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1 Problem Statement

The problem we are considering here is duplicate video detection. We have a database of N videos and we
store compact signatures, called fingerprints, for each of them. When a query video is presented, the system
first returns the top-K most closely matched videos. Then, a more detailed search is performed among the
top-K retrieved model videos to obtain the best match. Finally, a separate module is used to confirm whether
the best matched video is indeed a duplicate. A complete overview of our duplicate detection framework
is shown in Fig. 1. In this write-up, we focus on the VQ based pruned search where the effort is to return
the top- K neighbors in the fastest possible manner without having to do a linear scan of all the N database
signatures. The database videos are referred to as “model” videos in this write-up.

The N model video signatures in the database are denoted by {X 1}5\;1 On presenting a query video
signature (), the aim is to find the K model video signatures that are nearest to (). The notion of similarity
is with reference to a distance measure d(X*, Q) (1). To simplify matters and improve runtime, a vector
quantizer (VQ) based approach is used, where the video signatures are VQ encoded and lookup table based
methods are used to make the search faster.

M

d(Xi7Q) — Z{lgjngnFl”X;_QkHI} (1)

where || X7 — Q||| refers to the L; distance between X7, the j'* feature vector of X and Qy, the k'

feature vector of (). For every vector in (), the best match is obtained out of all the vectors in X* and
d(X", Q) is the summation of the best matched distances.
Glossary of Notations



N : number of database videos

V; : ith model video in the dataset

V;= : best matched model video for a given query

p : dimension of the feature vector computed per video frame

7' € RTXP : feature vector matrix of V;, where V; has T} frames after temporal sub-sampling

X' ¢ RF"XP : fingerprint of V;, which has F; keyframes

X: j'" vector of video fingerprint X'

U : size of the vector quantizer (VQ) codebook used to encode the model video and query video signatures
Qorig € RTe*P ; query signature created after sub-sampling, where Tg, refers to the number of sub-sampled
query frames

Q € RM*P : keyframe based signature of the query video, where M is the number of query keyframes

C; : the i*" VQ codevector

Z;: VQ based signature of V;

7 : VQ based query signature

S X VQ symbol index to which X]’: is mapped

D € RU*V: Inter VQ-codevector distance matrix
D* € RVXV: Lookup distance matrix of shortest distance values from each model to each VQ codevector
|E| : the cardinality of the set E

2 Use of VQ-encoded signatures

We develop an algorithm that uses VQ-based encoding on the signature feature vectors. Thus, the distance
between any two feature vectors reduces to an inter-symbol distance, after VQ-based encoding. By using a
lookup table of inter-VQ codevector distances, the L distance computation cost (e.g. || X ; — Qk ”1) can be
avoided.

Using the features extracted from the database video frames, a vector quantizer of codebook size U is
constructed. Since each vector in a video signature can be mapped to one of U codevectors, the effective
video signature can be thought of as a U-dimensional vector, where the i** dimension denotes the fraction
of vectors in the original signature which get mapped to the i*" codevector C;.

Let [q1,q2, - - ,qu] denote the normalized query video signature ¢ and [z;1, %2, - - ,2; ] denote the
normalized model video signature 7z, for the it" video V.

aw = Hji:Sqg, =k 1<j<M}/M (2
zip = [{J: ijz: =k, 1<j<F}|/F 3)
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Figure 1: Block diagram of the proposed duplicate detection framework.




Generally, there is a high degree of redundancy among video frames; hence, many of them will get
mapped to the same VQ codevector and there will be many VQ codevectors which will have no represen-
tative (assuming a large enough U). Let {t1,t2, - ,tn,} and {n;1,ni 2, - 7”i,Nwi} denote the non-zero
dimensions in ¢ and T;, respectively.

The distance between them can be expressed as:

dvo(7},q) = ;th x {lngnsi?vwim(tk,ni,j)} )
where D(i, j) = ||C; —Cj|l1, 1 <4, <U Q)

where D € RV*V is the inter-VQ codevector distance matrix.
It can be easily shown that the distances in (1) and (4) are identical, apart from a constant scaling factor,
when each vector in (1) is represented by its corresponding VQ codevector.

d(X"Y) =M x dvo(zi, q) (©6)

Further speedup is possible if we are able to directly lookup the distance of a query signature symbol
to its nearest symbol in a model video signature (e.g. {min;<;< N, D(tx, n; )} in (4)). We pre-compute a
matrix D* € RV*U where D* (i, k) denotes the minimum distance of a query vector, represented by symbol
1 after the VQ encoding, to the k" model.

Nq

dvo(Ti, 7)) = Dy x D*(t, i) @)
k=1

where D* (i, k) = | Jnin D(i, Sxx) (8)

3 Theoretical Solution for Pruning Along the Model Video Search Space

For a big enough dataset (large V), a practical approach to pruning can be if we can avoid considering all the
model videos, while ensuring that we still return the top-K model videos. The philosophy for this pruning
is explained below.

Given a dataset of {; } signatures, where i € S, we present a lower bound of the minimum model-to-
query distance, {min;cs dyo(;, ¢ )}, found for all signatures in the dataset (9). Here, 3(i, t4) denotes the



best matching dimension in x; for dimension t.

F N,
rnllndVQ(E)77) = HIZHI ZthXD(tk,B('L,tk))
k=1
F N,
2> min thkx{minﬂ)(tj,ﬂ(i,tj))}
" k=t /

(using thk =1) = miin{rxljjnﬂ)(tj,ﬁ(i,tj))} ©)

Thus, the lower bound equals the smallest distance between a non-zero query dimension and any of the
non-zero model dimensions.

We store two (P x P) matrices, a proximity matrix I and a distance matrix D', which store the nearest
neighbors (NN), and their corresponding distances, respectively, for a certain VQ codevector. E.g. P(i, j)
denotes the ;" nearest neighbor for the i*” VQ codevector. Similarly, (i, j) denotes the distance of the
{P(i, 7)}'" codevector from the i*" VQ codevector, i.e. IV(i, ) = D(i, P(i, j)) = ||C; — Criiplly-

We also store P clusters {C(i)}~_,, where C(i) denotes the cluster which contains those model video
indices whose signatures which have the i*" dimension as non-zero.

C(i)={j:xj; >0,1<j<N} (10)

This method uses a multi-pass approach, where as soon as a certain distance based condition is satisfied,
the search can be stopped at that pass and it can be guaranteed that the top-K candidates have been found,
out of all NV model videos. We provide a list of symbols with their definitions used in the algorithm:

1. S;: denotes the set of distinct model videos considered in the 4t pass

2. G: denotes the set of non-zero query dimensions;
G={ti,t2, - ,tn,}

3. d;?: denotes the minimum of the distances of all codevectors contained in the query to their j* nearest
neighbors

4. dpmin,;: denotes the minimum possible distance value, between a certain non-zero query dimension
and all the non-zero dimensions in the model videos found in S;

5. Aj;: denotes the set of distinct VQ indices which are encountered on considering the first j nearest
neighbors for each of the elements in G. Therefore, (A;\ A;_1) denotes the set of distinct (not seen in
earlier passes) VQ indices encountered in the 7 pass, when we consider the j** NN of the elements
in G.

For a given query, the model videos which are nearest to it are likely to have some or all of the non-zero
dimensions, as the query signature itself, as non-zero. In the first pass, we find all the model videos which



Algorithm 1 Pruning Along Model Video Search Space - here, unique(F) returns the unique (without
repeats) elements in £/
Input: N model video signatures, T, € ]RU, 1<i<N
Input: the query signature ¢, and lookup matrices P and D’
Output: Best sequence to search N videos
1: Initialization: (1°! pass)

2. G= {nl,HQ, s ,an}

3 A =G

4 81 = Uir<icn, Clni)

5: df = minlgig\GHD/(Gi? 1)] =0

6: We maintain the K -minimum distance values {Z;}. | and the corresponding indices {I;}:* |, based on
the elements in S .

7: End of 1% pass

8: for j=2to U do
D df = mingq{D(Gi, 5)}

100 ifLg < d; then

11: break;

12:  end if

13: Bl:P(TLZ,]), 1§Z§Nq

14:  E =B\ Aj_1, £ =unique(F)

150 S = Ui<i<ip C(E:)

16:  S; =85; \ Uj<i<; Si, (get videos not seen in earlier iterations)
17: Aj = Aj,1 UFE

18:  Update the lists I and L based on the elements in S;

19: end for
20: return The sequences observed so far {S1,Sy, -+ ,S;_1}




have at least one of the non-zero query dimensions as non-zero - S; is the set of these video indices. We
store the top-K neighbors ({Ii}fi ) and the K corresponding distance values ({Li}fi 1» sorted in ascending
order) from this set.

We now show why d;f < dpin,; holds, Vj. To compute dyn ;, we consider elements in ' where the
column index is j and the rows correspond to U, a subset of G' (only those elements in G, the j** NN of
which belongs to (4; \ A;j_1), the set of new VQ indices encountered in the j* pass, constitute U). Thus,
d;f < dmin,j as d;-‘ is the minimum computed over a larger set than d,;,. ;.

U={G;, i:P(Gi,j) € (Aj \ Aj_1)} (11
dmin,j = min[D'(U;, j)] (12)

We now show that {min;es; dVQ(E, )} > dinin, ;- Out of all the distinct VQ indices contained in the
model videos in S;, there cannot be any VQ index that is a j’th( j<3j ) NN of any non-zero query dimension.
This is because all ;% (} < j) NN indices are used up in the set Uy 1<¢;S,. Therefore, the smallest “query
dimension-to-model dimension” distance is due to a model dimension which is the j* NN of a certain query
dimension. J = {P(tg,j )}Zkvil is the set of indices that serve as the j** NN of non-zero query dimensions.
Of these indices, some may have already been present in the model indices found in Uy 1<¢<;Sy. The set
of VQ indices that are j-NN of the query dimensions and are newly encountered in the j** pass is given by

(A \ Aj_1).
in d —i>,—> > . . D (+ J
1H11g'§13 ve(@i, ¢) = ISIEISI}Vq[W(GeJ)Ig%Ej\Aj—l) (tk, Jo)

e mln ]D)/ G ,P G ’ .
E:P(Gz,j)e(Aj\Aj,l)[ (Ge, P(Ge, 5))]

= in [D'(U,4)], using (11
lgrggllm{ (Uk, )], using (11)

= dmin,; (13)
When we consider videos in S;, during the jth pass, va(E}, E’) > dpmin,j» where model index 7 € S;.
Since dpin,j > dj, and if d;‘f > Lk, then it is assured that va(E, q¢) > Ly, using (13). Now, if for

the j*" pass, it is ensured that va(E, q)> Lk, i€ S;, then is it guaranteed that for videos in the j’ th
pass, (for j' > j), dvq(%i, ¢) > Lk, i € Sj?

Explanation : d}, > dj, " D’ is a sorted matrix
dmin,j» > djs, . dj, is the minimum over a larger set than dn 1
LK < dj) dj < d;/a d;/ < dmin,j’a dmin,j’ < dVQ(El)a ?)a (RS S]’

= Lk < dVQ(E:?)? (RS S]’



Hence, it is confirmed that if d7 > Lg, we will not find a model video in any sequence Sj, where
J' > j, with model-to-query distance less than Ly, where L is the K th minimum distance computed over
the set of videos constituted using sequences {Sy }i;ll

If this condition (Lx < d7) is not satisfied, then we compute S; and proceed to the (j+ l)th pass. After

the j* pass, we need to maintain S;, A;, and the updated lists {I;}/, and {L;} 1 ,.



