidually enhanced. Tiles are then seamlessly mosaicked back
together using multi resolution spline (MRS) technique [2].
Our approach is robust to acquisition parameters and tem-
poral changes. Since we blend the images using pixel data
from the spatial domain (as opposed to fusing the informa-
tion in a transform domain), the resulting images have fewer
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artifacts. Moreover, our framework allows to solve different
problems, such as: dynamic range compression, uneven illu-
mination correction [3], multi-focus [4] and multi-exposure
imaging.

This paper is structured as follows: first we give an overview
of previous research in section The the description of the tile-
based framework is presented in section

2. TILE-BASED FRAMEWORK

In this section the framework for image processing using lo-
cal information is presented. The input image is divided into
small overlapping tiles and then each tile is individually en-
hanced. Tiles are then seamlessly mosaicked back together
using multi resolution spline (MRS) technique [2]. The tile
size is an important issue and should be comparable in size
with the smallest object to be preserved locally. The mini-
mum size for the tile is constrained by the use of MRS so that
the image pyramid would still make sense.

The algorithm is divided into two steps. In the first step,
the adjustment parameters are acquired for each tile, slid-
ing the tile-size window over the image with some certain
“step”. This “step” parameter is defined a priori and controls
the amount of overlap which is usually half of the tile size.
Obtained parameter matrices we will call as adjustment maps.
To guard against possible noise and enforce smoothness the
maps are refined using filters such as median and gaussian.

In the second step, we render the resultant image by mo-
saicking consecutive tiles together. This process is done by
rows where each row is constructed by consecutively blend-
ing neighboring tiles. In order to blend tiles we opt for multi-
resolution spline technique [2] known to provide smooth blend-
ing yet preserving features located in the overlapping area.
During this procedure, the images to be blended are first de-
composed into a multi-resolution laplacian pyramid. The pyra-
mids are then spliced level by level, with each level being
spliced using a weighted average over a transition zone. Then
the blended image is obtained by reversely composing the
spliced laplacian pyramid. Therefore the spline is matched to
the scale of features and images are blended gradually with-
out blurring finer image details. To improve speed using more
memory the whole process can be done at once by assembling
laplacians for the whole row or image and then reversing the
whole structure.

The averaging transition zone can be easily defined as a
line equidistant to borders of both tiles. The more elegant so-



lution is to minimize the negative effect of the tile size with
objects of curved structure by defining the transition zone be-
tween tiles as an error minimization problem. The error sur-
face is defined in the overlapping area between tiles. The ap-
proximate solution to this minimization problem is recently
given by a computationally efficient graph-cut algorithm [5].
We will define the graph where each node correspond to a
pixel in the overlapping area between the two tilest1ov and
t2ov. The weight of the edge (p,q), where p and q are adja-
cent nodes, is defined by a cost functionW (p, q) given by:
W (p, q) = ‖E(p)‖+‖E(q)‖+Do(p)

‖Gt1(p,q)+Gt2(p,q)‖ Where the error is defined
as E(p) = t1ov(p) − t2ov(p), G is a gradient defined as:
Gt(p, q) = tov(p) − tov(q) and Do(p) is a minimum dis-
tance from pixel p to the overlap border. This cost function
provides splicing that avoids high error areas, uniform areas,
overlapping area borders and flows around high gradient ar-
eas. Source and sink links are also initialized for left-most
and right-most border pixels of overlapping area.

3. IMAGE ENHANCEMENT ALGORITHM

We will now demonstrate the use of the proposed framework
for uneven staining correction of confocal images. We would
like to obtain the image with the same average intensity and
standard deviation over all local regions. Therefore each tile
It is normalized using desired-average-intensity and desired-
standard-deviationµd, σd, respectively.

I
′

t =
{

(It − µt) + µd, if (σt > σd)
(It − µt) · (σd/σt) + µd, else

Valuesµt andσt are computed for each tile and define ad-
justment maps. In this case there are two maps, first created
from means and the second from ratios of standard deviations
σd/σt. In order to avoid spurious results due to spikes of
noise the value ofσt is robustly obtained using Median Ab-
solute Deviation (MAD). In order to remove some imminent
noise and enforce smoothness we filter adjustment parameter
maps before processing tiles.

There are two known drawbacks in the proposed algo-
rithm. If objects are smaller than the tile size, they might not
be enhanced optimally. Thus the choice of the tile size is of
importance for optimal performance. Secondly, if equidistant
transition zones are used to mosaic tiles the result may contain
visible halos between regions of highly different intensities.

4. EXPERIMENTAL RESULTS

The performance of our algorithm was tested on several ex-
amples and the results were submitted to feature extraction
and object detection that demonstrated improved precision.
Tile sizes in the range of 16 and up to 64 pixels were used in
our experiments. Fig.1 shows results for a stack of 30 flu-
orescent images of microtubules enhanced both in space and
time, enhancement is performed in original 12bits. Means and
standard deviations for all 30 frames are presented in (c). It is
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Fig. 1. Time stack of 30 fluorescent images of microtubules.
The photo-bleaching effect responsible for gradual fluores-
cence decay was corrected for the entire stack.

(a) Original image (b) Local enhancement(c) Histogram equal-
ization

Fig. 2. One plane of a 3D image from laser scanning confocal
microscope of a 7 day detached cat retina section stained with
TOPRO, a nuclear dye.

visible that the photo-bleaching effect responsible for gradual
fluorescence decay was corrected for the entire stack. Cross-
section of a 7 day detached cat retina stained with a nuclear
dye TOPRO acquired by laser scanning confocal microscope
is shown in Fig.2.

5. CONCLUSION

The authors carried out extensive experiments and obtained
promising results for both computational efficiency and en-
hancement quality.Acknowledgments: Authors would like
to thank Dr. Mark Verardo, Prof. Steven Fisher, Dr. Geof-
frey Lewis, Prof. Stuart Feinstein, Kenneth Linberg, Austin
Peck and Kallen Betts from Neuroscience Research Institute
for generously providing image data.
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