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1 Problem Statement

Our recently introduced JPEG steganographic method called Yet Another Steganographic Scheme (YASS)
can resist blind steganalysis by embedding data in the discrete cosine transform (DCT) domain in randomly
chosen image blocks. To maximize the embedding rate for a given image and a specified attack channel, the
redundancy factor used by the repeat-accumulate (RA) code based error correction framework in YASS is
optimally chosen by the encoder. An efficient method is suggested for the decoder to accurately compute
this redundancy factor. We demonstrate the redundancy estimation for the quantization index modulation
and matrix embedding based schemes through Sec. 2-4. The second part of this technical report (Sec. 5)
discusses the steganalysis performance of YASS, using different embedding schemes, such as matrix em-
bedding and quantization index modulation, and after using a variety of steganalysis features.

Here, we shall be discussing the estimation of the RA code redundancy factor for the following 2 types
of methods. For each method, the databits are RA-encoded using a suitable redundancy factor and then
different embedding techniques are used to embed the code bits in the given image.

• QIM-RA: use quantization index modulation (QIM) [1] to embed the RA code bits

• ME-RA: use matrix embedding (ME) to embed the RA code bits

We present a brief introduction into how matrix embedding operates and then also briefly describe YASS,
the randomized block-based hiding framework.

Matrix Embedding Example:
Consider (7,3) matrix embedding, in which 3 data bits are embedded in 7 host bits. The idea is to per-
turb the host bits minimally so that they fall in the coset of a linear code, whose syndrome equals the
data bits to be hidden. In particular, we consider the (7,4) Hamming code with parity check matrix H = 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

. For a host sequence a = (1, 0, 0, 1, 0, 0, 1), the syndrome b′ is obtained as:
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(b′)T = H(a)T = (0, 1, 0)T , where the operations are performed over the binary field. If the data bits
to be embedded are (0, 1, 0), we are done; we can send the host bits without perturbation. However, sup-
pose that we wish to embed (0, 0, 0). The aim is to find ∆a, the perturbation vector for a, with the lowest
Hamming weight. Then, H(a)T + H(∆a)T = (0, 0, 0)T . Therefore, H(∆a)T = (0, 1, 0)T . If only the
ith element in ∆a is 1, then H(∆a)T equals the ith column in H. The 2nd column in H = (0, 1, 0)T .
Therefore, ∆a = (0, 1, 0, 0, 0, 0, 0). Similarly, to embed the data bits (1, 1, 1), the perturbation ∆a is such
that H(a)T + H(∆a)T = (1, 1, 1)T ⇒ H(∆a)T = (1, 0, 1)T . Since the 5th column of H = (1, 0, 1)T ,
∆a = (0, 0, 0, 0, 1, 0, 0). Similarly, for any three-tuple we might wish to embed, we need to change at most
one host bit (Hamming weight of ∆a ≤ 1), which illustrates why matrix embedding is so powerful for
passive warden steganography.

Brief Introduction To YASS:
The security of YASS [10] can be attributed to the choice of hiding locations. The input image is considered
in the pixel domain (it is decompressed if the input is in JPEG format) and then divided into blocks of size
B×B (B > 8), where B is called the big-block size. For each big-block, a 8×8 sub-block is pseudo-randomly
chosen to hide data. The encoder and decoder share the same key by which they can access the same set of
8×8 blocks. For every sub-block, its 2D DCT is computed and then divided by a JPEG quantization matrix
at a design quality factor, QFh. A band of λ AC DCT coefficients lying in the low and mid-frequency range
is then used for hiding. After randomized block-based hiding, the resultant image is JPEG compressed at a
quality factor of QF a. The embedding rate decreases, as compared to using regular 8×8 blocks, because
a lower fraction ( 8×8

B×B < 1) of the DCT coefficients is now considered for embedding. To increase the
embedding rate, multiple non-overlapping 8×8 blocks can be fitted in a B×B block, for B > 15. E.g.
the number of 8×8 blocks that can be fitted in a 25×25 big-block is b25/8c2 = 9. The embedding rate is
increased, as compared to using B=9, as the effective big-block size Beff , which accommodates one 8×8
block, is now reduced from 9 to 25

3 . Once the hiding locations are fixed, the code bits are embedded using
ME, while the RA-encoding is done using sufficient redundancy, decided based on the type and severity of
the channel attack.

To summarize the roles of the various modules, YASS suggests “where” to embed (randomized block
locations), ME/QIM shows “how” to embed (embedding method) and the RA-based ECC framework deter-
mines “what” gets embedded (it generates code bits given the data bits) - this is illustrated in Fig. 1.

The work on estimating the redundancy factor (q) for RA-encoded sequences for QIM-based YASS
has been presented in [7]. Here, we have improved upon the method so that it can be used for ME-based
YASS. YASS just provides the stegaongraphic framework and the q-estimation strategies depend only on
the embedding method (ME/QIM) and not how the hiding locations are chosen. We include the method for
q-estimation for QIM-RA scheme for completeness and for ease of comparison between the q-estimation
methods for ME-RA and QIM-RA.

The break-up of the technical report is as follows. Deciding on the best q at the encoder side is discussed
in Sec. 2. Estimation of the redundancy factor at the decoder side for QIM-RA is discussed in Sec. 3. The
corresponding q-estimation for ME-RA is presented in Sec. 4.
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Figure 1: The entire hiding framework using RA coding, matrix embedding (for QIM based framework, this
module is substituted by QIM-based embedding) and YASS-based coefficient selection

2 Maximizing the Hiding Rate Using Optimum Coding Redundancy at the
Encoder and the Decoder

With an increased redundancy factor (q) in the RA framework, the hiding rate decreases while the robust-
ness to channel distortions increases. The hiding rate is maximized if the encoder uses the minimum q that
guarantees zero bit error rate (BER) for a given image, a known attack channel and hiding parameters
that ensure statistical security. This redundancy factor is referred to as qopt in subsequent discussions. The
decoder knows the embedding method and the error correction code (RA) used, but not the q used at the en-
coder. We present an efficient method by which the decoder can correctly estimate the q used by the encoder.

The serial concatenated turbo (RA) code based error correction is used in our data hiding setup - Fig. 2
shows the whole framework except for the iterative decoding part at the RA decoder. Let the total number
of possible hiding locations in the image be `. Using a redundancy factor of q, the maximum number of
embeddable databits, denoted by N , equals b`/qc. The encoder repeats the N -bit data sequence u, as a
whole, q-times (10), instead of repeating each bit q times. As is shown later, this makes it easier to compute
q at the decoder using the auto-correlation (8) of the RA-encoded sequence.

Steps involved in mapping from u to y at the encoder

[r(i−1)N+1r(i−1)N+2. . .riN ] = [u1u2. . .uN ], 1 ≤ i ≤ q (1)

x = π(r), where π is the interleaver function (2)

y1 = x1, yn = yn−1 ⊕ xn, 2 ≤ n ≤ Nq (3)

After data embedding, we get a ternary sequence z of {0, 1, e} based on what is actually embedded, where
e denotes an erasure (Fig. 2). When a quantized discrete cosine transform (DCT) term in the image lies in
the range [-0.5,0.5], an erasure occurs - this maintains perceptual transparency [9]. For DCT terms of higher
magnitude, every DCT term is quantized to the nearest odd/even integer to embed 1/0, respectively. The
ternary sequence obtained from the hiding locations in the noisy received image, decoded using the same
principles used while embedding by the encoder, is called ŷ.
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At the encoder side, the sender transmits a sequence u, embeds the RA-encoded sequence y in the
image, subjects it to known attacks and finally obtains ŷ from the image. Thus, by simulating the exact
attack channel, the 2×3 transition probability matrix, p(ŷ|y) can be computed. The capacity C, for the
channel that maps y to ŷ, is obtained by maximizing the mutual information I(Y, Ŷ ) between the sequences
y and ŷ (4) - a discrete memoryless channel is assumed here.

C = max
p(y)

I(Y, Ŷ ) = max
p(y)

∑
y∈{0,1}

∑
ŷ∈{0,1,e}

p(y, ŷ) log
{

p(y|ŷ)
p(y)

}
(4)

From a capacity perspective, the minimum redundancy factor needed for perfect data recovery, assuming
an ideal channel code, is qmin = d 1

C e. Thus, the minimum possible value of qopt (q needed for perfect
data recovery even after channel distortions) for the RA code is qmin. The sender simulates the decoder
and attempts to recover the embedded databits by varying q. An upper limit (qmax) is set on the maximum
redundancy factor to be used. Thus, the search for qopt, needs to be done in the range [qmin, qmax] - it
will need at most log2(qmax − qmin) searches. It is assumed here that the encoder knows the exact attack,
allowing it to compute qopt precisely. In practice, the range of attacks may be known - the encoder can then
design qopt based on the worst-case attack.

In (5) and also later in (7), it is assumed that the output of ⊕ is an erasure if any of the input bits is
erased.

3 Computing the Redundancy Factor for QIM-RA

We discuss the steps involved in estimating the redundancy factor using the ŷ sequence at the decoder.
Steps involved in mapping from ŷ to r̂ at the decoder

x̂1 = ŷ1, x̂n = ŷn ⊕ ŷn−1, 2 ≤ n ≤ Nq (5)

r̂ = π−1(x̂), where π−1 is the deinterleaver function (6)

Since the decoder knows the hiding method and assuming that the image size is not altered by the
attacks, it can compute ` - the total number of possible hiding locations. Let the actual q value used by
the encoder be qact. If the decoder assumes q=q′, the number of databits equals b`/q′c. In an ideal case,
the sequence r̂ will be exactly equal to r, where r consists of the input message sequence u, repeated
as a whole. Thus, if r̂ is circularly shifted by the assumed input message length b`/q′c, the normalized
correlation between the original and the shifted sequences Rr̂,r̂(q′) (8) will be very high if q′=qact. In (7),
b(q′) is the sequence obtained after performing element-wise ⊕ between the original and shifted sequences,
where shift k = b`/q′c. Rr̂,r̂(q′) (8) is the fraction of 0’s in b(q′) (matches in two corresponding bits after
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(q)

R
epeat process for all q<= q

m
ax

 

to find
R

r̂
r̂

(q)

Find all q where
R r̂ r̂

Find avg. LLR 
after RA-decoding 
for these q values

Find max of q values 
at which RA decoding 
converges and avg. 
LLR values are high

Actual 
q value
is obtained R r̂ r̂

(q) >= 

0.9 x max (q’)
q’

Figure 2: The data hiding system using RA-code based error correction, where q is efficiently estimated at
the decoder

⊕ result in 0’s), without considering the erasures.

b(q′) = ({r̂1. . .r̂kq′} ⊕ {r̂kq′−k+1. . .r̂kq′ r̂1. . .r̂kq′−k}) (7)

and shift k = b`/q′c is the assumed number of databits

Rr̂,r̂(q′) =
Number of 0’s in b(q′)

Number of 0’s and 1’s in b(q′)
(8)

Qtop =
{

q′ : Rr̂,r̂(q′) >= 0.9×( max
q′≤qmax

Rr̂,r̂(q′))
}

(9)

The correlation is also high when the shift equals a multiple of the actual message length, i.e. q′=qact/m, m ∈
Z+. Apart from the correlation peaks at qact and its sub-multiples, other peaks may occur due to errors and
erasures. In the experiments, the set of q values, Qtop (16), at which the correlation exceeds 90% of the
maximum Rr̂,r̂ value, are selected - the 90% cutoff was empirically determined. The turbo decoder is then
run for these q values and the log-likelihood ratios (LLR) are computed for the extracted databits in each
case. It is seen that due to a noisy channel, decoding may converge (two consecutive iterations produce the
same output sequence) at values other than qact/m, m ∈ Z+. However, the LLR value, averaged over the
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databits, is high only when perfect decoding occurs. It is seen that the maximum average LLR values occur
only at qact and its sub-multiples. Thus, the solution is to consider the maximum of these q values as qact,
as shown in Fig. 2. This method of estimating q for RA encoding is found to work even at high erasure rates
(≥ 95%).

Observations about the q-estimation method
• The use of auto-correlation based peaks reduces the search space for q while the average LLR-based
measure, followed by taking the maximum, helps to identify the actual q.
• For our experiments, the search range for q was [2, 50].
• Though the correlation in r̂ is used for q-estimation, this correlation is not detectable by an adversary; r̂
is obtained from ŷ only after applying the deinterleaver (π−1) - the key to generate π−1 is not known to an
adversary.
• The q-estimation method is generic enough to be used for any hiding scheme which uses RA-q based error
correction.

4 Estimating the Redundancy Factor for ME-RA

The proposed q-estimation framework for ME-RA is a modification of the approach used for the QIM-RA
scheme.

System Framework:
Fig. 3 shows the end-to-end hiding framework except for the iterative decoding part at the RA decoder. If
there are ` possible hiding locations, and (7,3) ME is used, the actual number of coded bits that can be
embedded `′ = b`× 3/7c. For a redundancy factor of q, the number of data bits for (7,3) ME, N ′ = b`′/qc.
On inputting {un}N ′

n=1, the sequence of N ′ data bits to a q-times repeater block, the output is {rn}N ′q
n=1 (10),

which is then passed through the interleaver π. The resulting sequence is {xn}N ′q
n=1 (11), which is then passed

through the accumulator ( 1
1+D ) to produce {cn}N ′q

n=1 (12), the encoded output.

Steps involved in mapping from {un} to {cn} at the encoder

[r(i−1)N ′+1r(i−1)N ′+2. . .riN ′ ] = [u1u2. . .uN ′ ], 1 ≤ i ≤ q (10)

{x1, x2, · · · , xN ′q} = π({r1, r2, · · · , rN ′q}), where π is the interleaver function (11)

c1 = x1, cn = cn−1 ⊕ xn, 2 ≤ n ≤ N ′q (12)

The RA-encoded sequence {cn} is embedded in the image using matrix embedding. After embedding,
we get a ternary sequence {zn} of {0, 1, e} based on what is actually embedded, where e denotes an erasure
(Fig. 3). The sequence of LLR values obtained from the hiding locations in the noisy received image is
called {ĉn}.
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was independently decided upon by the encoder.

Decoder Outputs:
The LLR values, computed for ME-RA using M1, M2 or M3, are continuous valued. However, for providing
the sequence of the LLR values {ĉn} as input to the differentiator (1+D), the LLR values have to be quan-
tized into a finite number of levels. The values in {ĉn} are split into 4 zones ([−∞,−δ), [−δ, 0), (0, δ], (δ,∞]),
based on a suitably chosen threshold δ. Here, instead of a binary output for the (1 + D) block, the elements
in {x̂n} are assumed to have positive (instead of 1) and negative (instead of 0) values. The magnitude of the
{x̂n} terms is quantized to 3 levels {L,M,H}, where L < M < H. These values indicate the confidence
we have in the decoded {x̂n} values based on the LLR terms {ĉn}. E.g. if both ĉn and ĉn−1 are positive,
then x̂n should be negative (1⊕1 = 0, here “positive”⇔ 1 and “negative”⇔ 0). If both ĉn and ĉn−1 exceed
δ, we have high confidence in both these terms being positive and x̂n being negative and hence, x̂n = −H.
The various possibilities are covered in (13), where we show how the terms in {x̂n} are computed from {ĉn}.
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x̂n > 0 if ĉn × ĉn−1 < 0, |x̂n| = L if |ĉn| < δ, and |ĉn−1| < δ

< 0 if ĉn × ĉn−1 > 0, = M if |ĉn| ≥ δ and |ĉn−1| < δ, or vice versa (13)

= 0 if ĉn × ĉn−1 = 0, = H if |ĉn| ≥ δ, and |ĉn−1| ≥ δ

Correlation Computation:
The next issue is computing the correlation function Rr̂,r̂(q′), where the sequence {r̂n} is obtained after
deinterleaving {x̂n}, where {r̂n} = π−1({x̂n}). The correlation between {r̂n} and its shifted sequence is
computed as a normalized inner-product. For an assumed redundancy factor of q′, we perform element-
by-element multiplication between the 2 sequences, {r̂1. . .r̂kq′} and {r̂kq′−k+1. . .r̂kq′ r̂1. . .r̂kq′−k}, (shift
k = b`′/q′c is the assumed number of data bits) to obtain the sequence {sq′} (14) and then the average
is taken over the non-zero elements in {sq′} to compute Rr̂,r̂(q′) (15). The zeroes in {sq′} correspond to
those locations where at least one of the corresponding elements in the original and shifted {r̂n} sequences
are erased. Thus, a main difference between the q-estimation strategies for QIM-RA and ME-RA is that
the correlation used for QIM-RA is an inner-product between binary sequences while for ME-RA, it is an
inner-product between continuous valued sequences.

sq′,i = r̂i × r̂kq′−k+i, 1 ≤ i ≤ kq′, where shift k = b`′/q′c is the assumed number of data bits (14)

Rr̂,r̂(q′) = (
∑

i

sq′,i)/(number of non-zeros in {sq′}) (15)

Qtop =
{

q′ : Rr̂,r̂(q′) >= 0.9×( max
q1∈{q}

Rr̂,r̂(q1))
}

(16)

where {q} = {1, 2, · · · , qmax} is the set of possible q-values, assuming a maximum q of qmax.
Let the actual q value used by RA coding equal qact. In a noise-free scenario, the r̂n values will be

high or low depending on whether the corresponding values in {rn} are 1 or 0. The correlation Rr̂,r̂(q′) is
high when the shift (k = b`′/q′c) equals a multiple of the actual message length, i.e. q′=qact/m, m ∈ Z+.
Hence, we can expect peaks at qact and/or its sub-multiples. In practice, due to errors and erasures, peaks
can occur at other q values. Hence, the correlation is used to prune the search space for qact but is not the
only deciding criterion.

Selecting Right Value for Redundancy Factor:
The method for q-estimation from the top correlation values is very similar to the method used for QIM-RA.
In the experiments,Qtop (16), the set of q values at which the correlation exceeds 90% of the maximum Rr̂,r̂

value, is considered as the set of possible qact values - the 90% cutoff was empirically determined. The turbo
decoder is then run for the q values in Qtop and the LLR values are computed for the extracted data bits in
each case. It is seen that for noisy channels, decoding may converge (two consecutive iterations produce the
same output sequence) at values other than qact/m, m ∈ Z+. However, the LLR value, averaged over the
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data bits, is high only when perfect decoding occurs. Hence, the maximum average LLR values occur only
at qact and its sub-multiples. Thus, the solution is to consider the maximum of these q values (corresponding
to high LLR) as qact, as shown in Fig. 3. Running the RA decoder for all q ∈ {q} involves a much higher
level of computational complexity than finding Rr̂,r̂ for all q, selecting the topmost correlation values, and
running the RA decoder on the pruned set of q values. This method of estimating q is found to work even at
high erasure rates.

Performance Comparison:
To compare the relative performance of q-estimation, based on only correlation, between QIM-RA and ME-
RA, we use the separation in the correlation peaks as an index. We also find the number of times there is
an error in q-estimation using just the correlation (the q corresponding to the maximum correlation value
is chosen as qact). To reiterate, these errors are rectified once the final q estimation is done based on the
maximum average LLR values.

Let A and B denote the two sets - {qact/m, m ∈ Z+} and {{q} \ {qact/m}m∈Z+}, corresponding to
“correct” and “wrong” choice of q values, respectively. When the maximum correlation value comes from
an element in A, we classify it as “correct”; otherwise, it is an error. Also, to quantify the discriminability
between elements inA and B provided by the correlation based approach, we compute the difference, Rdiff

(17), between the topmost correlation values among elements inA and B, for both the “correct” and “wrong”
cases.

Rdiff = max
q′∈A

Rr̂,r̂(q′)−max
q′∈B

Rr̂,r̂(q′) (17)

For the correct/wrong cases, we would want the value of Rdiff to be higher/lower, respectively.
We use the (7,3) ME-RA scheme, with M3 based decoding, for the q-estimation experiments. Suitable

values for δ,L,M and H are empirically determined: δ = 0.2,L = 0.10,M = 0.75 and H = 1.90. The
results are shown for 3 cases - QFh is varied from 50 to 70 and QFa is set to 75 (Table 1). Table 1 shows that
ME-RA performs better than QIM-RA, both in terms of having lesser errors and in having better separation
in the correlation peaks, between elements in A and B.

5 Steganalysis Experiments and Results

The focus of these experiments are to demonstrate the following:
(i) We first compare the detectability of both the QIM-RA and the ME-RA-puncture schemes against ste-
ganalysis, at similar hiding rates (shown later in Tables 2 and 3). The hiding rates are adjusted by varying B
and the number of AC DCT coefficients used for hiding (λ).
(ii) We also study the detection performance when hiding is performed in a randomly selected set of AC
DCT coefficients instead of always choosing the top λ coefficients (as returned by zigzag scan). This is
demonstrated later through Tables 4 and 5.
(iii) We also investigate the level of noise attacks upto which ME performs better than QIM, as shown later
in Table 6.
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Table 1: The results of estimating q over 50 images, where the q used for RA coding is varied from 10-43,
are presented here, for (7,3) ME-RA and QIM-RA methods. Thus, the total number of cases over which q
is estimated = 50 × 34 = 1700. The big-block size B is set to 9, while QFa=75. An “error” occurs when
the top peak in the correlation based method does not correspond to the actual q or its sub-multiples. Based
on just the correlation, ME-RA performs better than QIM-RA in q-estimation.

QFh Method error fraction avg. Rdiff (correct cases) avg. Rdiff (wrong cases)
50 QIM-RA 50/1700 0.1500 -0.2972

ME-RA 23/1700 1.0431 -0.1835
60 QIM-RA 151/1700 0.0775 -0.2664

ME-RA 91/1700 0.5272 -0.2111
70 QIM-RA 393/1700 0.0198 -0.3083

ME-RA 364/1700 0.1339 -0.1663

(iv) We also present the steganalysis results using some recently proposed features, most of which were
designed specifically to detect YASS (Table 7 and Table 8).
(v) We also observe how the steganalysis performance is improved on using a larger sized dataset for train-
ing, as shown in Table 9.

5.1 Setup for Steganalysis Experiments

The experiments are done on a set of 1630 high-quality JPEG images taken with a Canon S2-IS Powershot
camera; the images were originally at a QF of 95 and they were JPEG compressed at a QF of 75 for the
experiments 1. The advertised QF (QFa) is therefore kept at 75, so that both the cover and stego images,
considered for steganalysis, are at the same JPEG QF.

Steganalysis Performance Measures: The steganalysis results are expressed in terms of the detection
probability Pdetect (18) while the embedding rates are expressed in terms of the bpnc. We train a support
vector machine (SVM) on a set of known stego and cover images. The SVM classifier has to distinguish
between two classes of images: cover (class ‘0’) and stego (class ‘1’). Let X0 and X1 denote the events that
the image being observed belongs to classes ‘0’ and ‘1’, respectively. On the detection side, let Y0 and Y1

denote the events that the observed image is classified as belonging to classes ‘0’ and ‘1’, respectively. The
probability of detection, Pdetect, is defined as follows:

Perror = P (X0)P (Y1|X0) + P (X1)P (Y0|X1) =
1
2
PFA +

1
2
Pmiss, for P (X0) = P (X1) =

1
2

Pdetect = 1− Perror (18)
1We have experimentally observed that the detectability is higher using high quality JPEG images than images taken with the

same camera, but at poorer quality, i.e. JPEG compressed with lower QF. Hence, we use high-quality images for our experimental
setup to show that ME-based YASS is more undetectable as compared to QIM-based YASS.
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where PFA = P (Y1|X0) and Pmiss = P (Y0|X1) denote the probability of false alarm and missed detection,
respectively. Note that the above equation assumes an equal number of cover and stego images in the dataset
(P (X0) = P (X1) = 1

2 ). An uninformed detector can classify all the test images as stego (or cover) and
get an accuracy of 0.5. Thus, Pdetect being close to 0.5 implies nearly undetectable hiding, and as the
detectability improves, Pdetect should increase towards 1. For the steganalysis results, we report Pdetect as a
percentage, at a precision of 2 significant digits after the decimal point.

Features Used for Steganalysis: The following features are used for steganalysis as these have gener-
ally been reported as having the best detection performance among modern JPEG steganalyzers.

1. PF-219/324/274: Pevny and Fridrich’s 274-dim feature vector (PF-274) is based on the self-calibration
method [6] and it merges Markov and DCT features. The extended DCT feature set and Markov fea-
tures are 193-dim (PF-193) and 81-dim, respectively. The logic behind the fusion is that while Markov
features capture the intra-block dependency among DCT coefficients of similar spatial frequencies,
the DCT features capture the inter-block dependencies. For the extended DCT features [6, 3], the au-
thors have a 219-dim implementation (PF-219) 2. The Markov features (PF-324) are obtained based
on the 324-dim intra-block correlation based feature set (Shi-324) proposed by Shi et al [8] - the only
difference being that the features are “calibrated” in [6].

2. Chen-486: Another steganalysis scheme that accounts for both intra and inter-block correlation
among JPEG DCT coefficients is the 486-dim feature vector, proposed by Chen et al [2]. It improves
upon the 324-dim intra-block correlation based feature [8].

5.2 Discussion of Experimental Results

Comparison after Varying YASS Big-block Size B: The detection performance, in terms of Pdetect (18),
and the embedding rate, in terms of bpnc, are compared for QIM-RA and “ME-RA-puncture”, using big-
block size B = 9 and 10 (Table 2), and 25 and 49 (Table 3). The ME based method has been experimented
with for both the (7,3) and (3,2) encoding schemes. “QIM-RA: n terms” refers to that QIM-RA (QIM-based
YASS where RA-coding is used as ECC) scheme where the first n AC DCT elements encountered during
zigzag scan per 8×8 block are used for embedding, i.e. the size of the embedding band per 8×8 block
λ = n.

From these tables, it is seen that Pdetect is comparable for “QIM-RA: 2 terms” and “ME-RA-puncture
(7,3)” while the latter has a higher embedding rate. The bpnc for “ME-RA-puncture (7,3)” (or ME-RA-
puncture (3,2)) is higher than that of “QIM-RA: 4 terms” (or QIM-RA: 6 terms) while the latter is more
detectable, for the self-calibration based features. It is seen that YASS is more detectable using the self-
calibration based features, than using Chen-486. Hence, the performance improvement of ME over QIM
(lower Pdetect at similar bpnc values) is more significant for PF-219/324/274 features.

2PF-219 differs from PF-193 in the following ways: (i) in PF-219, there are 25 co-occurrence features for both the horizontal
and vertical directions - these are averaged to give 25 features in PF-193. (ii) Instead of 1 variation feature in PF-193, there are 2
variation features (for horizontal and vertical directions, separately) in PF-219.
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Table 2: Comparing detection performance (Pdetect) and embedding rate (bpnc) using QIM-RA and “ME-
RA-puncture” schemes - for B=9 and 10, QF h=50, QF a=75. The bpnc for “ME-RA-puncture (7,3)” (or
ME-RA-puncture (3,2)) is higher than that of “QIM-RA: 4 terms” (or QIM-RA: 6 terms) while the
latter is more detectable, for the self-calibration based features.

Hiding big-block size B=9 big-block size B=10
Scheme PF-219 PF-324 PF-274 Chen-486 bpnc PF-219 PF-324 PF-274 Chen-486 bpnc

QIM-RA: 2 terms 69.45 65.52 67.73 52.39 0.0493 68.83 65.28 67.85 52.52 0.0382
QIM-RA: 4 terms 80.00 77.18 79.39 56.20 0.0864 78.53 74.97 77.91 55.09 0.0700
QIM-RA: 6 terms 81.84 77.67 84.05 57.55 0.1138 78.90 79.26 79.39 55.95 0.0923

ME-RA-puncture (7,3) 64.79 65.40 69.45 55.95 0.0975 63.31 68.83 67.61 54.36 0.0805
ME-RA-puncture (3,2) 74.97 72.27 78.65 61.60 0.1200 73.87 78.77 78.77 59.02 0.0998

Table 3: Comparing Pdetect and bpnc for QIM-RA and “ME-RA-puncture” - for B=25 and 49, QF h=50,
QF a=75

Hiding big-block size B = 25 big-block size B = 49
Scheme PF-219 PF-324 PF-274 Chen-486 bpnc PF-219 PF-324 PF-274 Chen-486 bpnc

QIM-RA: 2 terms 71.53 66.38 71.17 53.74 0.0588 71.17 68.96 71.78 54.23 0.0606
QIM-RA: 4 terms 82.70 79.26 82.45 57.55 0.1018 82.33 80.00 83.56 59.14 0.1048
QIM-RA: 6 terms 84.29 80.61 86.26 59.51 0.1336 87.98 84.54 88.34 61.47 0.1379

ME-RA-puncture (7,3) 72.15 73.99 75.95 59.14 0.1106 69.08 67.61 71.04 56.69 0.1136
ME-RA-puncture (3,2) 77.30 82.82 81.35 62.54 0.1382 82.94 84.91 84.91 63.80 0.1421

Depending on the bpnc requirements for a certain stego scheme, one can decide whether to use (3,2)
or (7,3) matrix embedding - the former allows for higher bpnc while the latter is more undetectable. Using
(15,4) code for ME results in very low hiding rates and hence has not been considered.

Comparison after Further Randomization for QIM-RA: In the experiments discussed above, the top
AC DCT elements, encountered after zigzag scan, are used for embedding. While the top DCT elements are
generally higher in magnitude (non-erasure locations) making them suitable for embedding, most detection
schemes (e.g. PF-219/274) focus on these coefficients - hence, using these coefficients for hiding increases
the hiding rate and also helps in detection. To make detection more difficult, we choose a certain number of
DCT terms randomly out of the top 19 coefficients for the “QIM-RA: rand-n” scheme. In Tables 4 and 5,
“QIM-RA: rand-n” refers to the QIM-RA scheme, where n randomly chosen AC DCT terms out of the top
19 are used for embedding. For this scheme, we vary n, the number of DCT coefficients in the embedding
band, to make the hiding rate comparable to that resulting from the ME based scheme - the detection rates
of the QIM and ME based methods are then compared. We experiment with hiding at QFh = 50, 60 and 70,
as shown in Tables 4 and 5.

From Table 4, “ME-RA-puncture(7,3)” (or ME-RA-puncture(3,2)) performs better than “QIM-RA:
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Table 4: Comparing Pdetect and bpnc for QIM-RA and “ME-RA-puncture”, for B=9 and 10, QFh = 50, and
using randomly chosen DCT coefficients for QIM-RA. “ME-RA-puncture(7,3)” performs better than
“QIM-RA: rand-8/10” while “ME-RA-puncture(3,2)” performs better than “QIM-RA: rand-12”.

Hiding B = 9, QFh = 50 B = 10, QFh = 50
Scheme PF-219 PF-324 PF-274 Chen-486 bpnc PF-219 PF-324 PF-274 Chen-486 bpnc

QIM-RA: rand-8 69.45 66.99 70.43 53.37 0.0700 68.83 68.10 69.82 52.52 0.0530
QIM-RA: rand-10 71.04 73.13 74.36 55.83 0.0850 78.16 78.28 80.25 55.34 0.0700
QIM-RA: rand-12 78.41 76.81 80.61 57.30 0.1115 81.23 80.98 83.56 56.07 0.0880

ME-RA-puncture (7,3) 64.79 65.40 69.45 55.95 0.0975 63.31 68.83 67.61 54.36 0.0805
ME-RA-puncture (3,2) 74.97 72.27 78.65 61.60 0.1200 73.87 78.77 78.77 59.02 0.0998

Table 5: Comparing Pdetect and bpnc for QIM-RA and “ME-RA-puncture”, using B=9 and QFh=60 and
70, and using randomly chosen DCT coefficients for QIM-RA. “ME-RA-puncture(7,3)” performs bet-
ter than “QIM-RA: rand-8” while “ME-RA-puncture(3,2)” performs better than “QIM-RA: rand-
10/12”.

Hiding B = 9, QFh = 60 B = 9, QFh = 70
Scheme PF-219 PF-324 PF-274 Chen-486 bpnc PF-219 PF-324 PF-274 Chen-486 bpnc

QIM-RA: rand-8 74.72 73.13 74.72 53.99 0.0760 61.23 62.58 63.19 52.39 0.0430
QIM-RA: rand-10 77.18 79.63 80.00 55.95 0.0913 64.79 65.64 66.50 53.37 0.0550
QIM-RA: rand-12 79.63 85.03 85.77 64.79 0.1094 69.69 69.33 70.43 55.21 0.0720

ME-RA-puncture (7,3) 63.34 64.61 66.27 55.09 0.0916 56.81 59.75 57.18 52.39 0.0537
ME-RA-puncture (3,2) 73.55 71.81 75.12 62.82 0.1161 63.31 68.34 65.03 54.85 0.0780
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Table 6: Comparing bpnc under various attacks - “QIM-n” refers to the “QIM-RA: n terms” method,
while (p,q) refers to the “ME-RA-puncture (p,q)” method. For hiding, we use QFh = 50, B = 9, and after
the attack, the images are JPEG compressed using QFa = 75. Here, the bpnc for “ME-RA-puncture(7,3)”
and “ME-RA-puncture(3,2)” are compared with that of QIM-4 and QIM-6, respectively.

Gamma correction: γ < 1 Gamma correction: γ > 1 AWGN attack: SNR (dB)
γ QIM-4 QIM-6 (7,3) (3,2) γ QIM-4 QIM-6 (7,3) (3,2) SNR QIM-4 QIM-6 (7,3) (3,2)

0.99 0.0851 0.1125 0.0953 0.1191 1.01 0.0854 0.1125 0.0959 0.1194 50 0.0860 0.1133 0.0952 0.1190
0.98 0.0839 0.1105 0.0929 0.1171 1.02 0.0843 0.1114 0.0935 0.1171 45 0.0859 0.1125 0.0940 0.1179
0.95 0.0783 0.1013 0.0849 0.1069 1.05 0.0799 0.1026 0.0863 0.1095 40 0.0840 0.1096 0.0885 0.1126
0.90 0.0608 0.0799 0.0655 0.0845 1.10 0.0631 0.0827 0.0685 0.0893 35 0.0728 0.0912 0.0659 0.0889
0.80 0.0307 0.0401 0.0200 0.0250 1.20 0.0366 0.0465 0.0260 0.0400 30 0.0393 0.0485 0.0200 0.0260

rand-8/10” (or QIM-RA: rand-12) - by having higher bpnc for similar Pdetect, at QFh of 50. From Table 5,
“ME-RA-puncture(7,3)” performs better than “QIM-RA: rand-8” while “ME-RA-puncture(3,2)” performs
better than “QIM-RA: rand-10/12”, at QFh of 60 and 70.

Robustness Comparison for Various Noise Attacks: We now study how the bpnc is affected by ad-
ditional noise attacks for these schemes. The YASS framework can be made robust against various global
(and not local) attacks by adjusting the RA-code redundancy factor. We consider a wider range of attacks
- gamma variation and additive white Gaussian noise (AWGN) attacks, which are followed by JPEG com-
pression at QFa=75. It is seen that for higher noise levels, (|γ − 1| > 0.10, for gamma variation, or SNR
≤ 35 dB, for AWGN) the bpnc is significantly lower for the ME based method, as compared to QIM-RA,
for similar detection rates (Table 6).

Using Recent Steganalysis Features more tuned to detect YASS: We explain the following features
and then show the steganalysis performance using these features in Tables 7 and 8:
(i) KF-548: To improve upon the PF-274 feature, Kodovsky and Fridrich [4] proposed the use of a 548-
dimensional feature set which accounts for both calibrated and uncalibrated features. Here, the reference
feature is used as an additional feature instead of being subtracted from the original feature.
(ii) Li-14 and Li-2: In [5], Li et al propose the use of the frequency of re-quantized DCT coefficients in the
candidate embedding band which round off to zero. The (2i−1)th and (2i)th features correspond to B of
(8+i), for 1≤ i≤7. Thus, if we are sure that B = 9, we use the first two dimensions of Li-14, i.e. Li-2; else
when the exact value of B is not known, the 14-dim feature is used.
(iii) YB-243: In [11], Yu et al propose the use of a 243-dim feature based on transition probability matrices
computed using the difference matrix computed in the pixel and DCT domains.

It is seen that in the lower embedding rate regime for which ME performs better than QIM, these newer
features (KF-548 and Li-2) provide similar levels of detectability as that provided by features already dis-
cussed, like PF-274.

The detection results are also shown for a variety of QFh in Tables 7 and 8. It is generally seen that
the detection accuracy is higher when QFh = 50 (QFa is fixed at 75), while it decreases generally as we
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Table 7: Comparing Pdetect for a variety of recently proposed features to detect YASS, using QFh = 50. We
use B=9 for the QIM schemes. The acronyms used for the various methods are the same as used in Table 6.

Feature QIM-2 QIM-4 QIM-6 QIM-12 QIM-15 QIM-19 (7,3), B=9 (3,2), B=9 (3,2), B=10
KF-548 68.45 79.48 83.82 89.20 90.44 92.03 69.61 80.15 78.97
Li-14 54.01 55.27 56.75 59.74 62.96 67.65 52.88 59.93 55.76
Li-2 64.43 69.49 77.51 81.19 95.71 96.08 68.83 76.05 71.08

YB-243 54.64 55.70 56.75 58.12 64.01 69.89 54.23 59.68 56.12

Table 8: Comparing Pdetect for a variety of recently proposed features to detect YASS, using QFh = 70. We
use B=9 for the QIM schemes. The acronyms used for the various methods are the same as used in Table 6.

Feature QIM-2 QIM-4 QIM-6 QIM-12 QIM-15 QIM-19 (7,3), B=9 (3,2), B=9 (3,2), B=10
KF-548 59.85 63.97 67.65 77.21 78.43 78.70 57.83 66.18 61.52
Li-14 50.49 50.67 50.85 54.17 56.00 58.70 49.94 50.00 51.35
Li-2 53.37 58.22 71.85 76.91 79.14 81.00 58.39 69.80 53.79

YB-243 50.55 51.22 51.68 54.82 58.13 59.35 51.90 52.70 51.52

increase QFh from 50 to 70.
Effect of Varying the Size of the Training Dataset: The training dataset now has 1850 images instead

of (1630/2) 815 images, while the test set remains the same. The additional images are generated in the
same way as the original set of 1630 images. In Table 9, we observe that there is marginal increase in the
detection accuracy after increasing the size of the training dataset by more than a factor of 2.

Performance Comparison after Puncturing: We have employed puncturing for the ME-RA frame-
work but not for the QIM-RA scheme. We now use puncturing for QIM-RA (“QIM-RA: n terms” scheme)
and compare the bpnc results for ME-RA and QIM-RA, both with and without puncturing, in Table 10.
From Table 2 and 3, ME-RA-puncture is less detectable than QIM-RA and also has higher bpnc. After using

Table 9: Comparing Pdetect for two different sized datasets, using a variety of steganalysis methods, and dif-
ferent variants (embedding methods) of the YASS scheme - B=9 is used along with QFh=50 and QFa=75.

Hiding 815 training images 1850 training images
Scheme PF-274 Chen-486 KF-548 Li-2 YB-243 PF-274 Chen-486 KF-548 Li-2 YB-243

QIM-RA: 2 terms 67.73 52.39 68.45 64.43 54.64 70.31 54.60 69.57 65.65 54.80
QIM-RA: 4 terms 79.39 56.20 79.48 69.49 55.70 81.60 59.88 79.75 71.78 55.75
QIM-RA: 6 terms 84.05 57.55 83.82 77.51 56.75 85.15 61.60 84.56 78.22 57.30

ME-RA-puncture (7,3) 69.45 55.95 69.61 68.83 54.23 70.35 60.86 71.66 67.47 54.40
ME-RA-puncture (3,2) 78.65 61.60 80.15 76.05 59.68 78.80 62.79 81.00 78.00 60.05
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Table 10: The bpnc values are compared for ME-RA and QIM-RA methods, before and after puncturing,
at QFh=50.

Hiding B = 9 B = 10 B = 25 B = 49
Scheme before after before after before after before after

QIM-RA: 2 terms 0.0493 0.0572 0.0382 0.0438 0.0588 0.0670 0.0606 0.0683
QIM-RA: 4 terms 0.0864 0.0965 0.0700 0.0784 0.1018 0.1110 0.1048 0.1134
QIM-RA: 6 terms 0.1138 0.1206 0.0923 0.0999 0.1336 0.1392 0.1379 0.1427

ME-RA (7,3) 0.0766 0.0975 0.0634 0.0805 0.1000 0.1106 0.1050 0.1136
ME-RA (3,2) 0.1100 0.1200 0.0900 0.0998 0.1300 0.1382 0.1350 0.1421

puncturing, we observe that the bpnc gain margin (of ME-RA-puncture over QIM-RA-puncture) decreases
- however, in general, ME-RA-puncture is still less detectable (puncturing does not affect the detectability)
than QIM-RA-puncture at similar bpnc values. We have also experimentally observed that for “QIM-RA:
rand n” schemes, the average bpnc is not increased through puncturing.

To conclude, for hiding conditions where the embedding rate has to be low enough to ensure a certain
level of undetectability, ME based embedding with suitable puncturing generally results in higher bpnc than
QIM, for similar robustness levels against steganalysis. However, this holds true only when the channel
noise introduced by the active adversary is low enough - for more severe noise, the LLR estimation for ME
is erroneous enough to result in a lower hiding rate than QIM.
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[4] J. Kodovský and J. Fridrich. Calibration revisited. In MM & Sec ’09: Proceedings of the 11th ACM
workshop on Multimedia and security, pages 63–74, New York, NY, USA, 2009. ACM.

[5] B. Li, Y. Shi, and J. Huang. Steganalysis of YASS. In Proceedings of the 10th ACM workshop on
Multimedia and security, pages 139–148. ACM New York, NY, USA, 2008.

[6] T. Pevny and J. Fridrich. Merging Markov and DCT features for multi-class JPEG steganalysis. In
Proc. of SPIE, pages 3 1 – 3 14, San Jose, CA, 2007.

16



[7] A. Sarkar, L. Nataraj, B. S. Manjunath, and U. Madhow. Estimation of optimum coding redundancy
and frequency domain analysis of attacks for YASS - a randomized block based hiding scheme. In
Proc. of ICIP, pages 1292–1295, Oct 2008.

[8] Y. Q. Shi, C. Chen, and W. Chen. A Markov process based approach to effective attacking JPEG
steganography. In Lecture notes in computer science: 8th International Workshop on Information
Hiding, pages 249–264, July 2006.

[9] K. Solanki, N. Jacobsen, U. Madhow, B. S. Manjunath, and S. Chandrasekaran. Robust image-adaptive
data hiding based on erasure and error correction. IEEE Trans. on Image Processing, 13(12):1627 –
1639, Dec 2004.

[10] K. Solanki, A. Sarkar, and B. S. Manjunath. YASS: Yet Another Steganographic Scheme that resists
blind steganalysis. In 9th International Workshop on Information Hiding, pages 16–31, Jun 2007.

[11] X. Yu and N. Babaguchi. Breaking the YASS Algorithm via Pixel and DCT Coefficients Analysis. In
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1–4, 2008.

17


