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Abstract 

In this paper we propose a novel framework to obtain a 
very compact image signature (32 bits) which is invariant 
to rotation, translation, scaling and other minor 
perturbations like smoothing, random noise addition, 
JPEG compression etc. The framework involves Fourier-
Mellin transform, conventional PCA and non-uniform 
scalar quantization. The high retrieval efficiency and low 
space consumption demonstrates the significance of our 
signature in duplicate image retrieval and large image 
database indexing. 
 

1 Introduction 

Rapid growth in multimedia and networking technology 
has created an urgent need for developing a system to 
mitigate copyright infringement. Thanks to the advances in 
electronic media technology one can easily copy another’s 
creativity and distribute it over the internet in his name. 
This kind of infringement is more rampant for image and 
video. 
  
Existing duplicate detection systems are of two types: 
watermarking based [4] and retrieval based [7, 8]. In the 
former some data is hidden with in the image and in such a 
scenario the emphasis is on finding a proper trade off 
between distortion and robustness. But in retrieval based 
framework the emphasis is on evaluating good feature 
representation of images. Duplicate detection involves 
retrieving either exactly identical images or near identical 
(slightly perturbed (rotated, scaled, translated)) version of 
given reference image from a large database. In this work 
we also consider two images to be nearly identical if one is 
obtained by subjecting the other to slight smoothing, 
blurring and cropping kind of operations.  
 
In order to identify a duplicate this paper attempts to find a 
good compact descriptor (referred to as signature after 

quantization), which is invariant to all the operations 
mentioned above. Several papers [3, 6] have talked about 
local descriptors but it has been found difficult to obtain a 
compact descriptor using local approaches. The number of 
interest points can be as high as thousand or so depending 
on the complexity of the images. Also local descriptors 
can give false alarm if the database contains images of the 
same scene taken from different view directions and 
images with several similar regions. Handling global 
descriptors has also been exhaustively discussed in several 
works [7, 8]. However the compaction of these descriptors 
seems to have remained unaddressed. This paper proposes 
an approach towards this end. 
 
The remainder of the paper is organized as follows. Some 
background information and proposed framework are 
explained in Section 2. Section 3 presents the experimental 
results and discussion. Finally, our conclusion and ideas 
for future work are presented in Section 4. 
  

2 RTS invariant signature 

The overall block diagram of the image signature 
extraction is depicted in Figure 1.  
 
2.1   RTS invariant feature extraction 
 
Fourier-Mellin transform (FMT) has been studied 
extensively by pattern recognition community. It has also 
been used a lot in watermarking and several other 
applications. Few years ago, the problem related to 
computation of FMT was solved by using Analytical 
Fourier-Mellin Transform (AFMT) [1]. We have used fast 
AFMT approximation (F-AFMT) [2] for our work in this 
paper. 
 
Let f1(x, y) be an image and its rotated, translated and 
scaled version f2(x, y) be related by the equation 
 
 f2(x,y) =f1(α(xcosβ+ysinβ)–xt,α(-xsinβ+ycosβ)– yt).     (1) 
 



 

 
 
 
 
 
 
 
 
 
 
 

                        
                                                                          Figure 1: Overview of proposed framework. 
 
 
 
 
where the RTS parameters are β, (xt , yt), α respectively. 
Applying Fourier transform (FFT) on both sides of (1) and 
taking only the magnitude we get                                 

                             
 |F2(u,v)|=|α|-2|F1(α-1(ucosβ+vsinβ),α-1(-usinβ+vcosβ))|.  (2)                                                  
 
where (u, v) correspond to variables in frequency domain. 
Now taking F-AFMT on both sides of (2) is equivalent to 
log-polar transform followed by another 2D Fourier 
transform on |F2(u, v)|. Substituting  
 
                                      u=eρcosψ.                                    (3) 
       
 
                                      v=eρsinψ.                                    (4)                     

In view of the above, to obtain an RTS invariant set of 
features we apply on a given image FFT and F-AFMT 
successively. We then extract all Fourier Mellin (FM) co-
efficient (except the D.C component) lying with in a fixed 
radius from the D.C component. After several experiments 
the radius was fixed at a value, which encompasses around 
50% of the total A.C energy. It was found that for all 
practical purposes this is sufficient to represent an image 
(Figure 3). The value of the radius chosen corresponds to a 
good trade off between initial compaction and retrieval 
accuracy shown later. A 64*64 grid has been found 
adequate for log-polar mapping. Let Xi (m dimensional) 
denote the vector of extracted FM co-efficient corresponds 
to ith image (Figure. 1).               

 
in (2) we get 
 
 
       |F2 (u,v)|=|α|-2|F1(α-1eρcos (ψ- β),α-1eρsin (ψ- β))|.     (5) 
 
                 =|α| -2|F1(e(ρ-logα)cos(ψ- β),e(ρ-logα)sin (ψ- β))|. (6) 
 
or 
 
                   | F2 (ρ,ψ)|= |α| -2| F1( ρ-log α, ψ- β)|.             (7) 
 
 
                                                                                                                                

The xi obtained above is subjected to scalar quantization. 
A Llyod Max quantizer [5] is designed for each 
component of xi vectors. The signature of the ith image is 
obtained by concatenating the l quantized components of 
the xi vector. Choosing a value of 4 for l and 8 bit 
quantizers for the four components yields a signature of 
length 32 bits.    

The above expression demonstrates that the amplitude of 
the log-polar spectrum is scaled by a constant factor (can 
be handled by normalizing the co-efficient) |α| -2 and that 
image scaling and rotation in spatial domain result in 
translation by log α and β in log polar domain (Figure 2). 
In order to get rid of the translation parameters on the right 

hand side of (7) we apply Fourier transform again to (7) 
and taking the magnitude we get 
  
 
                          |F’2(m,n)|=|α|-2|F’1(m,n)|.                       (8) 
 
 
where F’1 and F’2 are the FFT of F1 and F2. 
 

 
We now apply PCA [10] to the set of vectors X=[X1, 
X2,…., XN] where N (<< size of database) is set of training 
images selected randomly from the database. After 
applying PCA we get new feature vectors xi (i =1, 2,…, N) 
of length l (l<<m).  
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Figure 2: (a) Original image  (b) Rotated and Scaled Image (c)&(d) log-polar map of Fourier spectrum of (a)&(b) 
respectively. Results showing rotation and scaling in spatial domain corresponds to translation in log-polar domain. 
 
 
3   Experimental results and discussion 
 
In this section we first describe the evaluation metric used 
to asses the performance of our signature. Then we 
proceed to present experimental results. 
 
3.1 Evaluation metric 
 
Precision-recall curve has been used to measure the 
performance of our signature. Let A(T,Г) be the set of T 
retrievals based on the smallest distances from Г (query 
image) in the signature space and R(Г) is the set of D   
images in the database relevant to Г. Then, precision 
which is defined by P is the proportion of images retrieved 
that are relevant to query image Г.  
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is the proportion of relevant images retrieved from R(Г). 
Precision-recall curve is plotted by averaging precision 
over all Г. Precision-recall curves for different cases are 
shown in Figure 4 and Figure 5. In each case average 
precision values are plotted at recall values 

1 ,......,,......,
2

,
1

upto
D'

1D

D'

D

D'D'

+
(where 

D'

D
 is defined as 

knee point and 2D)(D'D ≤< integer ).  Here recall is 
treated as independent variable whereas precision is 
dependent one.  
 
 
3.2 Results 
 
To study the performance of the proposed scheme we used 
the database MM270k. This database can be downloaded 
from http://www-2.cs.cmu.edu/~yke/retrieval. It contains 
18,785 images including landscapes, animals, construction 
and people. The aspect ratio and image sizes vary over the 
database. The images are mostly in colour except for a few 
gray ones. 
 
For our experiments we created a database containing 
around 5000 images (randomly chosen from MM270k). 

(c) 

(a) 

(d) 
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ORIGINAL IMAGE LOG -POLAR TRANSFORMED IMAGE RECONSTRUCTED IMAGE USING ~50 % OF TOTAL A.C ENERGY 

 
Figure 3: These are original image, log-polar transformed image and reconstructed image (from left to right) using only 
~50 % of total A.C energy. Overall shape remains unchanged in the reconstructed image. 
 
We chose 100 random images (queries) and for each of 
these query images 13 duplicates were generated  by 
performing all the operations mentioned in Table 1.  
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                     Figure 4: Precision-Recall plot. 
 
 
For data hiding we used Image Adaptive QIM (Quantized 
Index Modulation) technique. The original descriptor for 
each image was 192 dimensional. We have plotted the 
precision-recall curves for the first seven operations 
mentioned in Table 1. The plots are obtained by averaging 
over the 100 query images. Figure 4 shows the results for 
original descriptor and reduced feature descriptors (using 
PCA). These include 12, 8, 6 and 4 dimensional 
descriptors. Figure 5 shows the results after applying non-
uniform and uniform scalar quantization on the reduced 
feature descriptors. Each quantized feature in the 
descriptor was represented by 8 bits. (Thus for a 4 
dimensional descriptors a 32 bits signature is obtained) 
Precision values are above 80% till the knee point and 
droop afterwards in both of the Figure 4 and Figure 5. So 
plots essentially capture the high retrieval performance of 
our signature. Table 1 shows the variation of compact 
image signature with respect to the original one after 
various operations. The value of chosen for the plots is 
12. However other values of have also shown to yield 
similar results.    

D'
D'

 
To compare our performance we chose another RTS 
invariant feature descriptor [9] based on scale 
normalization of power spectral density by a cut off 
frequency followed by Zernike moments calculation. This 
method gives an image descriptor of length 22 (8x22=176 
bits). We have used L1- Norm for distance calculation. 
The whole algorithm is implemented in Matlab. It takes 
approximately 0.4 seconds to extract the signature on 
Pentium –III, 1 GHz machine. 
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                     Figure 5: Precision-Recall plot. 
 
4. Conclusion 
 
 
In this paper a compact signature for an image has been 
defined and has been shown to give good retrieval 
accuracy from a database. The signature is insensitive to 
various operations like rotation, blurring, scaling, random 
noise addition and JPEG compression. However when one 
uses the signature on a stegoed duplicate (Table 1), the 
signature vary to the extent it appears possible to detect 
stegoed duplicates. 



                  
No.      Operations Performed    Final Image Signature 
 0. Original Image 186    81   167   154 
 1. Gaussian Noise 186    81   166   154 
 2. Rotation (180) 186    82   164   156 
 3. Rotation (270) 186    82   164   156 
 4. Gaussian Blurring(2) 186    80   167   153 
 5. Scaling down (x1.3) 185    79   166   154 
 6. Scaling down (x2) 183    79   163   154 
 7. Scaling down (x4) 180    86   156   153 
 8. Hiding Data (1 KB) 179    93   166   165 
 9. Hiding Data (2 KB ) 179    93   165   166 
 10. JPEG Compressed(30) 186    82   167   155 
 11. JPEG Compressed(50) 186    81   167   156 
 12. JPEG Compressed(70) 186    81   167   154 
 13. JPEG Compressed(90) 185    81   167   155 

 
 
Table 1: Comparison of compact image signature of modified images with respect to the original one for a particular    
              category. 
 
 
The image signature proposed here does have certain 
handicaps. The signature is tied to a database in the sense 
that the statistics of the database play a crucial role in 
defining the signature. It may not be useful when applied 
to a totally new database. Efforts are on to define a 
universal signature, which can work satisfactorily on any 
database. 
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