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ABSTRACT
Background: The dynamic growing and shortening behaviors of microtubules are central to the fundamental roles played

by microtubules in essentially all eukaryotic cells. Traditionally, microtubule behavior is quantified by manually tracking
individual microtubules in time-lapse images under various experimental conditions. Manual analysis is laborious, approximate,
and often offers limited analytical capability in extracting potentially valuable information from the data.

Results: In this work, we present computer vision and machine-learning based methods for extracting novel dynamics
information from time-lapse images. Using actual microtubule data, we estimate statistical models of microtubule behavior that
are highly effective in identifying common and distinct characteristics of microtubule dynamic behavior.

Conclusion: Computational methods provide powerful analytical capabilities in addition to traditional analysis methods
for studying microtubule dynamic behavior. Novel capabilities, such as building and querying microtubule image databases,
are introduced to quantify and analyze microtubule dynamic behavior.



Background

Microtubules (MTs) are filamentous cytoskeletal structures
composed of tubulin protein subunits. These subunits can
associate with, or dissociate from, existing tubulin polymers
rapidly, making MTs highly dynamic. Through these dy-
namic behaviors, MTs are critically involved in many essen-
tial cellular functions. MT dynamics are finely regulated in
the cell, [1]. It has been hypothesized that inadequate regu-
lation of neuronal MT dynamics may underlie neuronal cell
death in Alzheimer’s and related dementias, [2]. Addition-
ally, drug induced modulation of MT dynamics underlies the
effectiveness of various anti-cancer drugs, such as Taxol, [3].
For these and a host of basic biology issues, the regulation of
MT dynamics is a very active area of research in modern cell
biology.

A key tool of MT dynamics research is to track the grow-
ing and shortening behaviors of individual MT tips from time-
lapse images (Fig. 1), and quantitatively describe MT be-
havior under different experimental conditions. Traditional
MT dynamics parameters consist of statistics derived from the
growthandshorteningevents between consecutive frames. In
general, tracking is a largely manual and laborious task, [4].
Furthermore, it is approximate (Fig. 2), variable between
users and labs, and potentially biased for more dynamic MTs,
[5]. The resulting quantification and analysis capabilities are
limited with manual feasibility. For example, while MT de-
formations may contain valuable information in studying neu-
ronal growth-cone path finding, it is impractical to manually
collect relevant data, e.g. curvature or orientation, from many
MTs. Additionally, due to the laborious nature of manual data
collection, a limited sample for each experimental condition
must represent all MTs collected in that condition. While dif-
ferent subsets of MTs undertake distinct tasks in the cell, and
therefore can exhibit distinct dynamic characteristics, gener-
ally there are limited means of observing such dynamics in
isolation through manual methods. Analysis of dynamic be-
havior is further limited by pairwise comparisons of behav-
ioral features between control and treated conditions. There-
fore, computational methods could make an immediate con-
tribution to MT dynamics research.

In this work, we propose a powerful approach for ana-
lyzing MT dynamic behavior. Briefly, we use an automated
tracking method for measuring MT dynamics, which are then
modeled asMT behavior patternsby Hidden Markov Models.
The proposed methods go beyond the traditional analysis ca-
pabilities and offer new insights in investigating MT dynamic
behavior.

Microtubule structure and function

The cytoskeleton of a eukaryotic cell consists of a network
of fibers. MTs are one of the three principal types of cy-
toskeletal fibers. They are hollow cylindrical structures, 25nm

in diameter and up to severalµm in length, consisting of
non-covalently bound tubulin protein subunits. MTs are con-
stantly assembled and disassembled, making the cytoskeleton
a dynamic system. MTs are critically involved in a number
of essential cellular functions, such as chromosome segrega-
tion at mitosis and intracellular cargo transport. Additional
background information on MT structure and function can be
found in [1].

The growing and shortening dynamics of MTs are finely
regulated, for example, by the action ofMT-associated pro-
teins (MAP) and MT-targeted drugs(MTD). A large body
of evidence, reviewed by Feinstein and Wilson [2], suggest
that cell viability requires that MT dynamics be properly reg-
ulated within a narrow range. Common conjecture is that
certain diseases such as Alzheimers and cancer are at least
correlated with the regulatory abnormalities in MT dynam-
ics, [6–8]. Consequently, gaining a detailed mechanistic un-
derstanding of the regulatory activities of MAPs, [5, 6, 9],
and MTDs, [3, 10], is a major focus of current research. A
major challenge is assessing the activities of the large num-
ber of MAPs and their many isoforms, as well as the large
number of MTDs and their many derivatives. For instance,
the MAP tau consists of 441 amino acids, more than 25 of
which can be phosphorylated in various combinatorial pat-
terns. Whereas phosphorylation normally serves to regulate
tau activity, excessive and abnormal phosphorylation corre-
lates with cell death and dementia. Thus, to fully understand
normal and pathological tau action, the regulatory effects of
the many different combinational phosphorylation patterns of
tau must be understood.

Current analysis method

MTs are polar structures, possessing biochemically distinct
minusandplusends. Conventionally,the minus endof a MT
is assumed to be fixed at the MT organizing center near the
nucleus, and the other end –the plus endor the tip– is the
dynamic end that is observed in most MT dynamics studies.
Typically, in live cell studies, minus ends of the MTs are not
visible because of the high density of MTs converging on the
organizing center. Thus, in calculating the MT length, a point
on the MT body is selected as a reference point,origin, after
an initial observation of all frames in the time-lapse images,
(Fig. 2).

Traditionally, time-lapse images of MT populations are
collected following treatment with MTDs or MAPs. Dynam-
ics parameters are then manually calculated from image se-
quences as follows. The positions of MT plus ends are man-
ually tracked individually across all frames, (Fig. 1). MT
lengths are approximated as the (Euclidean) distance between
tracked tip positions and the origin, producing MTlife histo-
ries or tracks, (Fig. 2). The change in MT length is com-
puted between consecutive frames, and growth and shorten-
ing statistics are tabulated. Length changes below a threshold



are marked asattenuationor pause, signifying undetectable
change. Other biologically significant events are the conver-
sion of a MT from a growing state to rapid disassembly, des-
ignated as acatastrophe, and a subsequent potential recovery
from shortening to attenuation or growth, calledrescue. To
estimate the effects of a regulatory agent upon MT dynamics,
these statistics are aggregated over a number of MTs from
the same experimental condition. Resulting statistics of each
condition are compared with the control behavior to quantify
the effects of the examined agent on dynamics parameters.

In this fashion, regulatory effects of each individual agent
are studied through a laborious set of tasks. Quantifying suf-
ficient image data to achieve statistical significance and lim-
ited comparative capabilities in the presence of innumerous
possible agents pose an enormous challenge to researchers.
Example studies are [3,5,9–12].

Statistics obtained from the growth and shortening events
treat these events independently, rather than as being part of
a behavior pattern. For instance, a certain growth measure-
ment is counted as the same event regardless of where it oc-
curs in relation to preceding or subsequent events. Further-
more, studying event correlations between neighboring MTs
are generally infeasible, despite potential biological signifi-
cance.

There are no established non-manual methods for exam-
ining the similarities and differences in particular dynamic
behaviors imposed by various agents. Furthermore, study-
ing combined effects of multiple regulatory agents is difficult,
due to the limitations imposed by the pairwise comparisons
between experimental conditions. For example, consider a
hypothetical MTDAB, derived from MTDsA and B. In
order to understand the contributions ofA andB, multiple
individual experiments must be conducted. Therefore, quan-
tifying behavioral similarities across experimental conditions
may provide essential guidance in constructing hypotheses.

In this work, we propose an automated tracking and analy-
sis method to address the limitations mentioned above. The
tracking component provides behavioral features for subse-
quent analysis. We define theMT dynamic behavioras a se-
quence of changes in MT length over equal time intervals.
Experimental conditions may exhibit a number of behavioral
patterns, which are estimated in parametric form by a mixture
of Hidden Markov Models. By using a model-based clus-
tering technique, we propose to analyze the constituent parts
of MT behavior in each experimental condition. Thus, each
experimental condition can be described as a mixture of be-
haviors exhibited by different MT populations. Through es-
timated average behavior patterns, we introduce a probabilis-
tic behavioral distance measure between experimental con-
ditions. Furthermore, parameters of individual models may
present significant information about the properties of corre-
sponding behavioral patterns. We describe how model-based
analysis can be effective in addressing the above limitations
(see Discussion).

Results

We present statistical models of MT behavior that are esti-
mated using automatically tracked MT dynamics data. As a
comparison, we provide models of manually collected MT
tracks. We describe the results of automated tracking using
visual samples and associated errors.

Quantifying microtubule dynamics by automated tracking

For quantifying MT growth and shortening, we used the track-
ing method proposed in [13]. In the spatiotemporal graph
matching (see Methods), up to three missing frames between
tips of the same MT track were allowed. The computation of
the geodesics, the distances for the weights on the graph, and
the selection of a fixed point on the MT body were carried
out using the Fast Marching algorithm, [14]. Visual tracking
results are shown in (Fig. 3 – 7).

Quantitative results of MT tracking were given in [13].
Evaluations against manually tracked data shows that the mean
and the standard deviation of tracking error are 2.85 and 4.36
pixels, respectively. This error level is acceptable for biolog-
ical studies. Recall that the MT width is 25nm (see Back-
ground), which appears as curves that are 3 pixels in width.
Thus, a growth or shortening event that is less than 3 pixels
would correspond to an event that is too small to quantify re-
liably, and is considered asattenuation.

We note that the tracking performance is sensitive to the
accuracy of initial tip detection step. Furthermore, the pro-
posed approach requires multiple tips to be detected for re-
liable extraction of MT tracks by design. In other words,
the tracking performance may be adversely affected in track-
ing MTs individually, which may limit the ability to track a
particular MT in a cell. Finally, intersecting MTs maysteal
the body trace, as the geodesic distance will favor higher in-
tensity levels, (Fig. 3d – 3f). This issue could be addressed
with further constraints on the MT orientation and curvature.
However, in this work, we limit the behavioral features to the
observed change of length in the MT plus end, which only
requires consistent estimation of the MT body.

While tracking performance may be improved as a conse-
quence of higher image quality and suitable algorithms target-
ing frequent intersections, deformations, and intensity varia-
tions. In its current state, automated tracking can track and
quantify 10 times more MT tracks per image sequence than
manual methods. With this increase in analyzable data vol-
ume, we are able to estimate behavior models for different
experimental conditions. Estimated statistical models of MT
dynamic behaviors are presented in the next section.

Statistical models of microtubule behavior

In this work, we used MT time-lapse live cell images from
[10]. The authors of [10] investigate the hypothesis that re-



sistance to Taxol may involve altered sensitivity to different
tubulin isotypes. Chinese hamster ovary (CHO) cells were
microinjected with rhodamine-labeled tubulin. A total of 111
sequences were acquired using fluorescence microscopy with
a 100× objective lens (1000× magnification). 25 frames per
sequence were captured at 4 second intervals, from five dif-
ferent conditions.

Growth and shortening rates were computed as the dif-
ferences of a MT lengths between consecutive frames, mea-
sured in pixels. Thus, each track consists of an observation
sequence composed of 25 points in time. Resulting obser-
vation sequences were in the range[−13.03, 11.22] pixels,
where (−) and (+) denoting shortening and growth rates, re-
spectively.

Our HMM implementation was derived from [15]. Ex-
perimentation with both left-right and fully connected HMMs
revealed that fully connected models were better suited for
the modeling task, in line with biological input. Growth and
shortening rates were assumed to be drawn from Gaussian
emissions. It should be noted that the number of larger growth
and shortening events decrease exponentially as the length
of the event increases. Therefore, using exponential emis-
sion distributions may be appropriate. However, detection
of events measuring less than 3 pixels may be unreliable for
both manual and automated tracking (see Current analysis
method).

Since good initialization values are essential with contin-
uous emission distributions, we derived statistics from obser-
vation vectors for initializing emissions. Transition and state
priors were initialized randomly, and the number of clusters
was determined experimentally, Table 3.

The study in [10] analyzes the potential for Taxol (a can-
cer therapeutic) resistance in cells expressing different tubulin
isoforms. Five experimental conditions were recorded, Table
1. Results in [10] show that two groups ofEC exhibit differ-
ent dynamics:{EC1, EC2, EC4} vs. {EC3, EC5}, where
the MTs in the first group are more dynamic than the ones in
the second group. It is also reported thatEC4 is more dy-
namic thanEC5. In this work, we evaluated our modeling
approach using both automatically (3068 tracks) and manu-
ally (210 tracks) tracked MTs, Table 1.

The first experiment was designed to confirm biological
results. A classification score betweenEC4 andEC5, de-
noted by EX:A, and between condition groups{EC3, EC5}
and {EC1, EC2, EC4}, denoted by EX:B, were computed
with a 3-way cross-validation, Table 2. Well defined separa-
tions between the two groups and between Taxol-treated and
control tracks agree with established biological findings. A
third test, denoted by EX:C, was aimed to separateEC3 from
EC5. Biological results indicate that these experimental con-
ditions exhibit highly similar dynamics. A maximum separa-
tion of much less than EX:A and EX:B verify this finding.

The same set of experiments were repeated with manu-
ally tracked MT data. Separation results are shown in Table

2. Similar classification rates with the automatically tracked
experiments confirm the automated tracking as well as the ap-
plicability of model based analysis.

Ultimately, statistics collected by the model parameters
are more significant in biological studies than the classifica-
tion scores. To that end, we examine the models of eachEC.
Table 4 shows emission distributions of selected component
models used in EX:A. The models were estimated by using
automatically tracked MTs. Table 5 shows the corresponding
models estimated with manual tracks. The first rows in each
model correspond to the mean length change captured by that
model state (qi), where negatives indicate shortening. Nearly
all states ofλ4 show stable distributions, while states inλ5

show significantly more dynamic behavior. Both models have
states exhibiting stable growth and shortening, indicating that
the main discriminating factor between the two behavior pat-
terns are the large growth and shortening events occurring oc-
casionally. Naturally, the average growth and shortening rates
captured in model states are direct results of the observations,
and they confirm that Taxol-treated MTs show suppressed dy-
namics withβI-tubulin than non-treated MTs.

Discussion

Estimated models can provide more descriptive information
about the behavior patterns than what is available through
manual methods:(i) typical growth and shortening states of
the modified behavior, and(ii) the transition probabilities be-
tween these states. For example, as a direct comparison with
manual methods, besides the traditionalcatastropheandres-
cuefrequencies, transitions from small to larger events of the
same type can be quantified. In essence, characteristics of be-
havior patterns are parametrically encoded in models, which
can then be used in generating these behaviors. We describe
further model-based analysis capabilities in the next section.

Novel analytical capabilities

The proposed approach provides a number of novel analyti-
cal capabilities (see Background). The most important aspect
of this approach is using entire MT life histories as opposed
to parsing the events into predefined categories. Therefore,
events are evaluated for their contribution in different behav-
ior patterns. With the introduction of this method, it becomes
possible to compare effects of regulatory agents at different
levels: (i) the constituent parts of behavioral characteristics
through examining representative model parameters, and(ii)
by quantifying the overall behavioral dissimilarity. Distance
measures between behavior patternsw, and between exper-
imental conditionsEC, can be defined as model distances.
One possible measure between modelsλw1 andλw2 , for a set
of observationsOw1 andOw2 can be defined as



D(w1, w2) =
1
2
[L(w1, w2) + L(w2, w1)] (1)

whereL(w1, w2) is given by

L(w1, w2) =
1
T

[log P (Ow1 |λw2)− log P (Ow1 |λw1)]. (2)

By quantifying behavioral comparisons between regula-
tory agents, studying combined effects of multiple regulatory
agents may be guided with enhanced predictions. We envision
a repository of MT dynamics data that can be probabilistically
queried for behavioral similarities for a new regulatory agent,
an isotype, or a combination. This can be done by evaluating
p(O|EC) for an experimental conditionEC, or evaluating
p(O|w) for behavioral patternw. Assuming that the tracking
and modeling tasks were undertaken, a MT image database
would contain a collection of individual MT tracks and model
parameters representingw, in addition to original image se-
quences. Model based content retrieval provides additional
advantages in query design. Hypothesized behaviors can be
created and queried by manually selecting model parameters.
Alternatively, query models can be estimated from a subset of
MT tracks in the database.

To study spatial relationships between MTs behaviorally,
tracks can be grouped and visualized based on their behav-
ior characteristics. For example, (Fig. 8) shows frames from
EC5, with overlaid tracks. All tracks were evaluated for their
similarity to conditionsEC4 andEC5. In (Fig. 8), values of
p(track|EC5) were quantized into four categories, indicated
by four different shades of red channel, and were superim-
posed on MTs for illustration purposes. Darker shades indi-
cate lower probability, e.g. behavioral association between
the condition and the track.

This analysis provides the researcher with visual cues about
regional dynamics within a cell. This may be especially im-
portant in studies of polarized cell types, such as neurons,
where specific regional regulation of dynamics is critical to
processes such as outgrowth and transport. Behavioral com-
parisons in adjacent populations may provide insight to the in-
ner workings of flux between the soluble and polymeric tubu-
lin fractions within the cytoplasm. The ratio between these
two functionally distinct, but co-dependent phases may indi-
cate cell-autonomous or drug-influenced regulation.

Conclusion

MT dynamics research seeks to understand the complex mech-
anisms that underlie cytoskeletal responses to changes in en-
vironmental conditions. A clear understanding of the regula-
tion of MT dynamic behavior may elucidate causal factors in
various diseases and may reveal new therapeutic targets and
strategies. In this work, we introduce novel data collection

and analysis capabilities based on computer vision and ma-
chine learning tools. With the proposed methods, researchers
can study MT dynamics with improved spatial and temporal
quantification.

The most notable contribution of the proposed method
is the novel analysis capabilities that are beyond the current
state-of-the-art. Other contributions are the improvements
over the manual data collection methods, such as higher accu-
racy (length along the MT vs Euclidean estimate), increased
number of analyzable MT tracks, and objective considera-
tion of all MT tracks at a fraction of the normally required
time. Our preliminary results support manually established
findings, and show that automated analysis of spatial and tem-
poral patterns offers previously unattainable insights. Most
notably, the standardization of data collection and analysis fa-
cilitates a comparative platform for future biological research.

As the volume and number of dynamics datasets has in-
creased in recent years, similarities between the behavioral
influence of MAPs and MTDs upon dynamics have emerged,
leading to speculation of similar mechanisms. Dynamics mod-
els may facilitate the union of previously isolated MAP and
MTD datasets, furthering our understanding of regulatory mech-
anisms of MTs.

Despite the difficulties inherent in fluorescence imaging,
the proposed approach confirms manual findings in both track
computation and in analysis. For example, due to photo-
bleaching, observation durations were generally limited to only
a few minutes with very low signal-to-noise ratios in images.
With emerging techniques in microscopy and probes, such as
the tip-binding proteins (EB1), much longer acquisition times
will be possible with superior image quality. Our goal is to
track all MTs in live cell images at longer durations. In this
direction, the tracking method can be improved by reliably
identifying all MTs individually. The nature of live cell MT
images requires that frequent intersections, abrupt intensity
variations on a single MT body, and focusing issues must be
addressed adequately.

Methods

The proposed analysis system evaluates MT dynamic behav-
ior as a function of entire MT life histories through estimating
statistical models from observations. A number of MT tracks
per experimental condition is necessary for reliable estimates
of model parameters. Thus, an automated tracking procedure
was used in data collection.

Automated tracking

To achieve reliable models of MT behavior, numerous obser-
vations (MT tracks) are needed. Automated MT tracking pro-
vides a significant increase in analyzable data volume. The
MT tracking problem has a short history in the literature,



since live cell MT imaging has only been a mainstream re-
search tool for about a decade. However, similar problems,
such as the tracing of curvilinear structures in images, were
previously addressed on neurons, blood vessels, roads, and so
on. The most notable difference in MT images is the use of
fluorescence, which presents additional difficulties in image
analysis. For example, photobleaching, the gradual decay of
fluorescence, causes illumination variations. Another issue is
the additive nature of fluorescence. Overlapping MTs result
in brighter regions in images, causing frequent over satura-
tion. In (Fig. 10), such saturation is visible in lower regions
of frames. Additionally, sample fluorescence exacerbates off-
focus blur, which produces great challenges in detecting MT
tips moving in and out of focus.

Previous work on automated MT detection and tracking
include [16–18]. In [13, 19], we described our tracking ap-
proach for live cell images and introduced the idea of model
based analysis. In [16], the authors extract MT plus ends us-
ing a MT body and a tip model in a multi-scale operation.
In [17] and [18], MTs are traced in segments from initially
selected points and subsequently tracked. In [17], MTs are
searched in a constrained space for tracking in subsequent
frames.

In this work, we used the tracking method from [13]. Con-
ceptually, the proposed approach consists of three compo-
nents, (Fig. 9). First, MT tip candidates are extracted in every
frame of the image sequence. Then, tip correspondences be-
tween frames are established into MT tip tracks. Finally, the
MT bodies are traced from the tips to extract dynamics infor-
mation.

An automated MT tracking method should address the
following: (i) highly variable tubule shapes, (ii) accurate es-
timation of the MT length considering the nonlinear shape,
(iii) frequent occlusions and intersections from surrounding
MTs, and (iv) low signal-to-noise ratios with spatial and tem-
poral variations in illumination.

To address these issues, we consider MTs as flexible open
curves in the image plane, with a fixed minus end near the
nucleus and a dynamic plus end. Formally, a single MT is
modeled by the open curveC(s), wheres ∈ [0, 1] is the curve
parameter. The goal of the MT tracking task is to estimate the
MT length by locating the tip and tracing the deformation of
the MT body, in every frame.

Estimating microtubule tip positions

To address noise and illumination variations, we process the
MT images with a line filter. LetI denote the intensity func-
tion in a frame, then the filter output is given by

If (x, y) = max
θ

(I(x, y) ∗G
′′

σ,θ(x, y)) (3)

where the derivative of the Gaussian is taken along orienta-
tionsθ at position(x, y), andσ is chosen as the average MT

width. The maximum filter response,If (x, y), is then bina-
rized to generate a mask showing MT polymer mass. The
binary mask is used for determining tip candidates in each
frame. Example tip detection results from consecutive frames
are shown in (Fig. 10).

Once the tip candidates are located in each frame, corre-
spondences are established between frames by using a multi-
frame graph matching algorithm. The reasoning behind for-
mulating the correspondence as a graph optimization problem
is that by matching multiple tips at once, occasional spuri-
ous tips are removed. Furthermore, the graph matching algo-
rithm provides the flexibility of skipping frames, which han-
dles missing tips between frames.

Extracting microtubule tip tracks

Consider a MT time-lapse image sequence withT frames. Let
Ni denote the number of tip candidates detected in framei for
1 ≤ i ≤ T . Then, detected tips over the entire sequence can
be individually denoted bythi whereh denotes the tip number
in frame i, within the range1 ≤ h ≤ Ni. We construct a
graphG = (V,E) whose verticesV are the detected tip posi-
tions in frames1..T , and the edgesE represent the similarity
of tip positions between frames. Thus, we represent tracks
of MT tips with paths overG, (Fig. 11). Edges between
vertices in non-consecutive frames are allowed, representing
tracks with occasional missing tips.

To compute the similarity between tip positions in differ-
ent frames, edge weights onG, we use the distance between
tip positions constrained on a MT body. Note that the Euclid-
ean distance cannot be used since different tips tend to move
within close proximity of each other. Consider two tipsthi and
trj in two different framesfi andfj . The main idea is to check
if thi andtrj share a MT body betweenfi andfj . If thi andtrj
do not belong to the same MT, then their similarity is insignif-
icant. If thi andtrj belong to the same MT, then both growing
and shortening cases should be considered betweenfi andfj .
In the case of a growing MT, we project the position ofthi
on fi to the same position onfj and compute the distance,
dg(thi , trj). We compute the shortening case,ds(thi , trj), in the
same way. Then, the weight onG between verticesthi andtrj
is computed as

Sim(thi , trj) = e−min(dg,ds). (4)

OnceG is constructed, we compute a maximum weight
matching ofG where paths correspond to MT tracks. In graph
theory, avertex disjoint path coverC is a covering ofG where
each vertex ofG is in one and only one path ofC. The weight
of a path cover is defined as the sum of weights on its edges.
Using the notion of path cover, the problem of finding the best
MT tracks corresponds to finding themaximum weight path
coverof G with the weights defined by the similarity in (4).
Formally, a maximum weight path coverC(G) is a path cover
which satisfies



C(G) = arg max
Ci

W (Ci) (5)

whereW (Ci) = Σeuv∈CiSim(euv) andu, v are two vertices
in G for which the similarity is computed as in Eq.(4). Note
that between two frames the best tracks can be computed as
the maximum match of a bipartite graph. However, for mul-
tiple frames, the problem becomes NP-hard. Here, we adopt
the approximation proposed in [20].

The described method is sufficient to track MT tips be-
tween different frames. However, without tracing the MT
body, the best estimates of MT growth and shortening would
be limited to Euclidean approximations between tip positions,
(see Current analysis method). Since in live cell images, the
MT body is typically non-linear, this approximation is a rough
one in practice. Instead, we determine the MT body length in
all frames.

Estimating microtubule body

In essence, we compute the MT body length along the body in
each frame and determine the growth and shortening as con-
secutive length differences. Given the tip positions in each
frame, we estimate the deformable curve constituting the MT
body between these tips and a fixed point along the MT body.
Note that the fixed point does not have to lie on the body of
a specific MT for the purposes of computing the growth and
shortening. In cases where the fixed point lies on another MT
rather than the MT being measured, the resulting change in
length is still a better estimate than the Euclidean case, so
long as the fixed point taken consistently across frames. De-
tails of fixing this point can be found in [13]. Due to the con-
stant deformations, the fixed point location may exhibit small
variations, (Fig. 5d – 5f). This is the major contributor of
errors in length estimation between frames. Finally, based on
the estimated plus and minus ends of the MT, the MT body is
extracted using active contours with ridge features.

Model based analysis

A number of studies examined physical models for MT struc-
ture and dynamics. We refer the interested reader to [21–23],
and the references therein, for a review of previous models of
MT dynamic instability. For example, in [23], the authors use
a simulation model to investigate the fluctuations in tubulin
concentration in relation to MT dynamics. In contrast to pre-
vious dynamics models, we propose using machine learning
methods for modeling variousMT behavior patternsoccur-
ring in different experimental conditions.

MT behavior can be considered as a random process that
evolves in time. For example, (Fig. 12) shows different be-
haviors of hypothetical MTs from different MT populations.
MTs in the middle row exhibit a growth tendency, while MTs
in the top row show several length excursions within the same

amount of time. The bottom chart shows two different short-
ening MT groups for visual comparison of behavior patterns.

Automated tracking is sufficient to quantify traditional dy-
namics parameters. We propose an analysis approach target-
ing behavioral information beyond what is provided by the
traditional parameters. We begin with including contextual
information in time. In other words, as opposed to parsing
the growth and shortening events out of MT tracks (life histo-
ries), we keep the MT tracks intact. Therefore, each MT track
is treated as an observation from somebehavior pattern. For
example, the tracks in (Fig. 12, top row and middle row) are
observation instances from different behavior patterns. Thus,
if g denotes a small, andG denotes a large growth events, then
the observed tracks,ggggGGGG andggGGggGG should be
treated as different behaviors even if the average growth rates
may be equal. This definition of a MTbehavior patternleads
to new analysis capabilities. Each behavior pattern can be de-
scribed by a model. Subsequently, estimated models are used
in analyzing MT dynamic behavior; for instance, in evaluat-
ing dynamic similarities between MT populations.

In modeling the MT dynamic behavior, biological insights
provide essential guidance. Similar behavior patterns are known
to be shared between different experimental conditions, while
MT populations within a cell may exhibit dissimilar patterns.
Thus, modeling design should handle expected variations of
behavior within each experimental condition, and similarities
between different experimental conditions.

Formally, we denote each experimental condition byEC,
consisting of groups of behavior patterns,w. All experimental
conditions have a known label, while patterns making up a
condition are unknown. The problem is to estimate a model
λ for each patternw, such that differences betweenECi and
ECj , i 6= j, are emphasized, while each pattern may occur in
different experimental conditions,w ∈ ECi andw ∈ ECj .
Note that our formulation calls for a discriminative approach
betweenEC, while descriptive models ofw is the goal across
differentEC ’s.

A well known class of models used in representing ac-
tivity is the Hidden Markov Models (HMMs). In the past,
they have been used in numerous applications, most notably
in speech recognition, [24], and in genomic sequence analy-
sis, [25–28]. Particularly in activity context, HMMs were
used in activity recognition [29], abnormal activity detection,
gesture recognition, and American Sign Language recogni-
tion. In the next section we review the essentials of HMMs,
while referring the reader to [24] for further details.

Hidden Markov models

HMMs are probabilistic generative models estimating the sta-
tistics of a process from observation sequences generated by
that process. The modeled process is assumed to be not di-
rectly observable, thus hidden states capture statistics of the
process, subject to stochastic constraints. In practice, hid-



den states generally correspond to certain physical charac-
teristics of the process. Detailed information on modeling
with HMMs can be found in [24, 28]. Concisely, HMMs,
denoted byλ, are described by parametersλ = (π,A, B),
whereπ is the state priors,A is the transition, andB is the
emission probabilities. Given an observation sequenceO =
(o1, o2, ..., oT ), wheret = 1..T denotes time, and a model
λ = (π,A, B), the quantityP (O|λ) can be computed effi-
ciently. Given a set of observation sequences, estimating the
parameters ofλ is generally performed using maximum like-
lihood methods, while discriminative techniques were sug-
gested in classification tasks, [30,31].

Modeling microtubule dynamics by HMMs

From the biological perspective, classification of tracks to re-
spectiveEC is not the end goal for dynamics analysis since
labels ofEC are known a priori. However, estimated be-
havior models,λ, provide novel analytical capabilities. Fur-
thermore, model parameters may reveal further insights into
MT dynamic behavior. Our formulation of the problem aims
to extract behavior patterns through estimatingλ, while dis-
criminating between differentEC. In doing so, we employ
the classification score as our measure of model reliability.
The problem description motivates us to use a model based
clustering approach to estimate aλ for eachw. HMM based
clustering methods are discussed in [32].

After parameter estimation, eachEC is represented by a
mixture ofλ where dynamics variations within eachEC are
modeled by the components of the mixture. In this sense, each
λ models the (pseudo-)center of aw, the component behavior
patterns contributing to the resulting behavior in respective
EC. The estimation ofλ is primarily a modeling task, while
discrimination betweenw is handled by clustering the obser-
vations, MT tracks, into behavior patterns represented by the
respectivew.

Model estimation

We define the quantityP (O|λ) as the similarity measure be-
tween the observation sequencesO and the cluster centerλw

of dynamics categoryw. Expected overall likelihood

L =
∑
w

∑
o∈Cw

log P (O|λw) (6)

is maximized through

• Repartition

– assigno to clusterCw such that
w = arg maxw′ log p(o|λw′)

• Reestimate models

– trainλw onCw, w = 1..W

In each iteration of the algorithm, observationo is as-
signed to maximally likely clusterCw, whose centerλw is
re-estimated using the new members ofCw. The iterations are
terminated when no significant increase in the overall likeli-
hood is observed.

Model evaluation

As mentioned, we utilize the classification accuracy between
EC as our measure for overall model reliability. We compute
the probabilityp(o|EC) by

p(o|EC) =
W∑

w=1

p(o|λw,EC)Pw (7)

wherePw is the relative number of cluster members, and esti-
mate the separation by counting the number of correctly clas-
sified trackso ∈ O using the decision rule

EC∗ = arg max
i

[P (o|ECi)]. (8)

Note that the decision is conditional onλw,EC , representing
contributions of each memberλw of EC.
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Fig. 1. Consecutive time-lapse images of MTs taken at 4 sec. intervals. Examples of growing (G) and shortening (S) MTs are
marked. Tip locations of these MTs are manually tracked over time by marking on consecutive frames to calculate the growth
and shortening statistics.
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Figure 2.11: Computation of microtubule shortening from microtubule lengths

in consecutive frames.

The steps discussed above constitute extraction of raw dynamic events from micro-

tubule videos. Essentially,lengtheningandshorteningare raw dynamic events, which

are converted to rate and frequency statistics representing biologically significant inci-

dents for further analysis. A lengthening or shortening event that is below a predefined

amount is referred asattenuation.

As evident in Fig.2.11, approximations of raw events may have a significant effect

on results. Furthermore, the initial selection of a microtubule for tracking depends

heavily on operator judgement, which may introduce bias into resulting statistics and

therefore correlations. A discussion of this situation can be found in [21].
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(b)

Fig. 2. In each frame, length of a MT is estimated by the Euclidean distance between a fixed point on the MT, calledthe origin,
and the MT tip, (a). Shortening length between two consecutive frames is calculated as the difference of respective lengths.
This estimate may not reflect the actual shortening as shown in (b).



(a) (b) (c)

(d) (e) (f)

Fig. 3. Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are
superimposed in (d – f). While the MT body trace was swayed by an intersecting MT, consistent estimation of the body trace is
sufficient for quantifying the growth or shortening at the MT tip.
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Fig. 4. Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are
superimposed in (d – f).
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Fig. 5. Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are
superimposed in (d – f). This example displays the small variations on the estimatedorigin. As a consequence of theminus end
estimation procedure, this variation is the main component of the errors in length computation.
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Fig. 6. Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are
superimposed in (d – f).
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Fig. 7. Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are
superimposed in (d – f).
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Fig. 8. Tracked MTs superimposed on selected cells fromEC5. Tracks were evaluated for their behavioral association to models
representingEC5 by calculatingp(track|EC5). Resulting probabilities were quantized to four categories to aid visibility.
Darker tracks exhibit lower association withEC5, while brighter tracks are indicative of typical behaviors captured by models.
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Fig. 9. Conceptual overview of MT tracking procedure.



(a) (b)

Fig. 10. Example tip detection results in consecutive MT frames. Tip detection algorithm is sensitive to the proximity of the
neighboring MTs. For example, tips that are close to MT intersections are eliminated due to uncertainty.
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Fig. 11. Example diagram of constructed graph,G = (V,E), across frames,fi, is shown in (a). A sample solution is shown in
(b), where each path corresponds to a MT track.



Experimental condition AT MT

EC1 βIII-tubulin expressed, no Taxol 897 58
EC2 βIII-tubulin expressed, plus Taxol 614 33
EC3 βIII-tubulin not expressed, plus Taxol 414 17
EC4 βI-tubulin expressed, no Taxol 370 30
EC5 βI-tubulin expressed, plus Taxol 773 72

Table 1. Experimental conditions and number of tracks collected, automatically (AT) and manually (MT).
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Fig. 12. Example life history plots from hypothetical MTs showing different behaviors. Life histories were inspired by [33].
Individual MTs in the top undergo several length excursions, while the MTs in the middle row exhibit an overall growth
tendency. The bottom chart shows individual MTs, distinguished by filled and open circles, which are superimposed on the
time axis for visual comparison. While both groups of MTs display shortening, the group indicated by the open circles shorten
gradually as compared with the rest of the MTs.



EX:A EX:B EX:C

Correct AT (%) 95.91 94.27 62.67
Correct MT (%) 92.16 86.96 66.67

Table 2. Correct classification rates for EX:A,B,C. First row shows results from automatically tracked MTs, second row shows
results from manually tracked MTs.



W 1 2 3 4 5

Correct (%) 62.11 76.28 94.27 72.33 57.44

Table 3. Change in correct classification rates vs. the number of models from EX:B. Separation peaks atW = 3.



AT q1 q2 q3 q4

λ1 µ 4.03 -2.42 0.48 0.01
σ 2.17 2.59 0.91 8.08

λ2 µ 0.58 0.32 0.56 0.22
σ 0.61 3.32 0.65 8.32

Table 4. Example emission distributions ofλ1 fromEC4, andλ2 fromEC5. Models were trained using automatically extracted
tracks.



MT q1 q2 q3 q4

λ1 µ 3.29 0.74 -2.38 0.01
σ 4.20 0.02 2.52 0.01

λ2 µ -0.35 -1.62 1.89 3.55
σ 1.31 8.01 1.59 12.17

Table 5. Example emission distributions ofλ1 from EC4, andλ2 from EC5. Models were trained using manually extracted
tracks.


