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Abstract—Robust methods for segmentation and tracking are
critical for quantitative biology. We give an overview of our
recent work on graph based methods for various microscopy
image analysis, including tracing over 3-D electron microscopy
image stacks, tracking in time-lapse confocal image sequences,
and 3D segmentation. We present results on a variety of datasets
such as 3-D confocal membrane volumes of the ascidian Ciona,
electron micrograph stacks from the rabbit retina, and bright
field microscopy time sequence data from mouse retina.

I. INTRODUCTION

Bioimage informatics refers to managing, processing,
analysing, annotating, navigating and understanding biological
image collections. Progress in biology research is hindered by
the need for manual annotation, segmentation and tracking,
which are often intractable.

For example, the study of morphogenetics at the Smith Lab
at UCSB uses 3-D confocal microscopy membrane volumes
of the ascidian Ciona, for which the individual segmentation
of a couple of thousands of cells in 3-D is required [1].
Morphogenetics is the study of cell and tissue development
and the mechanisms that drive these changes (cell motility,
division and shape changes). The ascidian Ciona is a very
good candidate for the study of morphogenetics, since it has
a small, compact embryo. This makes it possible to obtain a
global image of the embryo at sufficient detail. The notochord
tissue of the asdician, highlighted in blue in Fig. 1, has
a total of 40 cells. The equivalent tissue in a vertebrate
contains hundreds of thousands of cells. Nevertheless, the
entire ascidian embryo contains six tissues and a couple of
thousands of cells, thus making 3-D manual segmentation an
intractable problem. Furthermore, this dataset is challenging
for automated algorithms because of the varying membrane
intensity and the faint presence of other organelles such as
nuclei (Fig. 2(a)).

The second dataset we consider is the time-lapse image se-
quences of melansomes obtained using bright field microscopy
from Williams Lab at UCLA [2]. Melanosomes are organelles
present in the retinal pigment epithelium in the retina layer,
and provide the tissue with color and photoprotection. Un-
derstanding melanosome dynamics provides insights to the
cause of genetic diseases. The melanosomes are generally
densely packed (Fig. 2(b)) and the coarse time sampling of
their motion, imaging noise and out focus moving structures
present challenges to their detection and tracking.

The third dataset we consider is from the Marc lab at

Fig. 1. Left: Original confocal section of cell membrane microscopy image of
the ascidian Ciona. Right: Reconstructed cross-section. The notochord tissue
is marked in blue.

(a) (b)

Fig. 2. (a) The challenges of the confocal microscopy membrane images of
the ascidian Ciona include varying boundary intensity and the faint presence of
other organelles. In this example, the method in [3] incorrectly attached to the
faint presence of the nucleus boundary instead of the cell membrane (boundary
in red). (b) Bright field microscopy image from timelapse of melanosomes in
mouse retina. The dark oval structures are melanosomes for which automatic
detection and tracking is necessary.

Utah. This data consists of nanometer resolution electron
micrograph stacks of the rabbit retina for the study of neuronal
interconnectivity (Fig. 10(a)) [4]. The aim is to trace neuronal
structures through the stack, detect the synapses between
the neurons and construct a neuronal circuit. The primary
problem is the scale of the dataset (terabytes of data), where
the annotation has been an ongoing effort over the past
few years. Tracing these cellular and sub-celluar structures
requires robustness to abrupt topological deformations in the
z-direction, the inherent noisy texture of the structures in the
electron micrographs, and be able to scale to large datasets.

The above examples demonstrate the need for robust seg-
mentation, tracking and tracing methods that can minimize
the need for human intervention in various biological imaging
applications. In this paper we address these problems by
using graph-based techniques. We extract low-level cues (su-
perpixels, detections and tracklets) and model them as nodes
in a graph. The interaction between these low-level cues is
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Fig. 3. Conceptual example of a possible resulting segmentation, where mA,
mB and mAB are in agreement with each other. Superpixels are modelled as
nodes in the graph. The black edges in the graph mark pairs of neighboring
super-pixels which should be merged inside each segmentation as a result of
the linear program. The dotted red edges mark pairs of super-pixels across the
two segmentation which segment out the same object in the original image,
and thus result in a reward for agreement across the two segmentations.
The total cost function that the linear program accumulates the total cost
for merging inside label map A, the total cost for merging inside label map
B, and the total reward for merging across the two label maps.

modelled as edges in the graph. We solve a grouping problem
on the graph, where the resulting groups yield segments, traces
and tracks.

II. APPLICATION 1: A LINEAR PROGRAM FORMULATION
FOR JOINT SEGMENTATION

Approach: We introduce a linear programming framework
for correcting two given over-segmentations (label maps) in a
principled manner in order to achieve consensus among the
boundary pixels. Each of the two input label maps is an over-
segmentation of the desired result. The methods generating
these segmentations could differ in their segmentation scheme
or in the choice of parameters for a single algorithm. The
intuition here is that the boundaries of interest are present
in both over-segmentations, while many other spurious edges
are method- or parameter-dependent. Our algorithm simulta-
neously corrects the two over-segmentations by maximizing
the agreement between the two. We apply our method for the
cell segmentation of a 3-D confocal microscopy membrane
volume of the ascidian Ciona (Fig. 1).

Representation: Given two over-segmentations (label-
maps) of an image, we intend to correct these two over-
segmentations by merging pairs of segments inside each of
the two label-maps, such that the resulting segmentations are
in agreement with each other. The two over-segmentations are
modelled as two interconnected planar graphs. Each segment
is modelled as a node in the graph, where the edges represent
pairs of neighboring segments. Two segments from the two
different segmentations are considered neighbors if they share
at least one pixel. A cost for connecting segments within each
label map is assigned to each pair of neighboring segments
inside each label map. A reward for connecting segments
across the two label maps is assigned to each pair of segments
from the two different over-segmentations that share at least
one pixel. The goal is to merge (connect) segments within
each over-segmentation while minimizing the total cost, and to
merge (connect) segments across the two over-segmentations
while maximizing the total reward.

Consider two label maps (over-segmentations), A and B
in Fig. 3. We introduce the parameter CA, an N1 × N1

dimensional matrix whose entries CA
ij represent the penalty

for merging segments i and j within label-map A. Similarly,
for label-map B we introduce parameter CB of dimensions
N2 × N2 which models the cost for merging two segments
in label map B. Consequently, the reward parameter is repre-
sented by the N1×N2 dimensional matrix RAB , whose entries
RAB

ij quantify the agreement between segment i in label-map
A and j in label-map B. The cost and reward values range
between 0 and 1.

Next, we introduce the decision variables. Variable mA

(mB) is an an N1×N1 (N2×N2) dimensional binary matrix
whose entries mA

ij (mB
ij) are non-zero if the two segments i

and j from label-map A (B) should be connected (merged).
Next, we introduce variable mAB as a N1 ×N2 dimensional
binary matrix whose entries mAB

ij , indicate whether segment i
from label-map A and segment j from label-map B are likely
to be part of the same object from the original image, meaning
that segment i is connected to segment j across the two label
maps.

Three objectives can be identified: minimizing the total cost
of merging within label-map A, minimizing the total cost of
merging within label-map B, and maximizing the total reward
for agreement across label map A and label map B.
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The objective function of the proposed optimization pro-
gram is represented by equation (1). The first two summations
indicate the total cost of merging within each label-map.
The second summation represents the reward for agreement
(merging) across the two label-maps. Note that minimizing
the negative total reward is equivalent to maximizing the total
positive reward. The real valued parameter λ is used to balance
the total cost and total reward, and bias the final result towards
more or less merging.

In order to make sure that the resulting solutions for the
three sub-problems are in agreement with each other, we
identify a few constraints associated with this program. The
range constraint restricts the decision variables to the set {0,1}.
The symmetry constraints ensure that if segment i is merged
to segment j, then segment j is also merged to segment i. The
connectivity constraint ensures that only segments which are
neighbors to each other can be merged. Finally, the transitivity
constraint makes sure that if segment i is merged with k, which
in turn is merged with j, then as a result segment i is also
merged with j (i, j, k from either label-map).

The current optimization program is non-linear, but can be
relaxed to a linear program. The decision variables are relaxed
to take values within [0,1], thus allowing a convex set.

Experiments: The formulation of our method is agnostic to
data dimensionality. We apply our algorithm for the segmen-



Fig. 4. 3-D rendering of the segmented notochord cells.
TABLE I

F-MEASURE FOR THE NOTOCHORD SEGMENTATION OF THE 3-D
CONFOCAL MICROSCOPY MEMBRANE DATASET OF THE ASCIDIAN Ciona.

Rank Method Avg. F-Measure
1 Proposed Method 89.36%
2 Method in [5] 86.25%
3 Fast Marching [7] 85.58%
4 Initial S1 (Watershed based) 80.00%
5 Subjective Surf [3] 77.87%
6 Initial S2 (Watershed based) 61.62%

tation of 3-D confocal microscopy volumes of the ascidian
Ciona. We use two over-segmentations obtained as follows (1)
Watershed method directly applied to the image data, and (2)
Watershed with a different threshold level applied the filtered
image (3-D box-filter). The cost for merging two segments
within each label map is an edge-based cost function which
compares the intensity on the border of the two segments
as opposed to the intensity within the segments. The reward
function for two segments across the two label maps consists
of the percent area of overlap.

The following methods are relevant in the context of con-
focal membrane image segmentation. The Subjective Surface
variant in [3] is a level-set method specifically designed for
membrane image segmentation, which requires the initializa-
tion with a seed point in every cell. The method in [5], also
corrects an over-segmentation by merging segments, however
this method requires the user to create training data. Lastly,
we compare our method against the Fast Marching Method
[6], which computes the geodesic distance in discrete image
domain, from a seed-point manually placed in every cell. The
comparison metric is the F -measure, which is a volume based
error metric and is defined as: F = 2PR

P+R , where P and R are
the precision and the recall for a given ground truth volume.
Fig. 5 and Table I show that the proposed method achieves
the best performance.

III. APPLICATION 2: SIMULTANEOUS DETECTION AND
TRACKING OF MULTIPLE STRUCTURES

Approach: In order to track the melanosomes in bright
field microscopy time lapse images, we utilize a tracking by
detection approach where we detect the melanosomes in all the
frames and tracking is solved by associating these detections.

Representation: The tracking problem is divided into two
stages: tracklet building and track construction. The tracklet
building stage is a conservative association scheme where

Fig. 5. F measures for each of the 40 notochord cells.

Fig. 6. Tracking by detection: First melanosomes are detected in each
frame of the time sequence. Next, tracklets are formed by making confident
associations of the detections in one frame to the detections in the next frame.
Finally, tracklets are connected to form tracks. This process repeats, such
that tracklet association can help identify missing detections. These improved
detections give improved tracks in the following iterations.

every detection is associated to another detection in the
previous frame if the association probability is high and
there is no other conflicting alternate association. The tracks
are further obtained by a bipartite graph matching approach
where the association probability for every pair of tracklets
is computed and optimal track associations are obtained by
solving the graph matching problem. We note that the tracklet
association probabilities can either be learnt from a training set
or evaluated empirically using simple probabilistic models for
appearance, motion and spatial statistics. An example scenario
for the two step process is shown in Fig. 6

We detect the melanosomes using an elliptical template
based detector, but obtaining perfect detections is extremely
difficult. Therefore, we propose a simultaneous detection and
tracking approach which jointly recovers missing detections
and estimates associations in a unified probabilistic frame-
work. Tracking methods typically work with detections which
yield low false positives and low false negatives. In our work
we augment this set of detections with another set consisting of
high false positives without any missing detections as shown
in Fig.7. This can be obtained by moving along the precision
recall curve of the detector by adjusting suitable thresholds.
We simultaneously use both these sets of detections in the
following manner. The first set of detections provides the
tracklet association cost. The second set of detections (no
missing detections) provide a missing detection cost and both
of these are summed to obtain a new association matrix which
accounts for both tracklet association and missing detections.
The bipartite graph matching problem is solved on this joint
matrix and tracklet associations and missing detections are
jointly recovered. For a detailed description of our approach,
the reader is referred to [8]

Experiments: In our experiments we compare our proposed



Fig. 8. This scenario shows a moving melanosome (blue) and a stationary melanosome (red). The baseline approach (top row) misses a few detections of
the stationary melanosomes and hence wrongly switches the moving melanosome and the stationary melanosome when tracking. Our approach (bottom row)
is robust to missed detections and tracks the two melanosomes correctly.

Fig. 7. Example of two sets of detections. (Left) Detections with low false
positive and false negative (Right) Detections with high false positive, no
missing detections.

Fig. 9. Comparison of our approach with the baseline approach [9] on two
different image sequences.

approach to the baseline approach in [9] which does not model
the cost for missing detections. Fig.8 shows an example sce-
nario where our approach outperforms the baseline approach
[9] in tracking melanosomes. Our approach recovers missing
detections while creating associations which lead to robust
tracking.

We evaluated our tracking results by creating ground truth
for 20 melanosomes in two different image sequences of 50
frames each. The first sequence consists of approximately 120
melanosomes and the second consists of approximately 150
melanosomes. Fig. 9 shows that our algorithm outperforms
the baseline approach [9] in these datasets.

IV. APPLICATION 3: SCALABLE TRACING IN ELECTRON
MICROGRAPHS IMAGES

Approach: We now turn to the problem of scalable tracing
in Electron Micrograph (EM) stacks by fusing top down and
bottom up cues in a unified framework. The top down cues
can be thought of as trajectories or 3D reconstructions obtained
using an auxiliary algorithm that serves as a prior to the main
tracing procedure.

Representation of Bottom Up Cues: We adopt superpixels,
or oversegmented image regions as the base representation
in our formulation. The EM stacks comprise multiple 2D

image slices that are independently segmented using the mean
shift algorithm to generate a set of superpixels per slice. The
resulting superpixels are connected to their neighbors in the
same slice and the slices immediately above and below the
current slice, see Fig. 10(a). The above method for construct-
ing a graph by connecting immediate neighbors constitutes of
pairwise interactions or the bottom up cues. The edge weight
between graph nodes i and j is computed by a combination
of the KL-divergence between the gray scale hgray and Local
Binary Pattern (LBP) hlbp histograms:

KL[h(i), h(j)] =
∑
k

h(i, k) ln
h(i, k)

h(j, k)
+ h(j, k) ln

h(j, k)

h(i, k)

w(i, j) =

exp (−b(KL[hgray(i), hgray(j)] +KL[hlbp(i), hlbp(j)]))
(2)

Representation of Top Down Cues: While pairwise edges
are useful in modelling local image structure, they are not
robust to clutter and other artifacts that distract tracing algo-
rithms. In order to address this problem, we model higher or-
der interactions between superpixels by generalizing pairwise
edges to hyperedges, see Fig. 10(b). Hyperedges are initially
constructed by linking a superpixel with its K-nearest neighbor
superpixels. Further, if a complementary algorithm yields
grouping constraints between superpixels, those constraints
are introduced as new hyperedges for inducing higher order
label consistency. The auxiliary algorithm used in our work
employs boosted edge learning [10] / watersheds for generat-
ing homogeneous 2D image regions followed by shortest path
computations on the volume, yielding higher order grouping
constraints on superpixels. The reader is referred to [11], [12]
for details pertaining to the cost function unifying top down
and bottom up cues, and related inference issues.

Experiments: We present experimental results on a dataset
sampled from a connectome volume imaged from a rabbits
retinal tissue, where the challenge is to trace 95 neuronal
structures. A visual illustration of the input images and re-
sults obtained are presented in Fig. 11. Observe the severe
clutter, object deformations and imaging artifacts that make the
problem very challenging. We further benchmark the proposed
approach with state of art tracing techniques, see [11] for more
details. An important finding from our experiments is a marked
rise in performance when hyperedges are utilized (F-Measure:
0.78), as opposed to using pairwise edges alone (F-Measure:
0.23). Further, hypergraph tracing performs significantly better
without sacrificing computation time pointing to the promise
of the proposed technique.
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Fig. 10. Construction of the 3D superpixel hypergraph

Fig. 11. Top row: example of slices from the electron micrograph strack. Bottom row: Result of hypergraph diffusion on Dataset-I.

V. CONCLUSION

Robust image analysis methods are essential for quantitative
biology. In this paper, we discussed three graph-based meth-
ods. First, 3-D image segmentation by simultaneous correction
of two over-segmentations, based on a linear program formu-
lation was discussed and applied to notochord segmentation of
confocal microscopy membrane images of the ascidian Ciona.
Next we addressed the problem of simultaneous tracking of
multiple melanosomes in a time sequence of bright field
microscopy images of the rabbit retina, by associating con-
fident tracklets. The final application discussed in this paper
addresses connectome tracing in stacks of electron microgram
images of the rabbit retina, based on top-down and bottom-
up cues using hypergraph diffusion. All these problems are
tackled as graph based asssociation algorithms from low-level
tracklets and superpixels.
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