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Abstract

The Vision Research Lab at the University of California at Santa Barbara participated in three
TRECVID 2007 tasks: rushes summarization, high level feature extraction, and search. This paper
describes contributions in the high level feature and search tasks.

The high level feature submissions relied on visual features for three runs, audio features exclusively
for one, and a fusion of audio and visual for the remaining two; Table 1 provides a summary. Four MPEG-
7 features (DCD, CLD, EHD, and HTD) comprised the global visual features, and a SIFT signature from
a vocabulary tree generates the local-feature representation. It was discovered that the local features
performed quite well independently. We combined audio and visual methods as a weighted fusion using
SVM scores from the visual features, kNN-derived scores for the visual features, and audio feature SVM
scores. Linear fusion using a grid search for weights on the visual features, without audio, is found to
perform best. Additionally, we submitted a fused run based on weighted Borda counting on the ranked
lists from audio, global visual features, local visual features, and a face feature. This run had similar
performance to the weighted fusion that also included audio. All of our runs were type A, only using
commonly annotated data for training.

Table 1: High Level Feature Submission Summary

HLF Run ID MAP Description
A UCSB 1 0.051 SVM on local SIFT signature concatenated with global features
A UCSB 2 0.049 Borda count fusing local feature SVM scores, global feature SVM

scores, audio feature scores, and face detection scores
A UCSB 3 0.043 SVM on local SIFT signature
A UCSB 4 0.015 Audio-only run
A UCSB 5 0.060 Fusion using combination of visual-only kNN and SVM classifiers
A UCSB 6 0.050 Fusion using methods from run 5 and audio classifier

For the search task we submitted fully automatic baseline text, visual, and concept selection runs,
as well as a manual baseline audio-only run and two fusion runs. The visual submission combined low-
level feature querying with 36-dimensional concept-vector querying. The text run scores were based
on text matching between the query and NIST machine-translated transcript, but this submission was
not scored. A concept selection technique was developed to select multiple concept detectors from the
previous task and from an expanded 374-LSCOM annotation provided by Columbia by expanding the
visual and textual queries. One fusion run used Borda count to combine the lists produced individually
without any training data; the other fusion technique used a Markov chain based method for list fusion.
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Table 2: Search Submission Summary

Search Run ID MAP Description
A UCSB text unscored (F) Text-only baseline
A UCSB visbl 0.031 (F) Visual-only baseline
A UCSB audio 0.014 (M) Audio-based ranking when query makes sense aurally, otherwise

uses visual baseline ranking
A UCSB cpdet 0.029 (F) Concept selection methods
A UCSB fuse1 0.038 (M) Borda count fusion using local feature SVM scores, text, audio,

and concept selection methods
A UCSB fuse2 0.038 (M) Markov chain fusion using features from A UCSB fuse1

1 Overview

Description of our system for the rushes summarization task can be found in [1]. This paper will outline
experiments in the high-level feature detection task and in the search task only. For all experiments, since
the test set keyframes were not explicitly provided we extracted a number of keyframes, N, based on the
length, L, of the shots:

Nshot =

{

1 if Lshot ≤ 128,

1 + ⌊log
2
(Lshot) − 6⌋ if Lshot > 128

(1)

A total of 36,459 keyframes are generated in this manner over the test set. For both tasks, all test keyframes
were tested separately and in the final rankings duplicate shot results are removed.

2 High-Level Feature Extraction

2.1 Features

This section describes the low-level features used for the High Level Feature Extraction submissions.

2.1.1 Visual Features

We used both local and global visual features to represent our video frames. Whereas many teams in the past
have used many global features, our system focused on just four: the dominant color descriptor (DCD, 21 di-
mensions), the edge histogram descriptor (EHD, 80 dimensions), the homogeneous texture descriptor (HTD,
48 dimensions), and the color layout descriptor (CLD, 18 dimensions), all originating from the MPEG-7
standard [2]. Implementation of the HTD, EHD, DCD, and CLD can be gleaned from [2]. The DCD was
used for run A UCSB 1 and A UCSB 3, baseline visual runs, but we used the CLD as the color feature for
fusion runs A UCSB 5 and A UCSB 6. In addition to these descriptors we used the SIFT descriptor in order
to incorporate local features. The SIFT signature used is described below.

The SIFT signature used for modeling local features was derived from [3] and implemented by [4]. Rather
than scanning the image over locations and varying scales for interest points as advocated by Lowe [5],
we sample interest points randomly. Sufficient random sampling has been shown to give equal or better
results than sophisticated multi-scale interest point operators [6]; intuitively, this occurs because the SIFT
descriptors in the interest region are present in each example while the background descriptors vary between
examples. Therefore, the relevant descriptors dominate the feature space and the background descriptors
are reduced to noise. We created a vocabulary tree of quantized descriptors through hierarchical clustering.
The different levels of the tree serve to model the varying degree of correspondence between descriptors, a
“pyramid matching” in the feature space [7]. Each image is characterized by a signature that gives a weighted
frequency of the number of descriptors that go through each node in that vocabulary tree, described in detail
in [3]. For the baseline visual runs we built a vocabulary tree with branching factor of 8 and depth 5, which
results in a signature size equal to 80 + 81 + 82 + 83 + 84 = 4681, while for the fusion runs we used a



DRAFT

signature with 100 + 101 + 102 + 103 + 104 = 11111 dimensions. Experiments were done using 4681, 1111,
and 11,111-dimensional signatures; while there was a large dropoff between signature size 4681 and 1111,
the one between 11,111 and 4681 was not as significant. This performance relation between signature sizes
was further validated in experiments on the Caltech-101 imageset [8]. The smaller of these two was used for
the baseline SVM classification to speed the SVM learning.

2.1.2 Audio Features

While video content retrieval methods justifiably focus on visual techniques, the audio from a video may
also contain useful information. For instance, it may be possible to identify a sports scene by the roar of
the crowd, or an airplane landing by the buzz of a jet engine. As other groups have found in the past,
the difficulties for this audio-based retrieval are apparent with the TRECVID dataset. The audio track
may not correspond to the images, with speech or music overdubbed. It is also much harder for even
humans to distinguish sounds than images. As expected, the average precision results for audio-based re-
trieval were lower than visual runs. Yet some of this can be attributed to the fact that shots were labeled
using only the images, and an examination of the audio of retrieved shots provided some encouraging results.

A 41-dimensional audio feature vector was extracted for each shot in the TRECVID database. This fea-
ture vector included total spectrum power, sub-band power divided into 4 sub-bands, spectral brightness
and bandwidth, Mel-Frequency Cepstral Coefficients (MFCCs), and a silent frame ratio. These features
were calculated over frames of 512 samples which were pre-emphasized and windowed using a Hamming
window. If the energy in a frame was below a threshold, it was designated as a silent frame. Thus, the
final feature vector for a given shot was comprised of the mean and standard deviation of these features
over all non-silent frames within a shot [9]. The feature vector for a silent shot was stored as all zeros, ex-
cept for a silent frame ratio of 1. In fact, several of the development and test videos contained no audio track.

2.1.3 Face Features

Many of the TRECVID 2007 concepts are heavily related to the presence of people. Therefore, it would seem
a face detector would aid the concept detection task. We extended the Viola-Jones OpenCV face detection
algorithm [10] with a second layer. The first layer runs face detection on the keyframes, an algorithm that
does not consider skin color information. In order to capture faces at various orientations, in the first layer
the detections are found as the union of hits from both frontal and profile training sets.

The second layer rejects detected faces not within the skin color range mined from a collection of videos,
reducing the number of false positives [11]. At the end of the second layer, we can create a bounding box
around the detected face of appropriate color.

Different images have different distribution of the number of faces and sizes detected. To capture this in-
formation we built an 11-dimensional feature vector, that includes the histogram of the areas (10 bins) and
the number of faces detected per image. We then input this feature vector to train an RBF-kernel SVM
classifier to produce a ranked list for each concept based on presence and number of faces.

In addition to using face detection for the “Face” category, we applied a combination of it with torso detec-
tion to bolster detection of “Meetings,” “People Marching,” “Crowd,” and “Person.” We used a combination
of four detectors (Face, Upper Body, Lower Body, and Full Body) using the training sets from OpenCV.
As mentioned in the case of faces, each detector had an 11-dimensional feature vector which included the
number of body parts detected with the histograms of the areas (10 bins) of each as identified in the image.
The feature vector for each detector was then concatenated together to form a 44-dimensional vector which
was then used to train the SVM classifier. Generally, due to a noisy and low resolution dataset the method-
ology resulted in some false alarms and misses. Moreover, it was noticed that the use of the above procedure
running individually did not perform better than the visual baseline run for the categories mentioned above,
shown in Table 3. Thus, instead of submitting it as an individual run we decided to use the information
obtained by the classifier in the Borda count fusion method described in Section 2.2.4.
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Table 3: Baseline Visual Performance vs. Face Feature Performance

Category AP Visual Baseline AP OpenCV Detector
Crowd 0.3 0.08
Face 0.64 0.6

Meeting 0.31 0.03
People Marching 0.17 0.021

Person 0.82 0.63

The performance of this system can be improved by incorporating spatial filtering which requires lower body
to be below upper body, for instance.

2.2 Submissions

This section describes the six UCSB submissions for the high level feature extraction task.

2.2.1 Baseline Visual Run: A UCSB 1 and A UCSB 3

Using the visual features described above in 2.1.1, we built a linear-kernel SVM model for each of the 36
concepts using [12]. Each of the video frames was represented by a feature vector, which was simply the
concatenation of different feature descriptors. In the first run (A UCSB 1), SVM classification is based on
global and local features; in the other baseline visual run (A UCSB 3), it is based on solely the local features.
The feature vectors for each run can be visualized:

F1 = [FHTD, FEHD, FDCD, FSIFT ] (2)

F3 = [FSIFT ] (3)

One problem faced in SVM classification on the TRECVID dataset is the imbalance between positive and
negative training data [13]. Putting more weight on the positive data makes the learner heavily penalize
misclassification of a positive sample data and less heavily a negative example. In our experiment, the op-
timal weight between positive and negative training data was found with a grid search to maximize average
precision on the validation set, and set to a ratio of 400:1.

In a run not submitted, we saw that use of only local features led to much better results than use of only
global features, an expected result. From comparison of A UCSB 3 and A UCSB 1, we can see that combin-
ing global features with local features results only in marginal improvement over using local features alone.
Therefore, we believe that a reliable segmentation of a region of interest would greatly improve classification
and concept detection accuracy, though this hypothesis is unvalidated.

We attempted to use the detection scores from each of the 36 concepts as input to an SVM to use concept
correlation on top of the baseline visual detection. The idea in this step was to exploit the correlations
between concepts; it seems reasonable that since “person” and “meeting” are positively correlated and
“indoor” and “outdoor” are negatively correlated, using a concept’s presence/absence to predict another
concept would improve results. This motivation is further validated in the literature [14]. However, results
on the validation set were not improved by using this second-layer SVM. While some concepts benefit, others
perform worse. The performance degradation for certain topics may occur because the approach in many
cases merely combines two unconfident predictions or clouds a confident prediction with an unconfident one.
Indeed, research into prediction of which concepts may benefit from concept correlation has been performed in
previous TRECVID collaborations [15, 16]. In the end, none of the UCSB submissions contained this second-
layer SVM for concept correlation. Future work lies in perhaps incorporating mutual information between
concepts and per-concept confidence into this second-layer for better prediction of utility and selective use
of the second layer.
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2.2.2 Audio-Only: A UCSB 4

For our runs that included audio, training and classification were performed with a support vector machine,
using a method for content-based audio classification by Guo and Li [9]. For testing, an SVM with radial
basis functions was used to classify the development set with a 50-50 split between training and test. Using
audio features alone, this method performed quite well on the development set, with a mean MAP of .219
over all concepts for 20 randomized runs. Some concepts that are not easily identifiable using audio, such as
desert, did much better than what was expected on the held-out validation set, and this is likely attributed
to over-fitting. This is due to the fact that many of the positive examples came from the same videos, in
which different shots can share common overdubs and soundtracks. This was also clear from the output files,
which lists many adjacent shots consecutively. One possible fix for this which was not performed would be
to reorder the results based on video uniqueness. Consequently, the performance on the test set was well
below that on the development set, with a MAP of .015. Another reason for this large drop in AP is that
most of the concepts that audio performed well on, such as crowds, studio, and person, were not scored.

2.2.3 Weighted Fusion: A UCSB 5 and A UCSB 6

These runs used weighted fusion to combine various low-level features and learners. Different concepts will
work better with different features, and with different learning schemes. Weighted fusion allows for the
selection of appropriate features with the appropriate learning technique.

The different features used:

1. Global features as described in Section 2.1.1, comprising a 146-dimensional feature vector.

2. Global features normalized to be between [0,1].

3. 11111-dimensional SIFT signature as described in Section 2.1.1.

We recognize that 1) and 2) are not independent features, and future implementations will incorporate
independent sources of data for better fusion.
The classifiers used:

1. A kNN classifier, described below. Done with global, scaled global, and SIFT features.

2. SVM classification with linear kernel. Done with global, scaled global, and SIFT features.

3. SVM classification on concatenation of global features and SIFT features.

4. SVM classification using audio features described in Section 2.1.2. A UCSB 6 uses this audio classifi-
cation; A UCSB 5 omits it.

In all cases, a linear kernel was used for the SVM. Again, to compensate for the lack of sufficient positive
examples, we used an unequal weighting of the positive and negative examples. Generally discriminative
techniques like SVMs should work better than kNN when there is sufficient training data. However, without
a large number of positive examples as with many TRECVID concepts, the SVM model cannot be reliably
learned. A kNN classifier tends to outperform an SVM when there are few positive examples.

The next issue is generation of ranking scores for the different learning methods. For SVM learning the
prediction scores that are output are generally in the range [-1,1] and can be used as a measure of detection
confidence, and therefore rank. The higher the value, the more confident the learner is about the concept’s
presence. In its pure form a kNN algorithm provides a ranked list of nearest neighbors to a query. The
question is how the nearest neighbor information can be converted to numerical values or confidence (scores).

Considering only 10 nearest neighbors, the 1st neighbor is more likely to be of the same class as the query
than one farther away. The 1st to 10th neighbors are given a weight of 10

11
to 1

11
, respectively. Thus, while

returning K neighbors, wi, the weight allotted to the ith nearest neighbor is given by:

wi = 1 −
i

K + 1
, 1 ≤ i ≤ K (4)
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Thus, an image with 10-NN positively annotated for a concept will have a score of
∑

10

i=1
1 ∗ wi = 5 (ex-

tremely confident positive classification), and one with all 10-NN negatively annotated will have a score of
∑

10

i=1
−1 ∗ wi = −5 (extremely confident negative classification).

The next task is to “optimally” weight the scores of the different methods for the different concept detectors
to generate a final score per image. Logistic regression can be used for fusion of different binary classifier
outputs; however, in logistic regression, the cost function is generally the mean squared error (MSE) between
the known output and the fused classifier output, and in standard form the MSE is inadequate for dealing
with TRECVID data where the negative class greatly outnumbers the positive. Instead, average precision
is a better measure of classification performance, and is the one adopted by TRECVID [17]. Therefore,
in fusing our techniques, we maximized AP on the validation set. To minimize the variance in MAP due
to random selection of the validation set, we generated 20 different equal-sized training and validation sets
using a random number generator. The AP for a given concept is computed over all 20 of these ranked
validation lists per classifier.

We aim to select a weight combination of the classifiers that maximize the AP for that concept. Using a
grid search we can vary the weights {wi}

M
i=1

, where M is the number of classifiers, in the range {1, 20} and
choose the combination that maximizes the AP score. With 8 classifiers, a brute force search would require
consideration of 208 combinations, which is computationally infeasible. We simplify the problem by doing
a pruned search. We assume that if we perform the best possible along one axis, fix that weight, then scan
another axis with the first weight fixed at the optimal value from the first stage, and iterate through all the
weights, that we will find among the best complete set of weights. Convergence, however, is not guaranteed
to a global maximum but only a local maximum.

We first sort the M methods in descending order based on the AP score produced on keeping the ith weight
term wi 1 and the rest zero, for 1 ≤ i ≤ M . We consider the dimension with highest AP and increase the
weight from 1 to 20, selecting that one for which the AP score is maximized. Instead of increasing the weight
from 1 until a local maximum, we limited the maximum possible weight along a single dimension as 20, a
reasonable decision since a local maximum in AP was typically found before 20. Then, retaining this weight
for the highest AP classifier, we similarly iterate to find the best weight for the second highest AP classifier,
while retaining the optimal weight found for the first classifier. This process is repeated for each classifier.
Using this individual search based method, the search complexity is reduced from 208 to 20×8 computations.

This weighted fusion technique performed the best of our submissions. Notably, the inclusion of audio seemed
to degrade performance, likely a result of overfitting and unanticipated silent movies.

2.2.4 Borda Count Fusion: A UCSB 2

As an alternative fusion method, Borda counting was attempted for one of the concept detection runs. In
this fusion we combined the ranked results from four individual high-level feature methods:

1. visual-based concept detector ranking using both global and local features

2. audio-based concept detector ranking

3. face/torso object-based concept detector ranking

4. a two-step discriminative model ranking based on LSCOM-374 annotations of the 2005 dataset

Items 1) and 2) were submitted as separate runs. Item 3) is described previously. Item 4) was not and is
described in more detail in this section. For weighted Borda counting the ranks over the shots, i, were fused
as follows methods m = 1 to 4 above, for each concept j :

RBorda(i) =

4
∑

m=1

AP (m, j)×
2001 − Rank(i)

2000
(5)

where AP are the estimated average precision scores from the seed validation experiments per concept, j,
and per method, m. The baseline visual weight was multiplied by 1.5 due to it’s expected and empirically
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better performance.

The discriminative model ranking, method 4, is determined as follows in a fashion similar to [14] but using
an expanded set of detectors. LSCOM annotations [18] were used as labels to train 374 concept detectors
over the 2005 TRECVID dataset using global visual features and linear-kernel SVM classifiers as before.
Correlations between this expanded ontology of 374 concepts and the 36 high level features were estimated
using mutual information (MI). The frequency of concepts was used to estimate the joint and marginal prob-
abilities. Then for each of the 36 concepts, the ten LSCOM-374 concept detector scores with the highest MI
were selected to form a concept model feature vector input to train second-layer SVM models over the 2007
development set. The 374 concept detectors are run over the test set and concept model vectors are input
into these second-layer models.

This method performed poorly in validation compared to the visual and audio baselines. It is speculated that
this is due to the mismatch between the 2005 news dataset and the 2007 sound and vision data, i.e. visual
classifiers trained on 2005 data were not found to perform well on the new dataset. However, we include this
method in the Borda fusion technique, weighted by the experimental AP score, since these correlations may
represent an independent source of information beyond the other methods.

Results from Borda fusion method (0.049 MAP) are similar to the weighted fusion method in the last section
that included audio (0.050 MAP). The features “Office,” “Animal,” and “Boat/Ship” showed improvement,
perhaps since these categories are likely to have correlates. The feature airplane was better for the first
fusion technique, perhaps due to a small number of positive training examples.

2.3 High-Level Feature Extraction Conclusions

We ran a set of experiments including visual, audio, correlative and fusion techniques for the high-level
feature task. We found that local features, in general, do help visual-based detectors. Audio features, while
appropriate for some categories, caused a performance hit probably due to overfitting. Also, we did not
expect silent movies in the test set so no precautions were taken. Notably, audio only outperformed visual
techniques for the concept “Meeting.” The local visual features alone outperformed their combination with
global features for the concepts “Sports,” “Desert,” “Mountain,” and “Charts.” It is also notable that
among our worst performances were categories that would benefit from some sort of segmentation, such as
“Police-Security,” “Military,” “Computer-TV screen,” “Flag,” “Truck,” and “Fire.” For detailed results of
the classifiers on the evaluated concepts, see Figure 1.

For our fusion experiments, it was found that a Borda counting rank-based algorithm can perform as well
as a score-based one. Borda counting fusion used two sets of features that were available to the other fusion
scheme but were not used due to low validation scores, and did not include the alternate kNN learning
technique available to the weighted fusion method.

3 Search

The team at UCSB participated in the automatic and manual search tasks with five system-A evaluated
runs. We were interested in exploring the use of visual detectors for query-by-example, utilizing the text
and multimedia queries for expanding the set of concept detectors employed, investigating the effectiveness
of audio-based queries extracted from the sample videos, and comparing Borda counting fusion to a Markov
chain based fusion method. This section will describe our experiments in the search task.

3.1 Text Baseline

We developed only one text-based retrieval system as the required baseline system. This query by text
system was a fully automatic text retrieval system based on the common Dutch-to-English machine translated
transcripts (MT) provided by Queen Mary, University London. The baseline run matched the query sentences
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Figure 1: Concept detection results, by run. Best overall performance using weighted fusion without the
audio classifier, which performed a linear fusion of SVM and kNN classifiers using various global and local
visual features.

provided, against the machine translated transcript. The system used Indri text search engine from the
Lemur Toolkit [19]. Simple preprocessing removed stop words including the phrase “find shots of”, and we
applied porter stemming to the remaining keywords. Instead of using TF-IDF we used Okapi[20] scoring.
Additionally, text retrieval was used for query expansion in the concept selection method described in section
3.4.

3.2 Visual Methods and Region-Based Querying

Our non-text, visual feature-based system analyzed the middle frames of the groundtruth video examples
together with the new image examples. Low-level features described in 2.1.1 were used as positive training
examples and the images from the Caltech-101 “Background” class [8] were taken as negative examples. A
linear-kernel SVM was used to develop a model for each query on-the-fly, and then the extracted keyframes
from the test set videos were evaluated on that model. It is notable that SVM performance seemed to
outperform several different nearest neighbor approaches to the problem.

This on-the-fly SVM learning method was combined with a technique that searched for images in a feature
space defined by the 36 TRECVID concept detector scores from the high-level feature task. Images with
similar concept scores to those of the query are likely to also be positive results. We did not experiment
with weighting the feature vector dimensions for this work, but this could have yielded better performance.
For instance, “Find shots with sheep or goats” depends heavily on the presence of the “Animal” concept,
but perhaps the presence of the “Waterscape Waterfront” concept is irrelevant.

The unweighted concept vectors of the query images and the test keyframes were compared by the cosine
distance measure. A ranked list was created that represented the query of the testset by a concept vector.
The rank for a test keyframe was found by ordering the “average rank” of that image by similarity with each
of the separate image and video example queries. The average rank method was considered to be superior
to an absolute nearest neighbor method, where the test images smallest distance to any of the query images
would be considered its score.

This non-text visual “baseline” submission combines feature proximity by on-the-fly SVM model learning
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and concept detection proximity with equal weighting for the final per-test-shot relevance score. Without a
good validation set, though, weights could not be derived for this linear combination.

3.2.1 Failed Vision Experiments

Additionally we note that a segmentation-based approach for visual analysis should be fruitful for the
TRECVID task. Observe that, for instance, the existence of a distant airplane in a shot which covers no
more than 1% of the pixel area is nearly impossible to detect with any sort of global feature. In an attempt
to leverage segmentation to tackle this problem, we ran experiments with an interactive search technique
that allowed querying by region. The user specifies which of the automatically segmented regions, by JSEG
[21], is the most relevant to their query. We did not do manual labeling, as in other works such as Labelme
[22], because it was expected that automatically segmented regions would be comparable to the automatic
regions generated for the test database. So for instance, if a user marks the entirety of a person, querying
using the entire person region is not useful if the database contains regions of the person segmented into
separate face, hair, shirt, pants areas. It was expected that providing the user with automatic segmentation
results and having her choose a region for querying would provide better results.

However, implementation results were poor so interactive querying by region search was not ultimately sub-
mitted for evaluation. Manual inspection of the search returns showed few or zero matching shots in the
returns. There are two main reasons for this. First, the TRECVID queries themselves are not well-suited
for querying by a single region. For instance, the query “Find shots of a canal, river, or stream with some
of both banks visible,” would have relevant regions in at least three separate parts: the water, and then
two regions for each bank. Second, results may have been impacted by poor selection of descriptors for the
regions. The descriptors used were a concatenation of three color features (HSV and RGB histograms as well
as the CLD) with a texture descriptor. Since JSEG-based segmentation is already color-based, the nearest
neighbor retrieved regions after user region selection were often just of similar color. We leave refining this
technique to future work.

3.3 Audio-based Methods

For the search task, the soundtracks of the query videos were utilized to perform a nearest neighbor search
with the development data set using the same set of features extracted in the high-level feature detection
task.

3.4 Concept Selection

Given a text and image-example query for search, recent work at the University of Amsterdam [23] showed
promising results in selecting from an expanded ontology of concept detectors based on query analysis. In
that work, however, only one concept detector is selected for each method as it is unclear how to combine
multiple concept scores. We expand their technique by selecting multiple concepts from the LSCOM-374
ontology, using commonly-donated detectors trained on 2005 data[24], and also selecting from the set of the
36 concepts for the high-level feature task using the visual local+global concept scores. We select multiple
concept detectors and combine their scores using three methods:

1. Visual semantic concept detector selection based on image and video query examples

2. Text-based matching of the search query with the concept detector name and description

3. Wordnet-based ontology expansion and matching with concept detectors

3.4.1 Visual Semantic Querying

Visual semantic querying utilizes the accompanying image queries and keyframes extracted from the video
examples. First, the scores over the 374 concepts are summed and ranked for each image/video keyframe
query. The top 15 concepts from the 374 set are selected from this ranking. However, since the 2005 detec-
tors are not expected to generalize well, we only sum the concept’s score when for that query example it is
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greater than 1.5 standard deviations above the mean. Concepts with low apriori frequency (less than .001)
are not used.

Selecting candidate concepts from the 36 detectors is slightly different. Since for the video-based examples
we have annotations for the 36 detectors, we automatically select the intersection of these concepts over
these examples. Additionally, we choose up to 4 of the 36 concept detectors based on image query scores as
before.

Then, the relevancy for each shot in the test set is ranked separately by summing their 374/36 SVM output
scores for the concepts chosen. These two rankings are combined using the Borda count method. Validation
to determine number of detectors to use (15 and 4 respectively) and the fusion method (score-summation
versus ranking-based) was performed using a set of queries that were combinations of the 36 concepts.

3.4.2 Text-based Matching

For text-based matching we created an index of the Columbia-374 concept detector names and descriptions
as provided to the annotators and an index of the 36 high-level features as defined in the NIST TRECVID
guidelines. Then we searched over these indices by the input text search query in order to select appropriate
matching concepts.

Concepts were selected by a threshold on the returned Okapi indexing value. The concept detector SVM
output scores for chosen detectors were linearly combined weighted by the normalized returned Okapi index
score. A final ranking of shots combined the 36/374 results in the typical Borda way. Most queries only
resulted in a one or two selected concepts for each of the methods.

3.4.3 Ontology Expansion

As a third method, WordNet [25] was used to measure an ontology-based distance between the text queries
and concept definitions, in this case only for the 36 high-level features. The Resnik distance was used be-
tween keywords in the query and a single representative keyword chosen for each of the detectors. We avoid
more advanced query expansions, for instance by use of synsets, as in [23] it is stated that some manual in-
tervention is needed due to noisiness of results. Additionally, only the minimum distance between a concept
definition and all possible meanings for a keyword was used, rather than attempt query disambiguation.

Table 4 lists example concepts selected for these three methods for the LSCOM-374 expanded ontology and
36 high-level features for the “bicycle” topic query.

3.5 Fusion Techniques

We experimented using Borda count and a Markov chain based ranking combination of the 1000-shot lists
provided by the text baseline, visual-only, concept-selection and audio runs.

The first method used Borda counting with equal weighting to rank the top 1000 shots from each of the
4 techniques. This voting scheme is useful when it is unclear on how to arrive at confidence scores for
the disparate methods, and was found to perform as well as score-based methods (when available) for the
high-level task.

The second method considered ranking using a Markov chain scheme defined in [26]. Here, a stochastic
matrix, M, is generated with elements Mij in the matrix, the transition probabilities, defined as the sum of
the number of times shot j appears ahead of shot i in the four separate ranking lists normalized by the sum
of the four ranking positions of shot i. Thus, these probabilities can be thought as being uniformly sampled
from the set Q:
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VSQ-374 Text-Matching-374 VSQ-36 Text-Matching-36 Ontology-
36

Protesters Bicycle Mountain Walking Running Walking Running
Motorcycle Walking Airplane
Demonstration Or Protest Walking Running Bus
Urban Infants Outdoor
Group
Stadium
Coal Powerplants
Emergency Vehicles
Urban Scenes
Striking People
Ground Vehicles
Pedestrian Zone
Trees
Foxhole

Table 4: Concept detectors selected for topic query 199: “Find shots of a person walking or riding a bicycle”

Q =

4
⋃

m=1

{j : τm(j) ≤ τm(i)} (6)

where the list rankings are Rm = {τm,1...τm,1000}. The stationary probabilities are found as the principal left
eigenvector of M and are computed iteratively using the power method. The probabilities are then sorted
to form the output ranked relevance score for the top 1000 shots.

3.6 Runs

3.6.1 Text-Only Baseline

By inspection it was clear the text baseline run performed poorly even though this run was not officially
scored. These poor results are expected given the nature of the dataset. The machine translated transcripts
were extremely noisy and had very little correlation with the text in the query as compared to previous news-
based datasets. As mentioned above, many the queries seemed to lend themselves to a more visual-feature
based approach. For example, for the topic “Find shots that contain the Cook character in the Klokhuis
series”, there was no occurrence of any of these keywords in the transcript. Thus we put more effort in
improving our visuald models.

3.6.2 Visual Baseline

The visual baseline run was expected to have fair performance as a result of the nature of the dataset. Ex-
pectedly, without validation data this task was difficult. Attempts were made at generating our own training
data using queries generated from the high-level features where annotation was available, such as “Find
shots of mountains with animals,”. However, these queries are insufficient in that they reduce the search
task to one of concept detection with a smaller semantic gap than exists for most search topics. We think
that in the future it would be helpful for the TRECVID collaboration to provide new teams with matching
validation data for the search task.

The visual run had a MAP of 0.031, the highest individual method overall score.

3.6.3 Concept Selection

One concept selection automatic run was submitted using the combined methods of visual semantic querying,
text-matching and ontology expansion. The final run was submitted by Borda count fusion of the ranked
shot results found from using the 3 different methods. The result had a slightly lower MAP (0.029 vs 0.031)
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than the visual baseline method reported earlier. It was found to be better for topics 199 “Find shots of
a person walking or riding a bicycle”, 212 - “Find shots in which a boat moves past”, but worse for 214
- “Find shots of a very large crowd of people”. Perhaps, as we did not include motion features, selecting
expanded concepts such as “Walking Running” trained on some notion of movement maybe apparent still
frames helped improve performance.

The results are encouraging considering the mismatch between the 2005 news training set and 2007 sound-
vision test set for the 374-based concepts. Hence, the effort of annotating an expanding ontology appears
justified, yet discouragely seems dataset dependent. More experimentation is still required to determine the
number of concepts each method should select and the proper way to combine the scores. For instance,
if a general concept like outdoors is selected, its score should probably be weighed less for some queries.
However, initial experiments did not find any improvement using a td-idf type weighting on the scoring.

3.6.4 Audio Run

For the search task, the soundtracks of the query videos were utilized to perform a nearest neighbor search
with the development data set. However, many of the queries contained no audio, or sounds that did not
correlate with the concepts contained in the query. Therefore, only query videos that contained relevant
sound information were manually chosen for the search (i.e. no overdubs). Consequently, there were several
purely visual queries where an audio based search was not used and the baseline visual run was substituted.
The results of this search on the TRECVID dataset (MAP of .014) were again below a visual based search,
yet still encouraging as 540 relevant shots were returned. As with concept detection, many of the results
sounded like they could contain the search query, but the images did not correspond directly to the audio.

A significant problem with our audio retrieval method is that the audio track can change significantly within
a shot. Shot detection was performed visually and not aurally. Therefore, an audio based segmentation
method could possibly improve the results. Similarly, source separation could also help identify multiple
concepts simultaneously. These methods can be explored in future TRECVID work.

3.6.5 Fusion Runs

The two fusion runs were submitted as ‘Manual’ type because results from the audio manual run were
included - no further manual intervention was used. Both fusion methods yielded similar results, 0.038
MAP. The Borda method was better for query 212, “Find shots in which a boat moves past.” The Markov
chain (MC) method was better for queries 199, “Find shots of a person walking or riding a bicycle,” and
query 214, “Find shots of a very large crowd of people.” Interestingly, these three topics were ones where
individual methods (visual, concept selection) outperformed one another. One possible reason that the MC
method did not show a significant improvement over Borda counting as expected might be because of the
inclusion of text-based results, as these are believed to have been very poor. The noise in the ranking could
cause the MC method to suffer more. The fusion runs are generally an improvement over any single method,
although there are some cases where a single method is best.

3.7 Search Conclusions

We submitted runs using audio, visual, concept selection and fusion methods for automatic and manual
search. Run times were sometimes high, near 10 minutes, due to time taken to train on-the-fly SVM models
that included local SIFT features. Fused methods outperformed individual ones but no clear advantage was
found for using Markov chain ranking over Borda-based ranking.

As this was our first year participating in the TRECVID evaluation much time was spent performing devel-
opment work.
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Figure 2: Search results, by run. Best overall performance using fusion of audio, visual, and concept detection
ranked lists.
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