
Discussion of a Pruning Scheme for Top-K Retrievals Among
Vector Quantizer Encoded Signatures

Anindya Sarkar1, Vishwakarma Singh2, Pratim Ghosh1, B. S. Manjunath1, Ambuj Singh2

1 Department of Electrical and Computer Engineering, University of California, Santa Barbara
2 Department of Computer Science, University of California, Santa Barbara

April 25, 2008

1 Problem Statement

The problem we are considering here is duplicate video detection. We have a database of N videos and we
store compact signatures, called fingerprints, for each of them. When a query video is presented, the system
first returns the top-K most closely matched videos. Then, a more detailed search is performed among the
top-K retrieved model videos to obtain the best match. Finally, a separate module is used to confirm whether
the best matched video is indeed a duplicate. A complete overview of our duplicate detection framework
is shown in Fig. 1. In this write-up, we focus on the VQ based pruned search where the effort is to return
the top-K neighbors in the fastest possible manner without having to do a linear scan of all the N database
signatures. The database videos are referred to as “model” videos in this write-up.

The N model video signatures in the database are denoted by {Xi}N
i=1. On presenting a query video

signature Q, the aim is to find the K model video signatures that are nearest to Q. The notion of similarity
is with reference to a distance measure d(Xi, Q) (1). To simplify matters and improve runtime, a vector
quantizer (VQ) based approach is used, where the video signatures are VQ encoded and lookup table based
methods are used to make the search faster.

d(Xi, Q) =
M∑

k=1

{
min

1≤j≤Fi

‖Xi
j −Qk‖1

}
(1)

where ‖Xi
j −Qk‖1

refers to the L1 distance between Xi
j , the jth feature vector of Xi and Qk, the kth

feature vector of Q. For every vector in Q, the best match is obtained out of all the vectors in Xi and
d(Xi, Q) is the summation of the best matched distances.
Glossary of Notations

1

N : number of database videos
Vi : ith model video in the dataset
Vi∗ : best matched model video for a given query
p : dimension of the feature vector computed per video frame
Zi ∈ RTi×p : feature vector matrix of Vi, where Vi has Ti frames after temporal sub-sampling
Xi ∈ RFi×p : fingerprint of Vi, which has Fi keyframes
Xi

j : jth vector of video fingerprint Xi

U : size of the vector quantizer (VQ) codebook used to encode the model video and query video signatures
Qorig ∈ RTQ×p : query signature created after sub-sampling, where TQ refers to the number of sub-sampled
query frames
Q ∈ RM×p : keyframe based signature of the query video, where M is the number of query keyframes
Ci : the ith VQ codevector
−→xi : VQ based signature of Vi

~q : VQ based query signature
SXi

j
: VQ symbol index to which Xi

j is mapped

D ∈ RU×U : Inter VQ-codevector distance matrix
D∗ ∈ RN×U : Lookup distance matrix of shortest distance values from each model to each VQ codevector
|E| : the cardinality of the set E

2 Use of VQ-encoded signatures

We develop an algorithm that uses VQ-based encoding on the signature feature vectors. Thus, the distance
between any two feature vectors reduces to an inter-symbol distance, after VQ-based encoding. By using a
lookup table of inter-VQ codevector distances, the L1 distance computation cost (e.g. ‖Xi

j −Qk‖1
) can be

avoided.
Using the features extracted from the database video frames, a vector quantizer of codebook size U is

constructed. Since each vector in a video signature can be mapped to one of U codevectors, the effective
video signature can be thought of as a U -dimensional vector, where the ith dimension denotes the fraction
of vectors in the original signature which get mapped to the ith codevector Ci.

Let [q1, q2, · · · , qU] denote the normalized query video signature −→q and [xi,1, xi,2, · · · , xi,U] denote the
normalized model video signature −→xi for the ith video Vi.

qk = |{j : SQj = k, 1 ≤ j ≤ M}|/M (2)

xi,k = |{j : SXi
j

= k, 1 ≤ j ≤ Fi}|/Fi (3)

2

V1
V2
.
.
.

VN

Sub-sample
the decoded
video
frames

Cluster video
feature set Zi

for video Vi

VQ
design

based on
{X1,..,XN}

X1

X2

XN

F1

F2

FN

p

......

p

p

TQ

MQuery
Video

Sub-Sampling

VQ based
Pruned
Search

Return Top
K Neighbors

Naive Linear Search on Top
K Neighbors using Qorig

Return best
match Vi*

Offline Cost

Online Cost

Video
Database

Vector
Quantizer

Decide whether
the best match
is a duplicate

Feature
Extraction

Query
Frames

S

F1

Fi

FN

VQ Model Symbols

Query Symbols

Extract
features
for these
frames

Feature Set per
video

p

p

p

T1

T2

TN
ZN

Store the
cluster
centers, Xi as
video
fingerprint

Video Fingerprint

Compute
distance
matrices
based on

VQ
design

p

TQ

Qorig : Query
Features

SQ1 QM

......

......

......XS
1
i

Z1

Z2

S i
Fi

X

p

M

Signature: Q

Cluster Qorig and
store cluster centers

Figure 1: Block diagram of the proposed duplicate detection framework.

3

Generally, there is a high degree of redundancy among video frames; hence, many of them will get
mapped to the same VQ codevector and there will be many VQ codevectors which will have no represen-
tative (assuming a large enough U). Let {t1, t2, · · · , tNq} and {ni,1, ni,2, · · · , ni,Nxi

} denote the non-zero
dimensions in −→q and −→xi , respectively.

The distance between them can be expressed as:

dV Q(−→xi ,
−→q) =

Nq∑
k=1

qtk ×
{

min
1≤j≤Nxi

D(tk, ni,j)
}

(4)

where D(i, j) = ‖Ci − Cj‖1, 1 ≤ i, j ≤ U (5)

where D ∈ RU×U is the inter-VQ codevector distance matrix.
It can be easily shown that the distances in (1) and (4) are identical, apart from a constant scaling factor,

when each vector in (1) is represented by its corresponding VQ codevector.

d(Xi, Y) = M × dV Q(−→xi ,
−→q) (6)

Further speedup is possible if we are able to directly lookup the distance of a query signature symbol
to its nearest symbol in a model video signature (e.g. {min1≤j≤Nxi

D(tk, ni,j)} in (4)). We pre-compute a
matrix D∗ ∈ RN×U where D∗(i, k) denotes the minimum distance of a query vector, represented by symbol
i after the VQ encoding, to the kth model.

dV Q(−→xi ,
−→q) =

Nq∑
k=1

qtk × D∗(tk, i) (7)

where D∗(i, k) = min
1≤n≤Fk

D(i,SXk
n
) (8)

3 Theoretical Solution for Pruning Along the Model Video Search Space

For a big enough dataset (large N), a practical approach to pruning can be if we can avoid considering all the
model videos, while ensuring that we still return the top-K model videos. The philosophy for this pruning
is explained below.

Given a dataset of {−→xi} signatures, where i ∈ S, we present a lower bound of the minimum model-to-
query distance, {mini∈S dV Q(−→xi ,

−→q)}, found for all signatures in the dataset (9). Here, β(i, tk) denotes the

4

best matching dimension in −→xi for dimension tk.

min
i

dV Q(−→xi ,
−→q) = min

i

 Nq∑
k=1

qtk × D(tk, β(i, tk))


≥ min

i

 Nq∑
k=1

qtk × {min
j

D(tj , β(i, tj))}


(using

Nq∑
k=1

qtk = 1) = min
i
{min

j
D(tj , β(i, tj))} (9)

Thus, the lower bound equals the smallest distance between a non-zero query dimension and any of the
non-zero model dimensions.

We store two (P × P) matrices, a proximity matrix P and a distance matrix D′, which store the nearest
neighbors (NN), and their corresponding distances, respectively, for a certain VQ codevector. E.g. P(i, j)
denotes the jth nearest neighbor for the ith VQ codevector. Similarly, D′(i, j) denotes the distance of the
{P(i, j)}th codevector from the ith VQ codevector, i.e. D′(i, j) = D(i, P(i, j)) = ‖Ci − CP(i,j)‖1

.
We also store P clusters {C(i)}P

i=1, where C(i) denotes the cluster which contains those model video
indices whose signatures which have the ith dimension as non-zero.

C(i) = {j : xj,i > 0, 1 ≤ j ≤ N} (10)

This method uses a multi-pass approach, where as soon as a certain distance based condition is satisfied,
the search can be stopped at that pass and it can be guaranteed that the top-K candidates have been found,
out of all N model videos. We provide a list of symbols with their definitions used in the algorithm:

1. Sj : denotes the set of distinct model videos considered in the jth pass
2. G: denotes the set of non-zero query dimensions;

G = {t1, t2, · · · , tNq}
3. d∗j : denotes the minimum of the distances of all codevectors contained in the query to their jth nearest

neighbors

4. dmin,j : denotes the minimum possible distance value, between a certain non-zero query dimension
and all the non-zero dimensions in the model videos found in Sj

5. Aj : denotes the set of distinct VQ indices which are encountered on considering the first j nearest
neighbors for each of the elements in G. Therefore, (Aj \Aj−1) denotes the set of distinct (not seen in
earlier passes) VQ indices encountered in the jth pass, when we consider the jth NN of the elements
in G.

For a given query, the model videos which are nearest to it are likely to have some or all of the non-zero
dimensions, as the query signature itself, as non-zero. In the first pass, we find all the model videos which

5

Algorithm 1 Pruning Along Model Video Search Space - here, unique(E) returns the unique (without
repeats) elements in E

Input: N model video signatures, −→xi ∈ RU , 1 ≤ i ≤ N
Input: the query signature ~q, and lookup matrices P and D′

Output: Best sequence to search N videos
1: Initialization: (1st pass)
2: G = {n1, n2, · · · , nNq}
3: A1 = G
4: S1 =

⋃
1≤i≤Nq

C(ni)
5: d∗1 = min1≤i≤|G|[D′(Gi, 1)] = 0
6: We maintain the K-minimum distance values {Li}K

i=1 and the corresponding indices {Ii}K
i=1, based on

the elements in S1.
7: End of 1st pass
8: for j=2 to U do
9: d∗j = min1≤i≤|G|{D′(Gi, j)}

10: if LK ≤ d∗j then
11: break;
12: end if
13: Bi = P(ni, j), 1 ≤ i ≤ Nq

14: E = B \Aj−1, E = unique(E)
15: Sj =

⋃
1≤i≤|E| C(Ei)

16: Sj = Sj \
⋃

1≤i<j Si, (get videos not seen in earlier iterations)
17: Aj = Aj−1 ∪ E
18: Update the lists I and L based on the elements in Sj

19: end for
20: return The sequences observed so far {S1, S2, · · · , Sj−1}

6

have at least one of the non-zero query dimensions as non-zero - S1 is the set of these video indices. We
store the top-K neighbors ({Ii}K

i=1) and the K corresponding distance values ({Li}K
i=1, sorted in ascending

order) from this set.
We now show why d∗j ≤ dmin,j holds, ∀j. To compute dmin,j , we consider elements in D′ where the

column index is j and the rows correspond to U , a subset of G (only those elements in G, the jth NN of
which belongs to (Aj \ Aj−1), the set of new VQ indices encountered in the jth pass, constitute U). Thus,
d∗j ≤ dmin,j as d∗j is the minimum computed over a larger set than dmin,j .

U = {Gi, i : P(Gi, j) ∈ (Aj \Aj−1)} (11)

dmin,j = min
i

[D′(Ui, j)] (12)

U ⊆ G ⇒ d∗j ≤ dmin,j

We now show that {mini∈Sj dV Q(−→xi ,
−→q)} ≥ dmin,j . Out of all the distinct VQ indices contained in the

model videos in Sj , there cannot be any VQ index that is a ĵth(ĵ < j) NN of any non-zero query dimension.
This is because all ĵth (ĵ < j) NN indices are used up in the set ∪`,1≤`<jS`. Therefore, the smallest “query
dimension-to-model dimension” distance is due to a model dimension which is the jth NN of a certain query
dimension. J = {P(tk, j)}

Nq

k=1 is the set of indices that serve as the jth NN of non-zero query dimensions.
Of these indices, some may have already been present in the model indices found in ∪`,1≤`<jS`. The set
of VQ indices that are j-NN of the query dimensions and are newly encountered in the jth pass is given by
(Aj \Aj−1).

min
i, i∈Sj

dV Q(−→xi ,
−→q) ≥ min

1≤k≤Nq

[min
`:P(G`,j)∈(Aj\Aj−1)

D′(tk, J`)]

= min
`:P(G`,j)∈(Aj\Aj−1)

[D′(G`, P(G`, j))]

= min
1≤k≤|U |

[D′(Uk, j)], using (11)

= dmin,j (13)

When we consider videos in Sj , during the jth pass, dV Q(−→xi ,
−→q) ≥ dmin,j , where model index i ∈ Sj .

Since dmin,j ≥ d∗j , and if d∗j ≥ LK , then it is assured that dV Q(−→xi ,
−→q) ≥ LK , using (13). Now, if for

the jth pass, it is ensured that dV Q(−→xi ,
−→q) ≥ LK , i ∈ Sj , then is it guaranteed that for videos in the j′th

pass, (for j′ > j), dV Q(−→xi ,
−→q) ≥ LK , i ∈ Sj′?

Explanation : d∗j′ ≥ d∗j , ∵ D′ is a sorted matrix

dmin,j′ ≥ d∗j′ , ∵ d∗j′ is the minimum over a larger set than dmin,j′

∴ LK ≤ d∗j , d∗j ≤ d∗j′ , d∗j′ ≤ dmin,j′ , dmin,j′ ≤ dV Q(−→xi ,
−→q), i ∈ Sj′

⇒ LK ≤ dV Q(−→xi ,
−→q), i ∈ Sj′

7

Hence, it is confirmed that if d∗j ≥ LK , we will not find a model video in any sequence Sj′ , where
j′ > j, with model-to-query distance less than LK , where LK is the Kth minimum distance computed over
the set of videos constituted using sequences {Sk}j−1

k=1.
If this condition (LK ≤ d∗j) is not satisfied, then we compute Sj and proceed to the (j + 1)th pass. After

the jth pass, we need to maintain Sj , Aj , and the updated lists {Ii}K
i=1 and {Li}K

i=1.

8

