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1 Problem Statement

We propose a robust data-hiding method which can survive a host of global, geometric and image editing
attacks. Localized redundant embedding around multiple key-point centered regions are used to provide
robustness to local attacks and geometrical transformations. The primary contributions of the work include
novel methods for introducing synchronization information that can be recovered at the decoder without
any side information. This synchronization information is then used to identify accurately the geometrical
transformation. We show through experiments that our approach is robust to many standard image process-
ing attacks, including JPEG type compression. Quantization index modulation based embedding and repeat
accumulate code based error correction are used to obtain a good trade-off between hiding rate and error
resilience. Our hiding scheme is robust against rotation angles within (−45◦, 45◦) and scaling factors within
(0.5,2). Detailed experimental results are provided.

In this technical report, we focus on the following aspects of the robust data hiding framework.

1. For geometric synchronization, we introduce some peaks in the frequency domain (DFT magnitude
domain) for the input image and the decoder’s goal is to properly identify these peaks from the fre-
quency domain representation of the received image - we refer to these peaks as the template peaks.
Based on the two sets of matched peaks, we can compute the transformation matrix between the fre-
quency domain representations of the original and received images. In [1, 2] it has been shown that
if the transformation matrix (ADFT ) is known in the DFT domain, the corresponding matrix in the
pixel domain (A) can be computed using the relation: A = (ADFT

−1)T , as shown in Sec. 2. A chal-
lenge in using the DFT peaks is that JPEG compression introduces spurious peaks for every inserted
DFT peak. We further assume that we know the correspondence between the peaks introduced at the
encoder side and those at the decoder, i.e. peaks introduced in a certain quadrant do not get shifted
to a different quadrant after the transformation. With this assumption, the problem reduces to just
identifying the correct DFT peaks per quadrant.

2. The embedding distortion introduced by the DFT peaks results in striations in the pixel domain. As
the strength of the DFT peaks is increased, the peaks are easier to detect; however, the image stria-
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Figure 1: The end-to-end data hiding framework (a) encoder: the same encoded sequence is embedded in
every local region around a key-point, (b) channel: the stego image can be subjected to geometrical trans-
formations, local and global attacks, (c) decoder: it aligns the received image with the original image grid
and decodes data from the local regions around detected key-points. The boxes outlined in bold represent
the main challenges/tasks at the encoder and the decoder.

tions become more visible. We show illustrative examples in Sec. 3 as to how the perceptual quality
(visibility of the striations) varies as the strength of the DFT peaks increases.

3. The size of the DFT grid that is considered before peak insertion is also important. For a bigger
sized DFT grid, the search process for the DFT peaks becomes more computationally intensive. On
the other hand, the actual locations of the DFT peaks can be identified more precisely for a larger
sized DFT grid. We study this trade-off in Sec. 4 and observe how much the detection (of geometric
transformation parameters) accuracy increases using a DFT grid size that exceeds 512×512 (since
most input images are originally 512×512 in size, we use a DFT grid of the same size).

4. The hiding system is robust to cropping as the hiding is repeated in multiple local regions (Sec. 5).
It is also possible to recover the geometric transformation exactly provided that the cropping is small
enough - cropping in the pixel-domain corresponds to a smoothing of the image DFT leading to the
peak detection becoming more difficult because of the smoothing.

5. For local geometric transformations, it is difficult to obtain the transformation matrix if various lo-
cal regions are subjected to different transformations, after the entire image has been subjected to a
certain transformation. In Sec. 6, we observe that if these local regions are small enough, the global
transformation matrix can be recovered properly. Thus, we are able to properly align the received
image with the original image, except for those regions which are subject to local transformations.
Provided that there are some embedding regions which are not subjected to local transformation, data
recovery is possible in general.

6. In Sec. 7, we show how the different key-point (KP) detectors perform under cropping and different
geometric transformations, after the KP pruning algorithm has been applied.
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Figure 2: Block diagram at the encoder side where the input image f is transformed to fw after data
embedding - numbers (1)-(4) correspond to the encoder side modules.
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Figure 3: Image modifications (geometric transformation + other attacks) in the channel convert fw to f ′

7. In Sec. 8, We also provide visual examples to demonstrate the relationship that exists between JPEG-
induced peak locations with the actual location of the inserted peak.

8. The Photoshop-based image processing filters with their parameter settings used in the experiments
are described in detail (Sec. 9). For some local nonlinear transformation based filters, the correspond-
ing change to the DFT magnitude plot is also local and nonlinear leading to difficulty in detection of
the actual peaks.

A list of relevant notations is presented in Table 1.

2 Relationship Between the Transformation Matrices in Spatial and DFT
domains

We show that a simple relationship exists between the spatial-domain transformation matrix and the corre-
sponding matrix in the DFT magnitude domain - the relation is mentioned in [2][1] and we include the proof
here for completeness and ease of understanding. The transformation is computed w.r.t. the image center in
the pixel domain and w.r.t. the center of the DFT grid in the DFT domain.
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Table 1: Glossary of Notations
Notation Definition
f/f temp/fw/f ′ f : Original image/ f temp: image after synchronization template addition/ fw: watermarked

image/ f ′: output image from the channel, after noise attacks on fw

F/F temp/Fw/F ′ the DFT matrix corresponding to f/f temp/fw/f ′, respectively
Fmag/Fphase Fmag: the magnitude component of the DFT matrix F , Fphase: the phase component of F

{P1, · · · , P4} location of DFT domain peaks added to F to produce F temp - inserted as self-
synchronization template

{Q1, · · · , Q4} location of peaks extracted from the DFT magnitude plot of f ′, i.e. F ′ - they are integer
valued points

{R1, · · · , R4} the ideal peak locations {P1, · · · , P4} get mapped to {R1, · · · , R4} (real numbers) in the
DFT plot of the received image - if the geometric transformation is estimated “correctly
enough”, Qi = rounded version of(Ri), 1 ≤ i ≤ 4

Xenc set of key-points obtained from f temp - hiding occurs in B × B local regions around the
key-points

Xdec set of Kdec key-points obtained after geometrically aligning f ′, the noisy received image

fA image obtained after geometric transformation of f using A ∈ R2×2: fA

(
A[x1 x2]

T
)

=

f
(
[x1 x2]

T
)

ADFT if A is the geometric transformation between images f1 and f2, ADFT is the transforma-
tion between DFT plots F 1 and F 2, i.e. F 2

ADFT
(ADFT [u1 u2]

T ) = F 1([u1 u2]
T ) ⇐⇒

f2
A(A[x1 x2]

T ) = f1([x1 x2]
T )

B the size of a local region used for hiding is B×B

δth a threshold imposed on the corner strength for key-point selection while hiding
QFh design quality factor (QF) used for hiding
QFa output JPEG QF at which the noisy output image f ′ is advertised
λ the first λ AC DCT coefficients obtained after zigzag scan are used for embedding for a

8×8 block
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Figure 4: Block diagram at the decoder side where we aim to retrieve the embedded data-bits from f ′ -
numbers (1)-(5) correspond to the decoder side modules.

The synchronization template consists of 4 peaks inserted in the DFT magnitude domain of the N1×N2

input image - we refer to the image with the inserted template as u. After transforming the image using

A =
[

a11 a12

a21 a22

]
, we obtain uA where the relation between the pixel locations in u and uA is:

u([x1 x2]
T ) = uA(A[x1 x2]

T ),

i.e. the point (x1, x2) in the image u gets mapped to (a11x1 + a12x2, a21x1 + a22x2) in uA.
Let U and UA denote the 2D N×N DFT for u and uA, respectively, where N = max(N1, N2).

U(k1, k2) =
∑
x1

∑
x2

u(x1, x2)e−2jπk1x1/Ne−2jπk2x2/N , 0 ≤ k1, k2 < N

UA(k1, k2) =
∑
x1

∑
x2

uA(x1, x2)e−2jπk1x1/Ne−2jπk2x2/N , 0 ≤ k1, k2 < N

The problem is to express ADFT in terms of A, where [k1 k2]
T in U gets mapped to ADFT [k1 k2]

T in
UA (notation wise, U(k1, k2) is equivalent to U([k1 k2]

T )).

U([k1 k2]
T ) = UA(ADFT [k1 k2]

T ) (1)
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u(x1, x2) = uA(a11x1 + a12x2, a21x1 + a22x2) ⇒
uA(x1, x2) = u((a22x1 − a12x2)/D, (−a21x1 + a11x2)/D), where D = (a11a22 − a12a21)

∴ UA(k1, k2) =
∑
x1

∑
x2

u((a22x1 − a12x2)/D, (−a21x1 + a11x2)/D )e−2jπk1x1/Ne−2jπk2x2/N

Replacing y1 = (a22x1 − a12x2)/D and y2 = (−a21x1 + a11x2)/D, we get

UA(k1, k2) =
∑
y1

∑
y2

u(y1, y2)e−j2πy1(a11k1+a21k2)/Ne−j2πy2(a12k1+a22k2)/N =⇒

UA(k1, k2) = U(k1a11 + k2a21, k1a12 + k2a22) =⇒

U(k1, k2) = UA((a22k1 − a21k2)/D, (−a12k1 + a11k2)/D) = UA((A−1)T [k1 k2]
T ) (2)

Thus, we see that ADFT = (A−1)T
, from (1) and (2)

Thus, if the transformation matrix is known in the DFT domain (ADFT ), it is simple to compute the
transformation matrix in the pixel domain (A), for any A ∈ R2×2. The received image f ′, which has been
geometrically transformed by A, can be inverse-transformed so that it (f ′A−1 , as in Fig. 4) corresponds with
the original image grid (f or f temp or fw, as in Fig. 2), based on which hiding was done.

There are 4 parameters to be estimated in A. Each point in the DFT grid is 2-D and hence, 2 points are
needed to solve for the 4 unknowns. By conjugate symmetry, once we insert peaks in the first and second
quadrants, the corresponding peaks in the third and fourth quadrants get fixed.

3 Illustration of Template Based Embedding Distortion

For more accurate parameter estimation, one can increase the magnitude of the DFT peaks, so that they can
be identified more precisely. The trade-off here is that increase in the peak strength may introduce visible
periodic striations in the image (Fig. 5).

4 Result on Varying DFT Size in Accuracy of Transformation Estimation

The accuracy of the transformation estimation depends on the resolution we set for the scaling and rotation
parameters, as shown in Table 2. Here, we use a DFT size of 512×512 and we assume that the geometric
transformation constitutes of rotation and/or scaling (in any sequence). The resolution which we use to
compute the angle and scale parameters are denoted by δθ and δs, respectively. We explain the computation
of the probability of cooect estimation of the transformation parameters in A, which is denoted by pA,m in
Table 2 for a given set of angle and scale resolutions. E.g. we use a resolution of 0.5◦ and 0.05 for the angle
and scale parameters. At the decoder side, we assume that the computed rotation angle and scale factors
are multiples of 0.5◦ and 0.05, respectively, and the angle and scale values thus computed have to equal 20◦
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: It is seen that the striations become more visible as the PSNR decreases: (a) original image; the
other images are obtained after template addition in the DFT domain at different PSNRs (dB) (b) 31.34 (c)
33.46 (d) 36.17 (e) 37.91 (f) 39.68 (g) 41.59 (h) 45.85. The periodic patterns are very clearly evident in the
lower PSNR images and the visibility of the periodic patterns progressively decreases with increased PSNR.
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and 1.1, respectively, for it to be considered a success in pA,m computation. For all the experiments, we use
a rotation angle of 20◦ and a scaling factor of 1.1 is used along both dimensions. Also, for all subsequent
tables (after Table 2), we use δθ = 0.5◦ and δs = 0.05.

Table 2: pA,m is computed for θ = 20◦, sx = 1.1, sy = 1.1 along with 20% cropping, for QFa = 75,
and various resolutions for rotation (δθ) and scale (δs) parameters, e.g. (0.5, 0.05) indicates δθ = 0.5◦ and
δs =0.05. PSNR values are in dB.

(0.5, 0.05) (0.25, 0.05) (1, 0.025) (0.5, 0.025) (0.25, 0.025) (0.125, 0.05) (1, 0.0125)
pA,m PSNR pA,m PSNR pA,m PSNR pA,m PSNR pA,m PSNR pA,m PSNR pA,m PSNR
0.94 44.25 0.86 42.81 0.90 43.89 0.90 43.74 0.87 43.22 0.85 42.41 0.74 41.68

We have experimented with the DFT size N , as shown later in Table 3. Since the 250 images we
experimented with were 512×512 images, we set N to 512. It is seen that slight performance improvement is
obtained using N of 1024 as compared to 512 - the cost involved is searching over (1024

512 )2 = 4 times as many
points compared to when N = 1024. Here, we assume that the geometric transformation consists of rotation
and/or scaling (in any sequence). We also use the property that the position of the JPEG-induced peaks can
be predicted in terms of the actual location of the actual inserted DFT-domain peak. This combination of
prior assumption about the transformation and prediction of JPEG peak locations is used for all subsequent
experiments in the report.

Table 3: pA is computed for different DFT sizes:
JPEG QF (QFh) DFT size = 512×512 DFT size = 1024×1024

Accuracy PSNR(dB) Accuracy PSNR(dB)
40 0.85 40.25 0.86 40.32
50 0.86 43.80 0.87 44.20
60 0.90 45.90 0.92 45.98
75 0.97 47.20 0.98 47.60

5 Effects of Cropping on Accuracy of Geometric Transformation Estima-
tion

We discuss the effect of cropping on the accuracy of the geometric transformation estimation. Cropping can
be interpreted as multiplying an image by a rectangle, where the rectangle size determines the image size
after cropping. Multiplying by a rectangle in the spatial domain is equivalent to convolving with a 2-D sinc
function in the DFT domain. The smaller the size of the rectangle (smaller is the number of pixels retained),
the corresponding sinc in the DFT domain will have a wider variance making the DFT of the cropped image
more blurred and peak picking more difficult.
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Figure 6: Various cropping approaches for a N1 × N2 image - the greyish part denotes the cropped out
(discarded) image part.

Three variations of cropping are shown in Fig. 6. Starting off with a N1×N2 image, the cropped image
has 0.8N1 rows and 0.8N2 columns in all the 3 cases (a)-(c). In (a), the discarded pixels come from the ends
while in (b), they come from the central part. In (b), the 4 cropped regions are put together to constitute the
final image. In (c), 1 row (column) out of every 5 rows (columns) is removed. Thus, on an average, the size
of the individual blocks that are retained in the pixel domain is smallest for (c) and hence, the DFT peaks in
(c) are maximally blurred by the corresponding higher variance of the sinc functions. Experimental results
show that pA is highest for (a) and lowest for (c).

Table 4: For the cropping experiments, QFa = 75, the starting windowed peak strengths [v1 v2 v3 v4] =
[14 10 4 2], and the results are shown after using various cropping methods - methods (a)-(c) are explained
in Fig. 6.

crop Method a Method b Method c
pA PSNR(dB) pA PSNR(dB) pA PSNR(dB)

0.6 0.955 46.90 0.850 44.10 0.518 40.06
0.8 0.970 47.20 0.872 44.33 0.548 42.02

6 Robustness to Small Local Transformations

The template based method is useful for estimation of global affine transformations. If there are small
local regions which undergo transformations different from that of the initial global transform, we cannot
determine the individual transformations undergone by the local regions. However, if we can still determine
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the global transformation in spite of the small local transformations, then the received image can be properly
aligned with the original grid and decoding is possible in those image regions which do not suffer local
transformations.

When the entire image is transformed using A while there are n small local regions which are trans-
formed using A1, A2, · · · , An, we can still recover A provided the local regions are small enough. E.g. if
we consider four regions in the pixel domain, each centered around a quadrant center, and each region has
a different geometrical transformation from that of the overall image, we are still able to recover the global
transform if each region is not more than 30% of the quadrant dimensions. In Table 5, we present results for
accurate A accurately for a variety of local region sizes. In Table 5, by “quadrant” (0.05), we refer to the
case where we take a region of dimension 5% that of the quadrant around the quadrant center, (for all the
four quadrants) and then subj3ct it to a transformation, different from the overall global transform (A). By
“center”(0.05), we refer to the scenario where a local region of dimension 5% of a quadrant is considered
around the DFT center and it is subjected to a transformation different form A.

Effect of Small Local Transformations:

Table 5: Results with small local transformations at varying levels, using QFa = 75
center 0.05 0.10 0.15 0.20 quadrant 0.05 0.10 0.15 0.20
pA 0.97 0.96 0.92 0.84 pA 0.96 0.95 0.91 0.80

PSNR 47.20 46.78 44.88 42.67 PSNR 46.76 44.30 42.10 40.91

7 Comparison of Key-point Detectors

We compare the performance of the various key-point detectors under various attacks (Fig. 7) - it is observed
that Nobel-Forstner (NF) key-points result in a higher frmatch and also, the embedded databits can be
successfully retrieved for a higher fraction of images.

8 Using JPEG Peak Location Property to Discard Noisy Peaks

We make the following observation about the likely position of the JPEG induced peaks relative to an in-
serted peak location, which is also experimentally validated. If (x, y) corresponds to the geometrically
transformed location of the inserted DFT peak, then the JPEG induced peak locations will be at (x±64k, y)
and (x, y ± 64`), k, ` ∈ Z considering a 512×512 grid. Considering the 30 topmost peaks per quadrant,
and comparing the peak locations with the actual location of the inserted DFT peak for geometrically trans-
formed images, we found that 80% of the detected peaks were “JPEG-like neighbors” of the actual peaks.
Visual examples of how the JPEG-induced peaks are spatially related with the location of the original DFT
peaks are presented in Fig. 8 and 9.
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Figure 7: Based on the above experiments, Nobel-Forstner (NF) key-points perform better than Harris and
SIFT key-points; here psucc is the fraction of images for which we successfully retrieve the embedded data.
The experiments are performed on 250 images and the average frmatch is reported. In (g), R=30 refers to a
rotation angle of 30◦, S=0.75 refers to a scaling factor of 0.75 for both the axes, and C=60 means that after
rotation and scaling, the image is cropped while retaining 60% of the image on both axes. In (c)-(d), a crop
fraction of 60% means 60% of the image is retained along both the axes.
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Figure 8: (from left to right) (a) and (b) correspond to 512×512 T∆ plots for transformations of {θ =
10◦, sx =sy =1.1} and {θ=30◦, sx =1, sy =1.2}, respectively, along with 20% cropping, and QFa=75. Pi

refers to the original location of peak insertion, which is shifted to Ri (Ri values are rounded here) after the
geometric transformation. The 20 topmost peaks are shown per quadrant. Due to the window based peak
insertion, many peak locations are clustered together; hence we see fewer peaks per quadrant. Comparing
the locations of the topmost peaks with that of the rounded values of Ri, we observe that JPEG-induced
peaks are generally separated at multiples of 64 units apart, horizontally and vertically.

Figure 9: (from left to right) (a)-(d) correspond to θ = 10◦, sx = sy = 1.1, θ = 30◦, sx = 1, sy = 1.2,
θ=20◦, sx =sy =1.1, and θ=15◦, sx =1.1, sy =1.3, along with 20% cropping and QFa = 75. The circled
locations denote {Ri}4

i=1, while the horizontal and vertical lines show how the JPEG-induced peaks (white
dots) are at multiples of 64 units apart from {Ri}4

i=1.
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9 Description of Photoshop Attack Parameters

We geometrically transformed 50 images using our default choice of A before subjecting them to different
attacks, created using Adobe PhotoShop, and computed the fraction of cases for which we can successfully
estimate A. From the figures (Fig. 10), we see that for local non-linear filtering attacks (for attacks like
pinch, twirl), the DFT template peaks can no longer be observed in F ′, the DFT magnitude plot of the
received image. This explains why pA is very low for these filter based attacks. In the future, we will use
more attack-specific methods aimed at peak recovery from the DFT of these filtered images.

The parameters used for various Photoshop attacks are as follows:

(i) diffuse glow: graininess=5, glow amount=2, clear amount=20,

(ii) film grain: grain=1, highlight area=0, intensity=1,

(iii) pinch: the pinch factor was varied from 10%-75%,

(iv) spatter: spray radius=1, smoothness=15,

(v) twirl: the twirl angle is varied from 10◦-25◦,

(vi) unsharp masking: amount=20%, radius=1, pixel threshold=0,

(vii) zigzag: amount=10, ridges=1, style is pond ripples,

(viii) lens blur: iris shape is a hexagon, iris radius=5,

(ix) ocean ripple: ripple size=2, ripple magnitude=2,

(x) dust and scratches: radius=3, threshold=0,

(xi) shear: a list of points is specified and then non-linear distortions are introduced by using splines which
pass through these points,

(xii) offset: the horizontal and vertical offsets are 15 and 25, respectively.
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(a) diffuse (b) filmgrain (c) pinch (d) spatter

(e) twirl (f) unsharp (g) zigzag (h) lens-blur

(i) ocean-ripple (j) dust (k) shear
(l) offset

(m) diffuse (n) filmgrain (o) pinch (p) spatter

(q) twirl (r) unsharp (s) zigzag (t) lens-blur

(u) ocean-ripple (v) dust (w) shear (x) offset

Figure 10: (a)-(l) images and their (m)-(x) DFT magnitude plots after various Photoshop attacks
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