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Abstract. We address the problem of cell segmentation in confocal mi-
croscopy membrane volumes of the ascidian Ciona used in the study
of morphogenesis. The primary challenges are non-uniform and patchy
membrane staining and faint spurious boundaries from other organelles
(e.g. nuclei). Traditional segmentation methods incorrectly attach to
faint boundaries producing spurious edges. To address this problem, we
propose a linear optimization framework for the joint correction of multi-
ple over-segmentations obtained from different methods. The main idea
motivating this approach is that multiple over-segmentations, resulting
from a pool of methods with various parameters, are likely to agree on
the correct segment boundaries, while spurious boundaries are method-
or parameter-dependent. The challenge is to make an optimized decision
on selecting the correct boundaries while discarding the spurious ones.
The proposed unsupervised method achieves better performance than
state of the art methods for cell segmentation from membrane images.
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1 Introduction

Embryonic morphogenesis involves the emergence of shape at the cell, tissue,
organ and organismal levels. A quantitative, systems-level understanding of this
process will require a set of robust methods for segmentation and cell specific
measurements (volume, shape analysis, etc). Ascidians are invertebrate chor-
dates with particularly small, simple embryos. The major tissues in the ascidian
are illustrated in Fig. 1(a). The images used here are confocal microscopy vol-
umes of Ciona embryos where the cell peripheries have been stained [10]. 1

This work addresses the problem of cell segmentation, which is necessary to
quantify biologically important parameters of the cell (size, shape, etc) [3]. This

� This work was supported by NIH HD059217 and NSF III-0808772.
1 The Ciona embryos were fixed, stained with Bodipy-FL phallicidin to label the
cortical actin cytoskeleton, cleared in Murray’s Clear (BABB), and imaged on an
Olympus FV1000 LSCM using a 40x 1.3NA oil immersion objective.

K. Mori et al. (Eds.): MICCAI 2013, Part I, LNCS 8149, pp. 444–451, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A LP Formulation for the Segmentation of Membrane Volumes 445

(a) (b) (c) (d)

Fig. 1. Best viewed in color. (a) The major tissues of the ascidian tadpole. [9] (b) Detail
of a confocal section. Notice the faint nuclei boundaries in the string of notochord
cells. (c) Subjective surface [13] segmentation method attached to the faint nucleus
boundary (red contour). (d) Watershed method [6] (red contour) initialized at local
minima incorrectly fragments the cell. The correct segmentations are marked in green.

is a challenging dataset due to varying cortical intensity and faint staining of
other organelles. As seen in Fig. 1(c) and 1(d), segmentation methods incorrectly
attach to the faint nucleus boundaries captured by the staining. Furthermore,
state of the art segmentation methods developed for confocal microscopy mem-
brane volumes, such as [13], require the initialization with a seed point inside
each cell of interest, as well as manually cropping the volume around each cell.
For high-throughput analysis, it is preferable to have minimal or no human
interaction.

Towards this, we tackle the task of 3-D segmentation of the Ciona volumes
by simultaneously correcting multiple over-segmentations in a principled man-
ner. We start out with the results of multiple segmentation methods resulting
from a pool of methods, referred to as the bag of methods. The methods could
differ in their segmentation scheme or in the choice of parameters for a single
algorithm. We assume that all of these are tuned for over-segmentation, thus
resulting in super-pixels, and containing more boundaries than necessary. Tun-
ing a method for over-segmentation is a much easier task than searching for the
narrow range of parameters which result in the desired boundaries. Furthermore,
over-segmentations can be produced efficiently and in parallel, with a method
such as [6], which is extremely suitable for edge data. The intuition is that the
boundaries of interest are present in all the over-segmentations, along with many
other spurious edges which are method- or parameter-dependent. We introduce
a linear program framework for simultaneously correcting these over-segmented
results in order to achieve consensus among the detected boundaries.

The problem of fusing multiple segmentations has caught interest in recent
years in the computer vision community. Vitaladevuni et al., in [14], address the
problem of jointly clustering two over-segmentations modelled as a quadratic
semi-assignment program, which is relaxed to a linear program. Unlike this
work, our method handles multiple over-segmentations and has fewer triangular
inequalities. Warfield et. el [11] also combine a set near perfect segmentations
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from trained raters into one consensus segmentation. The method we propose
solves a more challenging problem where the over-segmented inputs are far from
correct. The authors of [8] propose a segmentation algorithm which learns a
combination of weak segmenters and builds a strong one. The works of [12] and
[7] propose label fusion methods where expert-segmented training images are
registered to the target image. Unlike these methods, the proposed algorithm
achieves a consensus in an unsupervised manner.

We propose a novel method which consists of a linear program optimization
framework that simultaneously corrects multiple over-segmentations, such that
the agreement between them is maximized. As a result of the convex formulation
we can compute a globally optimal solution. The method is generalizable to two-
or three-dimensional data. We present results on a 3-D confocal microscopy
volume of the membrane stained ascidian Ciona. Our method achieves better
performance than state of the art segmentation methods for this type of data.

2 Joint Correction of Multiple Over-Segmentations

We assume that N over-segmentations of the image I are available. These over-
segmentations, denoted as S1 − SN can differ in their methodology or in the
parameters of a single algorithm. Every label-map Sp has a total of Np segments.
We consider correcting these N over-segmentations by merging segments with
similar characteristics within each label map, while simultaneously obtaining
the maximum agreement across the N corrections (Fig. 2(f)). The dissimilarity
between neighboring segments within each label-map is characterized by a cost
of merging. The agreement between two overlapping segments across two label-
maps is characterized by a reward for connecting segments across two consecu-
tive over-segmentations. We formulate the problem as a binary integer program,
which minimizes the total cost of merging segments within each label map, while
maximizing the total reward for agreement across the segmentations. The binary
integer program is further relaxed to a linear program.

The spatial relationship between the super-pixels in each segmentations is
modelled as nodes in a graph. The initial over-segmentations are considered in
arbitrary order, and every pair of consecutive over-segmentations are connected
in the graph as shown in Fig. 2(f).

2.1 Binary Integer Program Formulation

We introduce the parameter Cp, an Np ×Np dimensional matrix whose entries
Cp

ij represent the penalty (cost) for merging segments i and j within label-map
Sp. The connectivity parameter Ep,p is an Np ×Np binary matrix whose entries
Ep,p

ij are 1 if segments i and j both from label-map Sp are in contact by at least
one pixel, and 0 otherwise.

We take theN segmentations in arbitrary order and consider every two consec-
utive label-maps. The connectivity parameter across two consecutive label-maps
Ep,p+1, is defined as Np × Np+1 matrix, where Ep,p+1

ij indicates if segment i
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Fig. 2. (a)-(d) Given the black single line connections, the red double line connections
result from transitivity constraints similar to Eq. (6). (e): Transitivity constraints are
only active for neighboring segments, otherwise the LP is infeasible. This diagram
shows an example where the transitivity and the connectivity constraints cannot both
be satisfied. (f) Graph representation of the multiple over-segmentations. The solid
dark line represents m1,1

i,j , while the dotted dark line represents m1,2
i,k .

from label-map Sp and segment j from label-map Sp+1 share at least one pixel.
Consequently, the reward parameter, Rp,p+1, is represented by a Np×Np+1 ma-

trix, whose entries Rp,p+1
ij quantify the agreement between segment i ∈ Sp and

j ∈ Sp+1.
Next, we introduce the decision variables. Variable mp,p is a Np ×Np binary

matrix whose entries mp,p
ij are non-zero if the two segments i and j from label-

map Sp should be merged. Furthermore, variable mp,p+1 is a Np ×Np+1 binary

matrix whose entries mp,p+1
ij indicate whether segment i ∈ Sp and segment

j ∈ Sp+1 are likely to be part of the same object from the original image.
Thus, for every pair of consecutive label maps, we can identify two objectives:

minimizing the total cost of merging within each label-map Sp, and maximiz-
ing the total reward for agreement across label map Sp and label map Sp+1.
Fig. 2(f) illustrates this concept. Next, we discuss the objective function and the
constraints associated with this program, which verify that the solutions for the
three sub-problems are in agreement with each other.

The objective function of the proposed optimization program is represented
by equation (1). The first summation indicates the total cost of merging within
each label-map. The second summation represents the reward for agreement
(merging/connecting) across two consecutive label-maps. Note that minimizing
the negative total reward is equivalent to maximizing the positive total reward.
The real valued parameter λ is used to balance the total cost and total reward,
and bias the final result towards more or less merging.

We now introduce the constraints needed to ensure the validity of the resulting
segmentations. The range constraint (2) specifies that this is a binary program,
for which the decision variables can only take 0, 1 values. The connectivity
constraint (3) does not permit the merging of segments which are not neighbors,
within each label-map mp,p, or across the two consecutive label-maps mp,p+1.
Constraint (4) handles symmetry: if segment i is merged with segment j, this
implies that segment j is merged with segment i as well. Note that there is no
such constraint for the mp,p+1 variables, which are neither square, nor symmetric
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matrices. Next, equation (5) introduces the self-merger constraint, which implies
that every segment is merged with itself. This forces the diagonals of the resulting
matrices mp,p to be 1. Again, note that this constraint does not hold for the
mp,p+1 variables.

minimize:

f =

N∑

p=1

Np∑

i=1

Np∑

j=1

mp,p
ij Cp

ij − λ

N−1∑

p=1

Np∑

i=1

Np+1∑

j=1

mp,p+1
ij Rp,p+1

ij (1)

subject to:

– Range: (∀i, j, p) mp,p
ij ,mp,p+1

ij ∈ {0, 1} (2)

– Connectivity: (∀i, j, p) mp,p
ij ≤ Ep,p

ij mp,p+1
ij ≤ Ep,p+1

ij (3)

– Symmetry: (∀i, j, p) mp,p
ij = mp,p

ji (4)

– Self-merge: (∀i, p) mp,p
ii = 1 (5)

– Transitivity: (∀i, j, k, p) mp,p
ij ≥ mp,p+1

ik mp,p+1
jk Ep,p

ij Ep,p+1
ik Ep,p+1

jk (6)

The constraints thus far ensure the validity of the results. However the two
sub-problems are still independent of each other: the minimization of the total
cost within the label-maps Sp is only affected by the cost parameters, and the
maximization of the reward across two consecutive label-maps is only affected
by the reward parameters. Thus, the optimization program, with the constraints
thus far, will result in the trivial solution: merge nothing within each label-map
Sp, merge everything across consecutive label-maps.

Therefore, we need to ensure that the two sub-problems match each other,
meaning that the decision to merge segments in one label map will affect the re-
sult of the other label maps. We introduce the following transitivity constraints.
As explained in Fig. 2(a), (6) implies that if segments i and j from label-map Sp

are both merged with segment k from label-map Sp+1, then i and j must also be
merged within Sp . This ensures that mp and mp+1 are in agreement, through
mp,p+1. Note that we only enforce this constraint for neighboring segments: Ep,p

ij ,

Ep,p+1
ik , and Ep,p+1

jk must be 1 for the constraint to be active. This is because,
for situations like Fig. 2(e), the connectivity constraint from (3) will not permit
the merging of two segments which do not share a pixel, leading to an infeasi-
ble program. Similarly, we consider the situations described in Fig. 2(b), 2(c),
and 2(d). Note that transitivity constraints for three nodes pertaining to the
same label-map, i, j, k ∈ Sp are implicit.

The number of constraints is of order O(n3) in the total number of segments,
due to the transitivity constraints. Since the transitivity constraints are only
active for neighboring segments, the size of the problem can be bounded by
O(n2) as in [14].

We have thus formulated a Binary Integer Program (BIP) which simultane-
ously corrects N over-segmentations of an image, while maximizing the agree-
ment between the resulting segmentations. However, this program is an NP-hard
problem and cannot be solved in polynomial time. In the following sub-section
we describe its relaxation to a Linear Program (LP).
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2.2 Linear Relaxation

We note that the constraints of (3), (4) and (5) are linear. However the transi-
tivity constraints (6) (and symmetric equivalents) are not linear, and the range
constraint of (2) does not form a convex set.

We linearize the transitivity constraints as in (7). The first step results from
De Morgan’s law, and the second step results from negating and reordering the
variables. The remaining three transitivity constraints are linearized similarly.

mp,p
ij ≥ mp,p+1

ik mp,p+1
jk ·Ep,p

ij Ep,p+1
ik Ep,p+1

jk

=
(
1− (

mp,p+1
ik +mp,p+1

jk

)) ·Ep,p
ij Ep,p+1

ik Ep,p+1
jk

=
(
mp,p+1

ik +mp,p+1
jk − 1

) ·Ep,p
ij Ep,p+1

ik Ep,p+1
jk

(7)

Further, we relax the values of the variables mp,p, and mp,p+1, defined in the
range constraint of (2), from {0,1} to [0,1]. Occasionally mp,p, and mp,p+1 may
result in fractional values, for which we consider the values above a threshold
(0.5). This converts the feasibility set into a convex set, relaxing the BIP to an
LP, whose global solution is an approximation of the original BIP.

3 Experimental Results

We evaluate the performance of our method on a 3-D confocal volume, as well
as analyze its stability using a 2-D example. The comparison metric is the F -
measure, which is a volume based error metric and is defined as: F = 2PR

P+R ,
where P and R are the precision and the recall for a given ground truth volume.

Performance Evaluation: Numerical results are reported on the forty cylin-
drical cells of the notochord tissue in a 3-D dataset for which manually traced
ground truth is available. Two over-segmentations are used for this experiment:
(1) the Watershed method [6] applied to the image data, and (2) Watershed ap-
plied to the filtered image (3-D mean-filter). To solve the optimization program
we used CVX, a package for specifying and solving convex programs [5,4].

We construct a cost function which compares the intensity histograms on the
border of two neighboring segments, to that of the interior of the segments.
This is given by Cp

ij = max(0, B̄p
ij − S̄p

ij), where B̄p
ij and S̄p

ij represent the mean
intensity on the border and the interior, respectively, of two neighboring segments
i, j ∈ Sp. A large positive value indicates the presence of a membrane, while a low
value suggests a spurious boundary. The reward function for two segments i ∈ Sp

and j ∈ Sp+1 is the percentage area of overlap, expressed as max(
Ap,p+1

ij

Ap
i

,
Ap,p+1

ij

Ap+1
j

).

We compare our work to the following methods relevant to confocal mem-
brane image segmentation. The Subjective Surface variant in [13] is a level-set
method specifically designed for membrane image segmentation. It requires ini-
tialization with a seed point in every cell. The method in [2] also corrects an
over-segmentation by merging segments, however this method requires training
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Fig. 3. Left: F -measure per notochord cell. Right: 3-D rendering of the segmented cells

Table 1. F -measure statistics on forty notochord cells in 3-D

Method Avgerage Median Standard Dev.

Proposed 89.36% 90.13% 3.19%

Method in [2] 86.25% 88.91% 7.30%

Fast Marching [1] 85.58% 85.95% 4.18%

Subj. Surf. [13] 77.87% 82.78% 13.63%

Over-Segmentation #1 80.01% 81.02% 6.37%

Over-Segmentation #2 61.62% 64.18 % 8.73%

data. Lastly, the Fast Marching Method [1] computes geodesic distances in the
discrete image domain from a seed-point in every cell.

As seen in Fig. 3 and Table 1, the proposed algorithm started out with two
over-segmentations with F -scores of 80.01% and 61.62%. By combining them,
it achieves a score of 89.36% and outperforms the manually initialized methods
in [1] and [13], and the trained method in [2], which often leak through broken
boundaries and get attached to spurious edges. The lack of manual interaction
is essential when handling 3-D data with a very large number of cells. The 3-D
rendering of the segmented notochord tissue is presented in Fig. 3.

Stability Analysis: Here we investigate the impact of the input segmenta-
tions on the performance of the method. In order to evaluate this, three over-
segmentations of the confocal section in Fig. 1(b) are obtained using randomly

Fig. 4. Segmentation of the confocal section in Fig. 1(b). From left to right: Three
randomly initialized watershed over-segmentations. Joint correction using proposed
method. Ground truth segmentation.
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seeded Watershed. The proposed method is used to simultaneously correct these
three over-segmentations, as shown in Fig. 4. In an unsupervised manner, the
optimization framework correctly segments out the cells from the notochord and
muscle tissues, which are relevant in the study of morphogenesis. The F -measure
is computed and this process is repeated twenty times. The observed scores av-
erage to 80.32% and the standard deviation is 3.12%. This indicates that the
method is robust to randomized input segmentations. Furthermore, the final val-
ues of the approximately 100,000 decision variables involved in this experiment
are all binary. This indicates that the LP relaxation is tight and the global solu-
tion is in fact the solution to the original BIP from section 2.1. The solver took
4s on a graph of approx. 700 nodes / 7000 edges on a single core i5 at 2.5GHz.

Conclusion: We addressed the problem of cell segmentation for 3-D confocal
microscopy volumes of the Ciona. We introduced an unsupervised method that
combines two or more over-segmentations in a linear optimization framework.
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