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Abstract— Variational cost functions that are based on pairwise
similarity between pixels can be minimized within level set
framework resulting in a binary image segmentation. In this
paper we extend such cost functions and address multi-region
image segmentation problem by employing a multi-phase level
set framework. For multi-modal images cost functions become
more complicated and relatively difficult to minimize. We extend
our previous work [1], proposed for background/foreground
separation, to the segmentation of images into more than two
regions. We also demonstrate an efficient implementation of
the curve evolution, which reduces the computational time
significantly. Finally, we validate the proposed method on the
Berkeley Segmentation Data Set by comparing its performance
with other segmentation techniques.

Index Terms— Region-based image segmentation, grouping,
level sets, multi-phase motion, pairwise similarity measure.

I. INTRODUCTION

IN this paper we present a variational approach to
multi-region segmentation that is based on pairwise

pixel similarity. Pairwise similarity-based cost functions have
been extensively used in the literature, primarily for back-
ground/foreground segmentation [2], [3], [1]. Extensions to
multiple regions is then obtained by recursively bi-partioning
the regions, which may not lead to a good overall segmenta-
tion. In contrast, the method that we propose explicitly starts
with the goal of segmenting the image into more than two
regions, and we derive the appropriate evolution equations that
result in the desired partitioning. It combines the advantages
of pairwise pixel similarity based cost functions –their ability
to embed heterogeneous information derived from different
image cues– with the flexibility of the variational methods
to deal with multiple regions, into a single, well defined
framework for image segmentation.

A pairwise similarity based variational framework was first
introduced in [1] for the case of two-region segmentation.
However, as we will see in the following, extension of this to
multi-region segmentation is not straightforward and requires
a reformulation of the cost functions. Using the notation
w(p1, p2) to represent the pairwise dissimilarity between point
p1 and point p2 (where pi is a 2D point in the image domain)
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we can write this variational cost function as:

E(C) = −
∫∫

p1∈Ro(C)

∫∫
p2∈Ri(C)

w(p1, p2)dp1dp2 (1)

where Ri(C) and Ro(C) are respectively the regions inside
and outside of the curve C. The minimization of E(C) with
respect to the curve C leads to a partitioning of the image,
which maximizes the dissimilarity between regions Ri(C) and
Ro(C). Steepest descent with respect to the curve C yields the
following curve evolution equation:

∂C

∂t
=

( ∫∫
p∈Ro(C(t))

w(c, p)dp−
∫∫

p∈Ri(C(t))

w(c, p)dp
)−→
N

(2)
where c is a point on the curve C. Thus, every pixel on the
curve C is compared with the interior and the exterior of the
curve in terms of their similarity. The curve is then expanded
or shrunk accordingly in the normal direction. At steady state
the region inside of C and the region outside of it are the
segmented background and foreground of the image.

The extension of this above framework for multiple region
segmentation is not straightforward. In fact, the direct mini-
mization with respect to the explicit representation of the curve
C, as in [1], does not allow a mathematically sound extension
to the multi-region case. This leads to one key contribution of
the work, the reformulation in terms of pairwise dissimilarity
within the regions (instead of across-region cuts as in [1]).
This allows us to use the level set formulation of curves,
as proposed by Osher and Sethian [4], and its extension to
multiple regions [5]. In [4], a curve C, the boundary of an
open set ω ∈ Ω (i.e. C = ∂ω), is implicitly represented as the
zero level set of a continuous Lipschitz function φ : Ω 7→ R.
The function φ is positive for the points within the set ω and
negative elsewhere (i.e. for the points within Ω\ω). Therefore
the Heaviside function H(φ), along with its complementary(
1−H(φ)

)
, can serve as indicator function for the points in

ω and Ω\ω respectively [6].

H(φ) =
{

1 if φ > 0
0 elsewhere

(
1−H(φ)

)
=

{
1 if φ < 0
0 elsewhere (3)

In [5] the authors showed how k level set functions can be
used to construct up to n = 2k different indicator functions
and therefore to represent up to n different regions. We will
make use of this binary/multiphase level set representation to
reformulate/extend the similarity based segmentation frame-
work introduced in [1].

The main contributions of this paper are:
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• Design of variational segmentation cost functions suitable
for multi-region segmentation of images. This consists of
two steps:

1) Reformulation using within-region dissimilarities
rather than across-region cuts.

2) Representation of several regions and complex
topologies via a binary/multiphase level set frame-
work.

• Derivation of a steepest descent minimization of these
cost functions that can be implemented using a region-
based active contour model and demonstration of an
efficient implementation of the curve evolution.

• Introduction of an efficient regularization technique based
on over-segmentation, which significantly reduces the
computational time. The regularization is performed lo-
cally and adaptively, leading to improved segmentation
results.

The rest of the paper is organized as follows. In Section
II we briefly review related work in level sets based image
segmentation using region-based approaches. In Section III,
IV and V we present pairwise similarity based cost functions
and derive the corresponding minimizations for the two-region
and multi-region cases. In Section VI and VII we present
regularization techniques and a fast implementation of our
algorithms. Experimental results are shown in Section VIII.
In Section IX, we discuss the estimation of number of phases
required for segmenting an image and then conclude.

II. PREVIOUS WORK ON REGION-BASED LEVEL SET
METHODS

Region-based active contour models [7], [8], [6], [9], [10],
[11] have become increasingly popular in the past ten years.
The main idea is to evolve a curve using information from
the statistics of the interior and the exterior of the curve
such that at the end of the evolution the active contour
coincides with the boundaries of the objects. Compared to
edge driven approaches [12], [13], region based approaches
are more appealing because of their less dependency on
edge detection, which can be sensitive to noise and clutter.
Moreover, region-based active contours are less constrained by
the initial configuration of the contour, since they incorporate
both local and global information of the image statistics.

A region based model for variational image segmentation
by minimizing a cost function was proposed by Mumford and
Shah in [14]. Chan and Vese minimized this functional, using
level set methods for both piecewise constant [6] and piecewise
smooth [5] approximations of the image. The cost function for
the piecewise constant case is:

E(C) = λ1

∫∫
Ri(C)

|I(p)− c1|2dp +

λ2

∫∫
Ro(C)

|I(p)− c2|2dp + (4)

µLength(C) + νArea(Ri(C))

where I is the image, Ri(C) and Ro(C) are respectively the
regions inside and outside the curve C (C(p) : [0, 1] → R2),

c1 and c2 are constants and λ1, λ2, µ, ν are fixed parameters.
This functional was then expressed by the authors within the
level set formulation developed by Osher and Sethian in [4].
Minimizing this cost function with respect to c1, c2 and the
curve C gives the separation of the image in two regions and
the corresponding evolution equation for C becomes:

∂C

∂t
=

[
− λ1|I − c1|2 + λ2|I − c2|2 + µκ + ν

]−→
N (5)

The constant c1 and c2 come out to be the mean intensity
values of the regions Ri(C) and Ro(C). This model was
only suitable for segmentation of a gray scale image into two
regions, one representing the object to be detected and the
second one the background. The model was then extended to
vector-valued images in [15] and to the segmentation of more
than two regions in [5].

Yezzi et al. in [9] used a different optimization criterion
based on maximizing the separation of the mean values of the
two regions. The corresponding cost function can be expressed
as:

E(C) = −1
2
(m1 −m2)2 (6)

where m1 and m2 are the mean intensity values of the regions
Ri(C) and Ro(C). Minimizing this functional using a gradient
descent approach leads to the equation for the curve evolution:

∂C

∂t
= (m1 −m2)(

I −m1

A1
+

I −m2

A2
)
−→
N (7)

where A1 and A2 are the areas of the two regions. A stabilizing
term proportional to the curvature (ακ

−→
N ) is then added to

prevent the contour from wrapping around isolated noisy
pixels.

Paragios and Deriche introduced Geodesic Active Regions,
which revisited the region-based segmentation in a probabilis-
tic framework [16], [17]. The corresponding cost function is
composed of two different terms, a region-based and a bound-
ary related term. Let p(I(q)|B) be the conditional boundary
density function, which measures the probability of the point
q belonging to the real object boundaries. The boundary term
of the cost function can be expressed as:

EB(C) =
∫ 1

0

g(p(I(C(p))|B))|Ċ(p)|dp (8)

where, as before, C(p) : [0, 1] → R2 is a 2D parameterization
of the region boundaries and g(t) is a positive monotonic
decreasing function, such that g(0) = 1 and g(t) → 0 as
t →∞. The region-based term of the cost function is:

ER(C) = −
2∑

i=1

∫ ∫
Ri

log(p(I(x, y)|Ri))dxdy (9)

Minimization of ETOT = (1−α)EB−αER, using a gradient
descent method leads to a curve evolution equation:

∂C

∂t
=

[
α log

(p(I(C)|R2)
p(I(C)|R1)

)
+ (10)

− (1− α)(g(C)κ +∇g(C)
−→
N )

]−→
N (11)

More recent works include [18], where Aubert et al. revisited
the problem of region-based image segmentation functional
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minimization using the concept of shape derivatives. In [19],
[20], [21] Cremers et al. proposed a new variational framework
to integrate shape priors information into the region-based
segmentation approach. Other relevant work in prior-based
segmentation using level sets includes [22], [23], [24].

In this paper we work with variational cost functions based
on pairwise pixel similarities (or dissimilarities). The main
asset of this approach is the ability to embed heterogeneous in-
formation coming from different image cues into the similarity
measure. The similarity measure can be defined as a function
of color distances, or in the case of texture, can be computed
in the feature space generated by Gabor filter outputs [25].
Several approaches have also been proposed to integrate edge
information into similarity measure such as considering edge
strength along the lines connecting two pixels (intervening
contour) [26], or using geodesic distances between pixels [27].

III. BACKGROUND/FOREGROUND SEGMENTATION

In this section we revisit the steepest descent minimization
of the cost function given in (1). We will first formulate this
cost function in a slightly different way. This will help us
with the extension to the multi-region case, which is given in
Section IV.

Define:

diss(A,A) =
∫∫

p1∈A

∫∫
p2∈A

w(p1, p2)dp1dp2 (12)

and

cut(A,B) =
∫∫

p1∈A

∫∫
p2∈B

w(p1, p2)dp1dp2 (13)

where w(p1, p2) is a dissimilarity metric, p1 = (x1, y1) and
p2 = (x2, y2) are 2D points inside the image and A,B form
a partitioning such that A ∪ B = Ω, where Ω represents the
whole image domain. We can now write (1) as:

E = −cut(A,B) (14)

Lemma:
Let

E′ =
1
2
(diss(A,A) + diss(B,B)) (15)

Minimizing E′ is equivalent to minimizing E.
Proof:

cut(A,B) = diss(A,Ω)− diss(A,A)

equivalently

cut(A,B) = diss(B,Ω)− diss(B,B)

we can write:

2E = −2cut(A,B)=diss(A,A)− diss(A,Ω) +
diss(B,B)− diss(B,Ω)

Note that

diss(A,Ω) + diss(B,Ω) = diss(Ω,Ω)

which is independent of the partitioning and therefore can be
eliminated from the cost function.

2E = diss(A,A) + diss(B,B)−�����
diss(Ω,Ω)

This concludes the proof.
We name the cost function (15) as Total Dissimilarity.

Define a 3D surface φ such that its zero level set is the curve
C, which is the boundary between foreground and background.
We can write:

C = {(x, y) ∈ Ω|φ(x, y) = 0}
A = {(x, y) ∈ Ω|φ(x, y) > 0}
B = {(x, y) ∈ Ω|φ(x, y) < 0}

Now using the Heaviside function H(z), equal to 1 if z > 0
and 0 if z < 0, we can rewrite (15) as follows (dropping the
constant):

E =
∫∫

Ω

∫∫
Ω

w(p1, p2)H(φ(p1))H(φ(p2))dp1dp2 + (16)∫∫
Ω

∫∫
Ω

w(p1, p2)(1−H(φ(p1)))(1−H(φ(p2)))dp1dp2

The gradient projection method minimizing
∫

f(φ(x))dx, us-
ing t as the descent variable leads to (See Appendix A for
proof) [28]:

∂φ

∂t
= −∂f

∂φ
(17)

In our case

f(p2)=
∫∫

Ω

w(p1, p2)H(φ(p1))H(φ(p2))dp1 (18)

+
∫∫

Ω

w(p1, p2)(1−H(φ(p1)))(1−H(φ(p2)))dp1

Applying (17) to (18) yields:

∂φ(p2)
∂t

=−∂f(p2)
∂φ

=
∫∫

Ω

w(p1, p2)
[
− δ(φ(p1))H(φ(p2)) +

−H(φ(p1))δ(φ(p2))
]
dp1 + (19)∫∫

Ω

w(p1, p2)
[
δ(φ(p1))

(
1−H(φ(p2))

)
+(

1−H(φ(p1))
)

δ(φ(p2))
]
dp1

Rearranging the terms we get:

∂φ(p2)
∂t

=−
∫∫

Ω

w(p1, p2)
[
δ(φ(p1))H(φ(p2))

]
dp1

+
∫∫

Ω

w(p1, p2)
[
δ(φ(p1))

(
1−H(φ(p2))

)]
dp1

−
∫∫

Ω

w(p1, p2)
[
H(φ(p1))δ(φ(p2))

]
dp1 (20)

+
∫∫

Ω

w(p1, p2)
[(

1−H(φ(p1))
)

δ(φ(p2))
]
dp1
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We can furthermore simplify (20) as:

∂φ(p2)
∂t

=
�������������:0

−
∫∫

C

w(p1, p2)H(φ(p2))dp1

+

����������������:0∫∫
C

w(p1, p2)
(

1−H(φ(p2))
)

dp1

−
∫∫

Ω

w(p1, p2)
[
H(φ(p1))δ(φ(p2))

]
dp1 (21)

+
∫∫

Ω

w(p1, p2)
[(

1−H(φ(p1))
)

δ(φ(p2))
]
dp1

where we can discard the first two terms since they are
integrals calculated over a set of measure zero, and therefore
are neglegible with respect to the last two terms.

The curve evolution, corresponding to the steepest descent,
becomes:

∂φ(p2)
∂t

= δ(φ(p2))
[ ∫∫

Ω

w(p1, p2)
(

1−H(φ(p1))
)

dp1

−
∫∫

Ω

w(p1, p2)H(φ(p1))dp1

]
(22)

This is equivalent to the curve evolution equation (2) given in
Section I.

IV. MULTI-REGION SEGMENTATION

By extending (15) to the multi-region case, the cost function
becomes the following:

E =
n∑
i

∫∫
p1∈Ai

∫∫
p2∈Ai

w(p1, p2)dp1dp2 (23)

where n is the number of regions. The goal therefore is to
minimize the dissimilarity within the regions. In this case
we use k = log2n level set functions to represent n phases
(or regions) with potentially complex topologies, such as
triple junctions [5]. Formation of vacuums and overlaps are
avoided since the partition will be a disjoint and exhaustive
decomposition of Ω. We introduce k = log2n level set
functions φi, such that the union of their zero level sets is
the contours of the segmented regions. Define the level set
vector Φk = (φ1, φ2, ..., φk)T . At each point H(Φk(x, y)) is
a binary vector, whose elements are either 0 or 1. Two pixels
(x1, y1) and (x2, y2) belong to the same region if and only if
H(Φk(x1, y1)) = H(Φk(x2, y2)). This vector can only take
n = 2k different values and can be used for representing up
to n different regions.

Let us call bk the set of all the possible n configurations
of this k-component binary vector

bk = {bk
1 ,bk

2 , ...,bk
n}

where
bk

i = (bk
i1, b

k
i2, ..., b

k
ik)T

and bk
ii = {1, 0}. Now we can define n = 2k characteristic

functions, one for each of the n regions (i.e. a function, which

takes a value of 1 if the pixels belongs to that region and 0
otherwise) as follows:

χi =
k∏

l=1

H(φl)bk
il
(
1−H(φl)

)(1−bk
il) (24)

for i = 1, . . . , n (Note that 00 = 1). We can now rewrite the
cost function (23) as follows:

E =
n∑
i

∫∫
Ω

∫∫
Ω

w(p1, p2)χi(p1)χi(p2)dp1dp2 (25)

Before proceeding with the minimization of the cost in (25)
we introduce another notation. Define a level set vector Φk−1,i

by removing φi from the vector Φk.

Φk−1,i = (φ1, . . . , φi−1, φi+1, . . . , φk)T

H(Φk−1,i) is a binary vector which can only take n
2 = 2k−1

different values. Let bk−1 be the set of all these n
2 possible

configurations.

bk−1 = {bk−1
1 ,bk−1

2 , ...,bk−1
n
2

}

where
bk−1

i = (bk−1
i1 , bk−1

i2 , ..., bk−1
ik−1)

T

and bk−1
ii = {1, 0}. We can now define χi

j as

χi
j =

i−1∏
l=1

H(φl)bk−1
jl

(
1−H(φl)

)bk−1
jl

·
k−1∏

l=i+1

H(φl)bk−1
jl

(
1−H(φl)

)bk−1
jl

for j = 1, . . . , n/2. Now reasoning along the same lines of
the previous section (two region case), we can obtain the
curve evolution equation for each φi. The steepest descent
minimization of (25) is then:

∂φi(p2)
∂t

= δ(φi(p2))
[ n/2∑

j=1

χi
j(p2)(

−
∫∫

Ω

w(p1, p2)χi
j(p1)H(φi(p1))dp1 + (26)∫∫

Ω

w(p1, p2)χi
j(p1)

(
1−H(φi(p1))

)
dp1

)]
See Appendix D for the 4-region case (k = 2).

V. NORMALIZED FRAMEWORKS

The cost function defined in (15) is a particular case of the
following cost function:

E = α diss(A,A) + β diss(B,B)

where α, β are two constants such that α + β = 1. Using
α = β = 1

2 , as in (15), the minimization of the cost
function becomes biased towards equal size partitions. These
two parameters can be tuned in order to give more importance
to one region with respect to the other one, limiting the effect
of this bias. Since the final goal is the design of a self-tuning
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segmentation system, the introduction of tunable parameters
in the algorithm is not desirable.

In this section, we therefore present two types of normal-
izations of (15) and (23) in order to limit the effect of this
bias without introducing any new parameters (the first type of
normalization, i.e. normalization with respect to the area of
the partitions, was introduced in [21] in the context of shape
priors). We derive the equations for the two region case but
these can easily be extended to the multi-region case.

A. Average Dissimilarity

We define Average Dissimilarity within regions as:

EA =
1

Area1

∫∫
Ω

∫∫
Ω

w(p1, p2)χ1(p1)χ1(p2)dp1dp2

+
1

Area2

∫∫
Ω

∫∫
Ω

w(p1, p2)χ2(p1)χ2(p2)dp1dp2

=
diss(A,A)

Area1
+

diss(B,B)
Area2

(27)

where dissimilarity within each region is normalized by its
area. Equivalently we can write:

EA =

∫∫
Ω

∫∫
Ω

w(p1, p2)H(φ(p1))H(φ(p2))dp1dp2∫∫
Ω

H(φ(p))dp
+ (28)∫∫

Ω

∫∫
Ω

w(p1, p2)(1−H(φ(p1)))(1−H(φ(p2)))dp1dp2∫∫
Ω
(1−H(φ(p)))dp

Lemma:
The curve evolution corresponding to the steepest descent
minimization of EA (28) is:

∂φ(p2)
∂t

=−
δ(φ(p2))

∫∫
Ω

w(p1, p2)H(φ(p1))dp1

Area1

+
δ(φ(p2))

∫∫
Ω

w(p1, p2)
(
1−H(φ(p1))

)
dp1

Area2
(29)

+ δ(φ(p2))
(diss(A,A)(

Area1

)2 − diss(B,B)(
Area2

)2

)
Proof:

In order to minimize the cost function in (28), we need to find
the first variation of elements such as:

ε =
∫

f(φ(x))dx∫
g(φ(y))dy

(30)

The steepest descent minimization of (30) using t as descent
variable yields (See Appendix B):

−φt(x) =
fφ(φ(x))

∫
g(φ(x))dx− gφ(φ(x))

∫
f(φ(x))dx( ∫

g(φ(x))dx
)2

(31)
EA can be formulated as:

EA =
∫

f1(φ(x))dx∫
g1(φ(y))dy

+
∫

f2(φ(x))dx∫
g2(φ(y))dy

Therefore (see Section III for details of the derivation)

∂f1

∂φ
= δ(p2)

∫∫
Ω

w(p1, p2)H(φ(p1))dp1

∂f2

∂φ
= −δ(p2)

∫∫
Ω

w(p1, p2)
(
1−H(φ(p1))

)
dp1

∂g1

∂φ
= δ(p2)

∂g2

∂φ
= −δ(p2)

Finally, putting everything together, we obtain the curve evo-
lution equation:

−∂φ

∂t
=

∂f1
∂φ Area1 − ∂g1

∂φ diss(A,A)(
Area1

)2

+
∂f2
∂φ Area2 − ∂g2

∂φ diss(B,B)(
Area2

)2

which after some algebra becomes (29) concluding the proof.

In the multi-region case the Average Dissimilarity becomes:

EA =
n∑

i=1

1
Areai

∫∫
Ω

∫∫
Ω

w(p1, p2)χi(p1)χi(p2)dp1dp2

(32)
and the corresponding evolution equation is:

∂φi(p2)
∂t

= δ(φi(p2))
[ n/2∑

j=1

χi
j(p2)

(
−

∫∫
Ω

w(p1, p2)χi
j(p1)H(φi(p1))dp1∫∫

Ω
χi

j(p)H(φi(p))dp
(33)

+

∫∫
Ω

w(p1, p2)χi
j(p1)

(
1−H(φi(p1))

)
dp1∫∫

Ω
χi

j(p)
(
1−H(φi(p))

)
dp

+(Γ1 − Γ2)
∫∫

Ω

w(p1, p2)dp1

)]
where

Γ1 =
RR

Ω

RR
Ω w(p1,p2)χ

i
j(p1)H(φi(p1))χ

i
j(p2)H(φi(p2))dp1dp2( RR

Ω χi
j(p)H(φi(p))dp1

)2

and

Γ2 =
RR

Ω

RR
Ω w(p1,p2)χ

i
j(p1)(1−H(φi(p1)))χ

i
j(p2)(1−H(φi(p2)))dp1dp2( RR

Ω χi
j(p)(1−H(φi(p)))dp

)2

B. Normalized Dissimilarity

Along the lines of the previous subsection, we can now
define a new unbiased measure normalizing by the total
dissimilarity of each region with respect to the whole domain.
We borrow this concept from graph theory where it is called
normalized cuts.

Therefore, the cost function for the Normalized Dissimilar-
ity framework becomes:

EN =

∫∫
Ω

∫∫
Ω

w(p1, p2)χ1(p1)χ1(p2)dp1dp2∫∫
Ω

∫∫
Ω

w(p1, p2)χ1(p2)dp1dp2

+

∫∫
Ω

∫∫
Ω

w(p1, p2)χ2(p1)χ2(p2)dp1dp2∫∫
Ω

∫∫
Ω

w(p1, p2)χ2(p2)dp1dp2

=
diss(A,A)
diss(A,Ω)

+
diss(B,B)
diss(B,Ω)

(34)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. 6

(a) (b) (c) (d)

Fig. 1. a) Original Image (216×144). b) Segmentation using the Average Dissimilarity Algorithm without any regularization. c) Segmentation using the
Average Dissimilarity Algorithm with regularization using curvature (µ = 4000); CPU time for the curve evolution is 8.49 s (783 iterations). c) Segmentation
using the Average Dissimilarity Algorithm with regularization using oversegmentation; CPU time for the oversegmentation 0.28 s, CPU time for the curve
evolution 0.12 s (10 iterations).

Lemma:
The curve evolution corresponding to the steepest descent
minimization of EN (34) is:

∂φ(p2)
∂t

=−
δ(φ(p2))

∫∫
Ω

w(p1, p2)H(φ(p1))dp1

diss(A,Ω)

+
δ(φ(p2))

∫∫
Ω

w(p1, p2)
(
1−H(φ(p1))

)
dp1

diss(B,Ω)

+
( diss(A,A)(

diss(A,Ω)
)2 −

diss(B,B)(
diss(B,Ω)

)2

)
· δ(φ(p2))

∫∫
Ω

w(p1, p2)dp1 (35)

Proof:
As done for EA in order to minimize the cost function in (34)
we need to find the first variation of elements such as:

ε =
∫

f(φ(x))dx∫
g(φ(y))dy

(36)

We previously showed that this can be obtained using (31).
EN can be written as:

EN =
∫

f1(φ(x))dx∫
g1(φ(y))dy

+
∫

f2(φ(x))dx∫
g2(φ(y))dy

In this case we have:

∂f1

∂φ
= δ(p2)

∫∫
Ω

w(p1, p2)H(φ(p1))dp1

∂f2

∂φ
= −δ(p2)

∫∫
Ω

w(p1, p2)
(
1−H(φ(p1))

)
dp1

∂g1

∂φ
= δ(p2)

∫∫
Ω

w(p1, p2)dp1

∂g2

∂φ
= −δ(p2)

∫∫
Ω

w(p1, p2)dp1

Combining (31) with the four terms above, we obtain the
following curve evolution equation:

−∂φ

∂t
=

∂f1
∂φ diss(A,Ω)− ∂g1

∂φ diss(A,A)(
diss(A,Ω)

)2 (37)

+
∂f2
∂φ diss(B,Ω)− ∂g2

∂φ diss(B,B)(
diss(B,Ω)

)2

Rearranging the terms and after some algebra we get (35),
which concludes the proof.

Generalizing the model to the case of n regions yields the
following cost function:

EN =
n∑

i=1

∫∫
Ω

∫∫
Ω

w(p1, p2)χi(p1)χi(p2)dp1dp2∫∫
Ω

∫∫
Ω

w(p1, p2)χi(p2)dp1dp2

=
n∑

i=1

diss(Ai, Ai)
diss(Ai,Ω)

(38)

Using the same notation as in Section IV we can write the
expression of the curve evolution for the surface φi, which
minimizes (38), as:

∂φi(p2)
∂t

= δ(φi(p2))
[ n/2∑

j=1

χi
j(p2)

(
−

∫∫
Ω

w(p1, p2)χi
j(p1)H(φi(p1))dp1∫∫

Ω

∫∫
Ω

w(p1, p2)χi
j(p1)H(φi(p1))dp1dp2

(39)

+

∫∫
Ω

w(p1, p2)χi
j(p1)

(
1−H(φi(p1))

)
dp1∫∫

Ω

∫∫
Ω

w(p1, p2)χi
j(p1)

(
1−H(φi(p1))

)
dp1dp2

+(Γ1 − Γ2)
∫∫

Ω

w(p1, p2)dp1

)]
where

Γ1 =
RR

Ω

RR
Ω w(p1,p2)χ

i
j(p1)H(φi(p1))χ

i
j(p2)H(φi(p2))dp1dp2( RR

Ω

RR
Ω w(p1,p2)χi

j(p1)H(φi(p1))dp1dp2

)2

and

Γ2 =
RR

Ω

RR
Ω w(p1,p2)χ

i
j(p1)(1−H(φi(p1)))χ

i
j(p2)(1−H(φi(p2)))dp1dp2( RR

Ω

RR
Ω w(p1,p2)χi

j(p1)(1−H(φi(p1)))dp1dp2

)2

VI. REGULARIZATION

In the case of noisy images, our proposed method (sim-
ilarly many other curve evolution techniques) suffers from
the fact that the curves tend to split in many small portions
wrapping around several few-pixel-sized regions (see Fig. 1).
This demonstrates a need for regularizing techniques. In this
section, we first talk about the regularization through motion
by mean curvature, which, despite being extensively utilized
in the literature, has some drawbacks. To get around these
problems we then introduce a novel regularization method
based on oversegmentation, which shows higher robustness to
noise and allows a fast implementation of the curve evolution.
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A. Regularization using Motion by Mean Curvature

The cost function of the curve evolution framework can
include a regularizing term proportional to the length of the
curve. The length of the zero level set contour (i.e. the curve)
is:

L =
∫

Ω

|∇H(φ(x, y))|dxdy =
∫

Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

(40)
A term proportional to L can be added to the cost function and
weighted by a constant term µ. By minimizing this additional
term using the steepest descent and using t as a descent
variable we can obtain:

∂φ

∂t
= µδ(φ)div

( ∇φ

|∇φ|

)
= µδ(φ)κ (41)

where κ is the curvature of the level set function φ. This
constraint introduces a new term controlling the elasticity of
the curve, preventing it from splitting in many small parts.

This approach, extensively utilized in the literature (see for
example [6], [9], [10]), has some drawbacks. First drawback
is the increased computational burden. This is due to the fact
that we need to solve a nonlinear parabolic partial differential
equation (PDE) on large domains with stringent time steps
restrictions. The motion by mean curvature is responsible
for the parabolic nature of the PDE. Secondly, the nature of
this new term is uncorrelated with the image characteristics.
Thirdly, tuning of the parameter µ is critical in order to obtain
good segmentation results and its choice is image dependent.

B. Regularization using Oversegmentation

As an alternative way to regularizing the curve evolution
we propose a novel approach based on oversegmentation.
The robustness to noise is achieved by using an adaptive
partitioning of the image into superpixels (in our experiments
the number of superpixels vary between 800 and 1500), which
reduces the sensitivity to isolated noisy pixels. Dissimilarities
are calculated at superpixel level using average feature values
of the superpixels. The motivation for this is that pixels are not
natural entities but purely a consequence of a discretization
process. On the other hand superpixels provide a locally
adaptive, coherent and concise representation, which maintains
most of the information necessary for segmentation [29].

Oversegmentation is performed in three steps using a
watershed-like region growing algorithm. First Canny edge
detector is applied to get the edges. Then N points are
randomly sampled as the seed points. We make sure no edge
points are sampled (if an edge point is sampled, we resample).
Then using Fast Marching [30], every pixel of the image is
assigned to the closest seed point in the geodesic distance
sense. The cost of traveling towards the seed is defined by
a nonlinear scaling of the edge strengths. Let F (x, y) be the
edge strength function. Calculating distances to the seeds boils
down to solving the following equation for T (the distance
function):

|∇T (x, y)| = F (x, y) (42)

Each point is assigned to the closest seed (Fig. 2 shows an
example of the oversegmentation algorithm output).

(a) (b)

Fig. 2. (a) An image of a bear. (b) Oversegmentation in 800 superpixels,
using the proposed watershed-like region growing algorithm.

The first beneficial consequence of the oversegmentation ap-
proach is in terms of memory/time requirement to store/access
the dissimilarity matrix. In fact, storing the full matrix requires
storing m2n2 values, where m and n are width and height of
the image. A solution proposed in [1] relies on a dimension-
ality reduction of the similarity matrix along one dimension.

Our proposed oversegmentation approach allows adaptive
partitioning of the image, which reduces the dimensionality of
the similarity matrix in both dimensions. Consider for example
the oversegmentation of the image into k superpixels. Now
we can afford computing and storing only k × k similaries,
reducing both the memory requirements and the computation
load of calculating the dissimilarity-based evolution forces
(integrals in equations (26), (33) or (39)). In addition, the
absence of the curvature term yields a fast implementation
of the curve evolution, which is described in the next section.

VII. FAST IMPLEMENTATION

The bottleneck in terms of computational requirements of
the proposed algorithms is in the calculation of the integrals
of equations (26), (33) or (39), which has to be repeated every
iteration. These integrals can be significantly simplified if we
assume that only few pixels change phase from one iteration
to the next one. If this holds true, in fact, the normalizing
quantities Areai in (32) and diss(Ai,Ω) in (38) can be con-
sidered approximately constant. Therefore the minimization of
(32) and (38) can be performed similarly to the minimization
of (23), leading to the following two curve evolution equations
(simplified versions of (33) and (39) respectively):

∂φi(p2)
∂t

= δ(φi(p2))
[ n/2∑

j=1

χi
j(p2)

(
−

∫∫
Ω

w(p1, p2)χi
j(p1)H(φi(p1))dp1∫∫

Ω
χi

j(p)H(φi(p))dp
+ (43)∫∫

Ω
w(p1, p2)χi

j(p1)
(
1−H(φi(p1))

)
dp1∫∫

Ω
χi

j(p)
(
1−H(φi(p))

)
dp

)]
and

∂φi(p2)
∂t

= δ(φi(p2))
[ n/2∑

j=1

χi
j(p2)

(
−

∫∫
Ω

w(p1, p2)χi
j(p1)H(φi(p1))dp1∫∫

Ω

∫∫
Ω

w(p1, p2)χi
j(p1)H(φi(p1))dp1dp2

(44)

+

∫∫
Ω

w(p1, p2)χi
j(p1)

(
1−H(φi(p1))

)
dp1∫∫

Ω

∫∫
Ω

w(p1, p2)χi
j(p1)

(
1−H(φi(p1))

)
dp1dp2

)]
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(a) (b) (c) 4 phases (d)

(e) (f) (g) 4 phases (h)

(i) (j) (k) 4 phases (l)

(m) (n) (o) 2 phases (p)

Fig. 3. Segmentation results using the fast implementation of the Average Dissimilarity algorithm. First column: original images (144×216). Second column:
edge maps. Third column: 4 (or 2 for the last row) phases, each represented by different colors. Fourth column: segments represented by their average colors.
(a-d) Cpu time for the curve evolution 0.02 secs, converged in 3 iterations. (e-h) Cpu time for the curve evolution 0.03 secs, converged in 8 iterations. (i-l)
Cpu time for the curve evolution 0.04 secs, converged in 4 iterations. (m-p) Cpu time for the curve evolution 0.58 secs, converged in 12 iterations. See Table
I for the comparison with the standard implementation of the regularization using curvature (Images are best viewed in color).

Later in this section we demonstrate a sequential implemen-
tation of the evolution that allows the use of these simplified
expressions.

There are essentially two ways to alleviate the computa-
tional burden: the first one is to speed up the integral calcula-
tion and the second one is to reduce the number of iterations.
We have addressed the first point using oversegmentation to
approximate these integrals. In this section we demonstrate
a method to achieve a fast converging evolution, reducing
therefore the number of iterations.

Since we do not need to include a curvature term, we can
convert the PDE into an ODE relaxing the stringent condition
on the time step. Moreover, following the approach presented
in [31], we extend the support of the evolving points from the
support of the delta function to the whole image domain. This
is done by replacing the delta function by 1 in equations (22),
(29), (35). We obtain the following new evolution equation

(for the 2-region Total Dissimilarity case):

∂φ(p2)
∂t

=−
∫∫

Ω

w(p1, p2)H(φ(p1))dp1 (45)

+
∫∫

Ω

w(p1, p2)
(

1−H(φ(p1))
)

dp1

We have therefore extended the evolution to all the points in
the image domain, increasing the robustness of the evolution
process to avoid local minima. We also utilize a fast technique
to carry on the evolution. Consider now the ODE in (45),
which can be rewritten as:

∂φ(p)
∂t

= V (p), (46)

This means, if V is positive then φ increases and vice versa
if V is negative (p is, as usual, a 2D point on the image
domain). Since we are interested only in the discontinuities of
φ, in particular at the points where φ changes sign, we can
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also ignore the ODE and set

φ(p) =
{

1 if V (p) ≥ 0
−1 if V (p) < 0

The velocity V is given through the computation of the
integrals in (45). We can interpret this procedure as assigning
the points to a region (-1 or +1) that they are more similar
to. We can therefore establish a connection between this
procedure and the nearest neighbor rule of the sequential
k-Means algorithm: each point is assigned according to a
particular metric (Total Dissimilarity, Average Dissimilarity,
Normalized Dissimilarity) to the closest cluster. To complete
the analogy we can note that the centroid rule corresponds
to recalculating the velocities V according to the updated
partitions. In addition, by utilizing the sequential k-Means
algorithm instead of the batch version and updating the parti-
tions each time we update a pixel value, we make sure that at
most one pixel changes phase at each iteration. This makes it
possible to use the simplified equations in (43) and (44) since
Areai and diss(Ai,Ω) can be approximated as constants.
It can be easily shown that using this fast implementation
procedure we still perform a steepest descent minimization
on the original cost functions.

The experimental results show that this fast implementation
technique (regularized using oversegmentation) reduces the
computational time by more than an order of magnitude with
respect to the standard implementation of the regularization by
mean curvature. In fact, for the vast majority of the images, the
convergence is reached in less than ten iterations. In Table I
we present the CPU running times for the segmentation of the
images shown in Figure 3. All the experiments are performed
using an Intel Pentium 4, 3 GHz with 1 GB of RAM. Despite
the small overhead due to performing the oversegmentation,
the total time is drastically reduced.

TABLE I
COMPUTATIONAL REQUIREMENTS FOR THE IMAGES IN FIG. 3.

Image Standard Implementation Fast Implementation
Oversegmentation 0.235 s

Street Evolution 56.55 s (1895 it.) Evolution 0.02 s (3 it.)
Total time 56.55 s Total time 0.255 s

Oversegmentation 0.251 s
Parade Evolution 57.20 s (1910 it.) Evolution 0.03 s (8 it.)

Total time 57.20 s Total time 0.281 s
Oversegmentation 0.203 s

Astronauts Evolution 56.56 s (1895 it.) Evolution 0.04 s (4 it.)
Total time 56.56 s Total time 0.243 s

Oversegmentation 0.218 s
Seastar Evolution 3.21 s (251 it.) Evolution 0.58 s (12 it.)

Total time 3.21 s Total time 0.798 s

VIII. EXPERIMENTAL RESULTS

In this section we compare the performance of the segmen-
tation frameworks presented in the previous sections with the
the state of the art techniques in region-based variational seg-
mentation and in graph partitioning segmentation. In particular
we chose to compare our algorithm with the Chan-Vese model
[6] and with the Normalized Cuts (Ncut) algorithm [2]. These
algorithms are largely adopted by the research community and

(a) (b)

(c) (d)

Fig. 4. (a) Original Image (b), (c), (d) Segmentation results using the Total
Dissimilarity Algorithm, with 2, 4 and 8 phases respectively. Each phase (or
region), not necessarily connected, is visualized with a different gray level.
The dissimilarities are computed as distances in the CIE-Lab color space. The
regularization is performed using oversegmentation.

considered state of the art in region-based active contours and
graph partitioning segmentation respectively.

In Fig. 4 we provide a visual comparison of the segmenta-
tion output of the Total Dissimilarity Algorithm, regularized
using oversegmentation, using a different number of phases (2,
4 and 8) on the same image. The dissimilarities are computed
as L2 distances in the CIE-Lab color space as follows:

w(p1, p2) =
( 3∑

i=1

(ci(p1)− ci(p2))2
) 1

2
(47)

where ci are the three Lab channels. The regions are visualized
with different gray levels. As we increase the number of
phases, more details are captured in the segmentation but
uniform regions (e.g. the sky) are still preserved and not
oversegmented.

In order to have a quantitative evaluation of the segmen-
tation results, we compared the three proposed algorithms
(Total, Average and Normalized Dissimilarity) with the Chan-
Vese model using the Berkeley Segmentation Data Set (BSDS)
benchmark. The test set is composed of 100 images and for
every image several human segmentations are provided. These
human segmentations are considered ground truth and are used
to compute precision (p) and recall (r) as measures of the
accuracy of the segmentation. Precision is the probability that
a pixel indicated as a boundary pixel by the segmentation al-
gorithm is truly a boundary pixel. Recall is the probability that
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Fig. 5. F measure plots for the Total, Average and Normalized Dissimilarity
algorithm, compared with the Chan-Vese model. All the experiments are
performed using the CIE-Lab color space. In the Chan-Vese model the curve
is initialized with circular sub-parts on a square grid of side 25 pixels, to avoid
getting stuck in local minima. The dissimilarity-based methods are initialized
sequentially assigning superpixels to the different regions.

a true boundary pixel in the ground truth is correctly detected
by the algorithm. Then the F measure, the harmonic mean of
precision and recall (F = 2pr

p+r ), is presented as a measure
of performance combining both precision and recall. In Fig.
5 we present the F measures scored by the four algorithms,
using 2, 4 and 8 phases. All the experiments are conducted in
the CIE-Lab color space. The Chan-Vese algorithm has been
implemented using the semi-implicit finite difference scheme
described in [5], and a parameter space search has been
performed in order to best tune the µ parameter, coefficient
of the curvature related term (we refer to Appendix C for
more details about this experiment). Notice that the algorithms
proposed in this work do not require any parameter tuning
since the regularization is performed using oversegmentation
and the fast implementation described in Section VII is used
to carry out the evolution.

With only two phases, the scores of different algorithms
are very similar and not very insightful since the background-
foreground model is not suitable for the segmentation of such
complex natural images. On the other hand, we notice that
with increasing number of phases (4 and 8), our dissimilarity
based models outperform Chan-Vese model. We also see that
normalized frameworks achieve better performance (Average
and Normalized Dissimilarity). This confirms our intuition in
terms of the need of normalized frameworks (See Section V).

In Fig. 6(a,b,c), we present a comparison between the
performances obtained regularizing the proposed framework
using over-segmentation and using motion by mean curvature
(again, a search in the parameter space was performed to best
tune the curvature coefficient µ). Notice that the regularization
by over-segmentation leads to higher scores (except for the
two-region case, which is not very informative). This can be
motivated by the fact that motion by mean curvature smoothes
curves in an isotropic fashion, while over-segmentation is
locally adaptive and therefore preserves sharp edges. We also
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Fig. 6. (a,b,c) Comparison between regularization techniques for the three
dissimilarity-based frameworks. For the regularization using motion by mean
curvature, the curve is initialized with circular sub-parts on a square grid of
25 pixels. The simplified equations (43) and (44) are used to carry on the
evolution (the assumption of small number of pixels changing phase at each
iteration holds in most of the cases). (d) Comparison between Normalized
Cuts at pixel and super-pixel level. For the pixel level case, similarities are
calculated in a 30 × 30 window around each pixel (memory limit of the
eigensolver). For the super-pixel level case, images are over-segmented in
1500 super-pixels.

notice that the scores of the proposed framework are still
generally higher with respect to the Chan-Vese model, except
for the Normalized Dissimilarity algorithm in the case of
low number of regions (2 and 4). Fig. 6(d) is meant to
demonstrate the applicability of the over-segementation to
other segmentation methods based on pairwise dissimilarity,
in this case the Normalized Cuts algorithm [2]. Working at
the pixel level requires to enforce the sparsity of the similarity
matrix and high scores are obtained only for the segmentation
in a high number of regions (20-24). On the other hand, the
over-segmentation in superpixels allows the reduction of the
sparsity (or even the use of a full similarity matrix), leading to
high F-measure even for the segmentation in a small number
of regions.

We can also extend the definition of dissimilarity measure
to include edge information, which is an important cue in
identifying the segmentation boundaries. This demonstrates
the flexibility of our algorithm. Dissimilarities are still com-
puted as distances in the color space but we add a geodesic
term, which represents the distance in the geodesic sense
between pixels (or superpixels). This geodesic term is high
if the pixels are separated by edges or low (close to zero)
if the pixels belong to the same uniform region (see [27]).
Fig. 7(b) and 8(b) are the output of the Average Dissimilarity
algorithm after adding the geodesic term to the dissimilarity
measure. In Fig. 7(b) each of the planet is assigned to one
region, while using the Chan-Vese model (Fig. 7(c)) this



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. 11

(a) (b) (c)

Fig. 7. (a) An image of Mars, Earth and Venus. (b) Segmentation using the Average Dissimilarity algorithm adding a geodesic distance term to the distance
in the color space as measure of pairwise dissimilarity. Every phase corresponds to a planet (one is the background). (c) Segmentation using the Chan-Vese
model. In this case the different regions are somewhat clusters in the color space and individual planets are not captured (Images are best viewed in color).

(a)

(b) (c)

(d) (e)

Fig. 8. (a) An image of a baseball game. (b) Segmentation results using
the Average Dissimilarity with the geodesic distance term. (c) Segmentation
results using the Average Dissimilarity without the geodesic distance term.
(d) Segmentation results using the Chan-Vese model. (e) Segmentation output
of the Normalized Cuts algorithm (Images are best viewed in color).

can not be achieved. Similarly in Fig. 8(b) each baseball
player’s body is assigned to one particular region, while with
Chan-Vese model this can not be obtained (Fig. 8(d)). Fig.
8(e) shows the output of the Normalized Cuts algorithm on
the baseball image. In this case, since the similarities have
to be calculated locally for computational reasons (memory
limits of the eigensolver), the different regions are likely
to be composed of connected components but some details
are mis-segmented, as for example the region between the
legs or the region on the bottom left of the image. Fig.
8(c) shows that, without including the geodesic term in the
dissimilarity measure, we can get results similar to the Chan-
Vese case (Fig. 8(d)), demonstrating the increased flexibility
of our framework.

Fig. 9 provides a visual comparison between Normalized
Dissimilarity (4 phases) and Normalized Cuts (Ncut) algorithm
(asking for 10 segments). We compare these two methods

(a) (b) (c)

(d) (e) (f)

Fig. 9. (a), (d) Original images. (b), (e) Output of the Normalized
Dissimilarity algorithm. (c), (f) Output of the Normalized Cuts algorithm (10
segments). All the experiments have been performed in the CIE-Lab color
space. For the normalized cuts the similarities are calculated in a 30×30
neighborhood around each pixel, sampled with probability 0.5 (maximum
allowed by the memory limits of the eigensolver) (Images are best viewed in
color).

since they are both minimizing similar cost functions (see
[2]). All the experiments are conducted in the CIE-Lab color
space. Since the similarity calculations in Normalized Cuts
are restricted to local neighborhoods, Ncut algorithm tends to
oversegment uniform regions. On the other hand the output of
the Normalized Dissimilarity algorithm maintains coherence
within big regions and preserves small scale details at the same
time.

IX. DISCUSSION AND CONCLUSION

A. Towards a Self Tuning Segmentation, Estimation of the
Number of Image Modes

One point that needs to be addressed is the estimation of
the number of phases given an image. This problem can be
addressed by analyzing the image feature space with the goal
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(b)

(c) (d)

Fig. 10. (a) and (b) Image signatures obtained using the Mean Shift clustering
algorithm. We pictorially represent the signature as the cluster representative
colors with width proportional to the percentage of pixels belonging to it. (c)
and (d) Segmentations using the Average Dissimilarity algorithm with number
of phases according to the signature (4 and 2 respectively).

of obtaining an estimate of the number of clusters present in
this space.

Many clustering methods are not suitable for this kind
of analysis since they require the knowledge of the number
of clusters (See [32]). On the other hand, nonparametric
clustering methods do not require any preliminary assumption
and can be used to analyze a complex data distribution, as in
our case, feature space of natural images.

We compute image signatures using nonparametric cluster-
ing based on density estimation. By thinking of the feature
points as samples drawn from a probability density function
of the feature parameters we can search for the modes of
the distribution, i.e. the local maxima and identify these
modes with the cluster center candidates. The Parzen Windows
technique (see for example [33]), section 2.5.6), also known
as kernel density estimation, is suitable for this purpose. Given
N data points xi, i = 1, . . . , N in an l-dimensional space, the
estimate of the density function is given by:

p̂(x) =
1

Nhl

N∑
i=1

K(
x− xi

h
) (48)

where K(x) is the kernel function and h is the bandwidth
parameter (in our case the pixels of the image are in the
CIELab space, where l = 3). Searching along the gradient
direction of this density function to identify the peaks can
be efficiently performed using the Mean Shift procedure
introduced by Fukunaga and Hostetler in [34]. It can be shown
that if the kernel function is chosen to be of the form (known
as the Epanechniknov kernel)

K(x) =
{

c(1− ||x||2) if ||x|| ≤ 1
0 if ||x|| > 1

where c is a normalization factor necessary for the kernel
function to integrate to one. The gradient of the estimated
density is proportional to the sample mean shift. Starting

from a random point in the feature space and performing the
simple iterative algorithm described in [35] for example we
can efficiently identify the modes of the distribution. All the
points belonging to the basin of one particular mode (in other
words converging to that mode) will be clustered together.
The only parameter to tune is the bandwidth h, which is a
characteristic of the feature space we work on. The issue of
the bandwidth (scale) selection is therefore task dependent.
For CIELab space we choose h = 10. Fig. 10 shows that the
number of phases indicated by the mean shift procedure can
be effectively utilized in segmentation. See Fig. 10 for two
examples for which 4 and 2 phases came out to be optimal
respectively.

B. Conclusion
In this paper we presented variational cost functions based

on pairwise pixel dissimilarities and we derived the mini-
mization of such cost functions within a multiphase level
sets framework in order to achieve a multi-region image
segmentation. One of the advantages of this approach is the
flexibility granted by the possibility of embedding into the
dissimilarity measure information coming from heterogeneous
feature spaces or different image cues. All the models intro-
duced in this paper are not restricted to background/foreground
segmentation and independent of the choice of the dissimilar-
ity measure.

In the experimental section we validated the proposed
method by comparing its performance with the state of the art
techniques in region based and graph based segmentation and
showing improvements in the performance. We also introduced
a fast implementation technique, which significantly reduces
the computational time of the curve evolution and avoids the
need of hand-tuning a curvature parameter, critical in most of
the cases to obtain a good segmentation result.

APPENDIX A
Minimizing E =

∫
f(φ(x, t))dx with the steepest descent

method, using t as the descent variable leads to:

φt(x) = −fφ(φ(x)) (49)

Proof:
We need to impose that the first variation of E with respect
to t is negative

∂E

∂t
=

∂

∂t

∫
f(φ(x, t))dx ≤ 0 (50)

We can expand E as follows:

E =
∫

f(φ(x, t))dx =
∫

f(φ(x, t0) + (t− t0)φt(x, t0))dx

and again

E =
∫

f(φ(x, t0)) + fφ(φ(x, t0))(t− t0)φt(x, t0)dx (51)

Now taking the derivative w.r.t. t and interchanging the order
of derivative and integral (which is allowed by the fact that
the integration domain does not depend on t) we get

∂E

∂t
=

∫
fφ(φ(x, t0))φt(x, t0)dx (52)
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Therefore the steepest descent minimization is obtained by

φt(x, t0) = −fφ(φ(x, t0)) (53)

which concludes the proof.

APPENDIX B

Minimizing

E =
∫

f(φ(x, t))dx∫
g(φ(y, t))dy

=
Λ
Θ

(54)

with the steepest descent method, using t as the descent
variable leads to:

φt(x) = −fφ(φ(x))Θ− gφ(φ(x))Λ
Θ2

(55)

Proof:
Taking the derivative of E w.r.t. to t leads to

∂E

∂t
=

(
∂
∂t

∫
f(φ(x, t))dx

)
Θ−

(
∂
∂t

∫
g(φ(y, t))dy

)
Λ

Θ2
(56)

Now expanding f(φ(x, t)) and g(φ(x, t)) along the lines of
Appendix A and interchanging the order of derivation and
integration yields to:

∂E

∂t
=

( ∫
fφ(φ(x))φt(x)dx

)
Θ−

( ∫
gφ(φ(y))φt(y)dy

)
Λ

Θ2

(57)
Now after a change of variable y = x we can write:

∂E

∂t
=

∫
φt(x)

(
fφ(φ(x))Θ− gφ(φ(x))Λ

)
dx

Θ2
(58)

Therefore we have the steepest descent minimization for:

φt(x) = −fφ(φ(x))Θ− gφ(φ(x))Λ
Θ2

(59)

which concludes the proof.

APPENDIX C

In Fig. 11 we show the F measure plots for the Chan-Vese
algorithm, changing the curvature coefficient µ.
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Fig. 11. F measure plots for the Chan-Vese algorithm, changing the curvature
coefficient µ. The algorithm has been implemented using the semi-implicit
finite difference scheme described in [5]. The curve is initialized with circular
sub-parts on a square grid of side 25 pixels, to avoid getting stuck in local
minima.

APPENDIX D

In the 4-region case, k = 2, (23) becomes:

E =
∫∫

Ω

∫∫
Ω

w(p1, p2)
[
χ1(p1)χ1(p2)

]
dp1dp2 (60)

+
∫∫

Ω

∫∫
Ω

w(p1, p2)
[
χ2(p1)χ2(p2)

]
dp1dp2

+
∫∫

Ω

∫∫
Ω

w(p1, p2)
[
χ3(p1)χ3(p2)

]
dp1dp2

+
∫∫

Ω

∫∫
Ω

w(p1, p2)
[
χ4(p1)χ4(p2)

]
dp1dp2

In this case the characteristic functions are:

χ1(p) = H(φ1(p))H(φ2(p)) (61)

χ2(p) = H(φ1(p))
(
1−H(φ2(p))

)
(62)

χ3(p) =
(
1−H(φ1(p))

)
H(φ2(p)) (63)

χ4(p) =
(
1−H(φ1(p))

)(
1−H(φ2(p))

)
(64)

and for example
χ1

1(p) = H(φ2(p)) (65)

χ1
2(p) =

(
1−H(φ2(p))

)
(66)

Now using (17), we can find the evolution equations for the
surfaces φ1 and φ2.

Reorganizing the terms we can interpret these evolution
forces (we present here the evolution equation for φ1, while
the one for φ2 is derived in a similar fashion):

∂φ1(p2)
∂t

= (67)

−
[
H(φ2(p2))δ(φ1(p2))

] ∫∫
Ω

w(p1, p2)χ1(p1)dp1

−
[(

1−H(φ2(p2))
)
δ(φ1(p2))

] ∫∫
Ω

w(p1, p2)χ2(p1)dp1

+
[
H(φ2(p2))δ(φ1(p2))

] ∫∫
Ω

w(p1, p2)χ3(p1)dp1

+
[(

1−H(φ2(p2))
)
δ(φ1(p2))

] ∫∫
Ω

w(p1, p2)χ4(p1)dp1

The first and third term are acting on the part of C1 that is
inside of C2, expanding it or resctricting it according to the
dissimilarity of the points on the curve to the two neighboring
regions. The second and the fourth term are acting on the part
of C1 outside of C2, according to the same logic. In a similar
fashion we can obtain the evolution equation for φ2.
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